
Inexact Arithmetic Operators∗

Lukas Sekanina and Zdenek Vasicek and Vojtech Mrazek

Abstract Approximate implementations of arithmetic circuits have been developed
to find the best trade-offs between the key circuit parameters (such as energy, area,
and delay) and the error of arithmetic operations. This chapter discusses various
methodological aspects of developing approximate arithmetic circuits, including
design abstractions, number representation, error analysis methods, and particular
design methods. We survey problem-specific methods proposed for the manual de-
sign of approximate adders and multipliers. The circuit approximation problem is
also formulated as a multi-objective optimization problem that can be solved by
a suitable automated circuit design method. A comprehensive open-source library
EvoAppoxLib of approximate circuits that was automatically generated by one of
the automated methods is introduced. We stress the importance of correct evalua-
tion and comparison of approximate implementations and a proper benchmarking
methodology. Finally, two case studies demonstrate some frequently overlooked is-
sues related to the selected error analysis approaches.

∗ This is a pre-print of a book chapter published in Approximate Computing Techniques, edited
by Alberto Bosio, Daniel Ménard, and Olivier Sentieys, Springer, 2022. The final authenticated
version is available online at: doi.org/10.1007/978-3-030-94705-7 4

Lukas Sekanina
Brno University of Technology, Faculty of Information Technology, IT4Innovations Centre of Ex-
cellence, Czech Republic, e-mail: sekanina@fit.vutbr.cz

Zdenek Vasicek
Brno University of Technology, Faculty of Information Technology, IT4Innovations Centre of Ex-
cellence, Czech Republic, e-mail: vasicek@fit.vutbr.cz

Vojtech Mrazek
Brno University of Technology, Faculty of Information Technology, IT4Innovations Centre of Ex-
cellence, Czech Republic, e-mail: mrazek@fit.vutbr.cz

1

2 Lukas Sekanina and Zdenek Vasicek and Vojtech Mrazek

1 Introduction

Developing and applying approximate implementations of arithmetic operators is
currently one of the most popular approaches to reduce power consumption in
compute-intensive signal, image, and video processing applications. The aim of this
chapter is to summarize the operation principles of elementary approximate arith-
metic circuits and the methods developed for their design. Our focus will be on se-
lected methodological issues and practices related to the approximate circuit design,
namely the understanding of the circuit approximation problem as a multi-objective
optimization problem, an error analysis methodology, a correct evaluation and com-
parison of approximate implementations and a fair benchmarking methodology.

We will primarily deal with approximate adders and approximate multipliers
because they are the key circuits of many applications relevant for approximate
computing, for example, image, video and speech processing, deep learning, data
mining, and nature language processing. No attention will be paid to approximate
implementations of subtractors, dividers, and other arithmetic operations because
their need in approximate computing systems is rather limited in comparison with
adders and multipliers. These circuits are discussed, for example, in [32, 4, 21].
Moreover, we will not deal with common compositions of adders and multipliers in
circuits such as ‘multiply and accumulate’ (MAC) and scalar product. Their approx-
imate implementations can be obtained either by (i) utilizing (independent) approx-
imate adders and approximate multipliers or (ii) designing a single block without
any decomposition, where (ii) can lead to much better tradeoffs than (i).

Approximate implementations of digital circuits are often obtained by the so-
called functional approximation. This method starts with an original (exact) circuit
and tries to modify its logic behavior (and the subsequent implementation) in such
a way that the best possible tradeoff between the quality of output (the error) and
electrical characteristics of the circuit is sought. By electrical characteristics, we
mean one or several circuit parameters commonly used to characterize electrical
circuits, for example, power consumption, area, and delay. We will not deal with
voltage over-scaling and other technology exploiting approximation methods, al-
though they are sometimes combined with functional approximation. The reason is
that voltage over-scaling is very technology-dependent and hard to control, making
the evaluation and fair comparison of various approximate implementations diffi-
cult.

The rest of the chapter is organized as follows. The methodological aspects that
are relevant for the design of approximate arithmetic circuits are surveyed in Chap-
ter 2. Some of them are then further elaborated in special chapters. In particular,
Chapter 3 deals with error analysis methods for approximate circuits, with a spe-
cial focus on formal relaxed equivalence checking. Chapter 4 presents the circuit
approximation as a multi-objective optimization problem and emphasizes a correct
approach enabling to compare approximate circuits under several design metrics and
constraints. Problem-specific approximation methods for adders and multipliers are
discussed in Chapter 5 while general-purpose automated approximation methods are
briefly introduced in Chapter 6. A comprehensive open-source library of approxi-

Inexact Arithmetic Operators† 3

mate circuits that was automatically generated by one of the automated methods is
presented in Chapter 6.2. Chapter 7 includes several case studies that demonstrate
some interesting aspects of the circuit approximation methods; for example, it com-
pares the circuit simulation utilizing a subset of input vectors with an exact error
analysis. Concluding remarks are given in Chapter 8.

2 Methodological aspects

In this section, we discuss various methodological aspects that a designer has to con-
sider before any approximate (arithmetic) circuit is created. Some of these aspects
are solely connected with arithmetic circuits while other aspects are relevant for all
approximate circuits. Understanding these aspects is crucial not only for develop-
ing efficient circuit approximate methods and high-quality approximate circuits, but
also for performing a fair comparison of these design methods and the approximate
circuits created by these methods.

2.1 Design abstraction

The original (exact) circuit and its approximate implementation, which we have
to devise, are usually described at the same level of abstraction. The approxima-
tion of arithmetic circuits is typically conducted at the transistor level (e.g., [11]),
gate level (e.g., [55, 21]), register transfer (RT) level (e.g., [44]), behavioral level
(e.g., [40]), and look-up table (LUT) level (e.g., [49]) if the target platform is a field
programmable gate array (FPGA). Most approximate arithmetic circuits are combi-
national circuits. We will not deal with iterative or sequential implementations, but
this topic is also covered in the literature, e.g., [3].

2.2 Target technology

While most approximation approaches have been developed for application-specific
integrated circuits (ASICs), there are some papers dealing with approximate arith-
metic circuits for graphic processing units (GPU) [43, 17] and FPGAs [49]. The
target technology has to be taken into account by the approximation methodology
as an approximate circuit optimized for one technology can show different electrical
properties when implemented using a different technology.

4 Lukas Sekanina and Zdenek Vasicek and Vojtech Mrazek

2.3 Number representation

Approximation strategies for arithmetic circuits are tightly coupled with the num-
ber representation utilized in a given system (Chapter ??). For the fixed-point (FX)
number representation, the designers primarily decide about the number of bits used
for the integer and fractional part and whether the circuit will intrinsically process
signed numbers, the sign will separately be handled, or only unsigned numbers will
be considered. A domain-specific quantization scheme is then used to map the input
data range to the code values and vice versa. The quantization scheme should be
linear and allow us to represent some important numbers (such as 0.0) exactly.

With the development of GPU-based deep learning, approximate implementa-
tions of adders and multipliers operating with the floating-point (FP) number rep-
resentation have been proposed. The usual scheme for representing FP numbers
(known from, e.g., the IEEE 754 standard) is simplified to reduce power consump-
tion. For example, in the minifloat representation, any exponent and mantissa bit-
width combination is allowed on a given total number of bits; however, to reduce
the implementation overhead, the common exception handling, infinity, denormal-
ized values, and alternative rounding modes are not supported [12].

2.4 Circuit approximation methods

Approximate implementations are usually created by (i) “manual” modifications of
exact circuits, (ii) developing new application-specific approximation schemes, or
(iii) automated design space exploration algorithms.

The first approach requires a skilled designer who introduces appropriate changes
to the original circuit. Very specific approximation techniques were developed for
particular types of arithmetic circuits such as multipliers. For example, Fig. 1 shows
one of the first approximate multipliers created by a human expert [25]. Its imple-
mentation is based on modifying the truth table of the 2-bit multiplier in such a
way that the correct results are provided for 15 out of 16 input combinations, the
area is reduced to almost 50% and delay is also reduced by one logic level. This
approximate multiplier was used as a building block of more complex multipliers.
Unfortunately, the manual approximation represents a time-consuming process that
is feasible for small circuits only.

The second approach does not start with a common (exact) circuit implementa-
tion. It is rather based on a new construction scheme for a given class of problems.
For example, a new approximation technique for FP multipliers lies in fitting linear
functions with two inputs, referred to as linear planes. The linearization of multi-
plication allows multiplication operations to be completely replaced with weighted
addition [43].

The last method employs fully automated circuit optimization or resynthesis al-
gorithms. We will provide a brief overview of these methods in Chapter 6. In addi-
tion to the evaluation of resulting approximate implementations, we are faced with

Inexact Arithmetic Operators† 5

a new problem – the evaluation of circuit approximation algorithms (in terms of
resources and time needed to obtain a solution with desired properties).

A0

B1

A1

B0

Y0

Y1

Y2

0 1 2 3
0
1
2
3

0 0 0 0
0
0
0

1
2
3

1
2
3

2
4
6

6
7

3

 A
B

Fig. 1 The 2-bit approximate multiplier proposed by Kulkarni et al. in [25] and its specification

2.5 Error metrics and error analysis

Approximate arithmetic circuits are developed with the aim of minimizing one or
several error metrics. We will survey commonly used error metrics and error anal-
ysis methods in Chapter 3. Here, we will emphasize some important aspects of the
error analysis methodology. If an approximate circuit is evaluated under one er-
ror metric, then the decision of whether one circuit is better than another circuit is
straightforward. If two or more error metrics are evaluated together, this relation
becomes more complex and a different concept has to be employed. Chapter 4 will
discuss the so-called Pareto dominance relation to handle this situation. Suppose
some constraints are imposed on resulting approximate circuits (for example, the
worst-case error must always be less than 1% while the mean absolute error is min-
imized). In that case, all circuits not satisfying these constraints must be excluded
from the comparisons.

Most error analysis methods only estimate the exact error as determining the ex-
act error is very time-consuming. The error estimate is obtained by circuit simulation
across a reasonably inclusive set of input vectors. The exact error can be obtained by
exhaustive simulation, but this approach is not scalable. More scalable approaches
are based on formal analysis methods. We will compare the performance of these
methods in Chapter 7.

Another issue is that many approximate circuits have been developed without
assuming any particular data patterns existing in a given application, i.e. the design
method assumes that all input vectors will occur with the same probability. This
is a common approach if the approximate circuit should be provided as a reusable
component. If the designer knows the input data distribution, the approximate cir-
cuit can be designed to reflect this knowledge and thus to provide better tradeoffs
between the error(s) and electrical parameters. This can naturally be accomplished
by automated approximation methods [54].

6 Lukas Sekanina and Zdenek Vasicek and Vojtech Mrazek

Finally, for a few particular implementations of approximate adders and multi-
pliers, detailed probability error analysis methods were published, e.g. [31]. Knowl-
edge of error probabilities becomes very useful if such a circuit is (re)used in a more
complex application, and one needs to perform reasoning about the application-level
error based on probability models available at the component level. An obvious dis-
advantage is that a lot of human effort is required to construct reliable probabilistic
models for particular circuits.

2.6 Quality configurable circuits

Approximate circuits having some configuration parameters such as the segment
size (i.e., the number of subadders working in parallel), the number of fractional
bits or the number of active subcircuits are called quality configurable circuits. The
setting of these configuration parameters is determined either at the design time (be-
fore the circuit synthesis is conducted) or online, i.e. during the run time, depending
on the requested quality of service. This strategy can also be interpreted as an error
compensation support or dynamic approximation. For example, these circuits can
be utilized in the signal processing applications that can thus benefit from an in situ
dynamic adaptation of the quality of processing in response to variable requirements
on the quality of result and available resources.

We will demonstrate this idea by extending the 2-bit approximate multiplier from
Fig. 1 to support two modes of operation as introduced in [45, 46], see Fig. 2. In the
first mode, the quality configurable multiplier (QCM) works exactly as the approx-
imate multiplier from Fig. 1, i.e. it generates an incorrect result (7) when both the
inputs are 3. In the second mode, a correction circuit is activated, which modifies the
output value of the approximate multiplier if it equals 7. Then, the incorrect value
(7) is increased by two. The reconfiguration is implemented using the power gating
technique. The parameters of the 2-bit QCM synthesized using Synopsys DC with
45 nm FreePDK are given in Table 1. Compared to the common multiplier imple-
mented using Verilog star operator, the 2-bit QCM exhibits some overhead when we
consider area, power, and delay. In the approximate mode, however, the electrical
parameters (i.e. power and delay) are significantly improved. The 2-bit QCM in the
approximate mode consumes 36% less power compared to the accurate multiplier.
This multiplier can be used as an elementary block to build larger 8-bit and 16-bit
quality configurable multipliers.

An important outcome of this brief analysis is that one has to be very careful
when properties of common approximate circuits and quality configurable circuits
are compared because the quality configurable circuits always exhibit some circuit
overhead needed to ensure the reconfiguration.

Inexact Arithmetic Operators† 7

A0

B1

A1

B0

Y0

Y1

Y2

Y3

approximate
multiplier

Q

M
U

X
M

U
X

POWER GATED BLOCK

M
U

X

correction
circuit

logic
isolation

VDD

Fig. 2 Quality configurable 2-bit multiplier according to [46]

Table 1 Parameters of 2-bit and 8-bit exact and configurable approximate multipliers according
to [45, 46]. emae and ewce denote the mean absolute error and the worst-case error.

Multiplier operating Power Delay Area emae ewce
mode [µW] [ns] [µm2] [%] [%]

2-bit exact – 3.8 0.15 19 0 0
2-bit QCM approximate 2.4 0.09 12∗ 13 13

exact 4.7 0.21 23 0 0
8-bit exact – 428.3 1.25 727 0 0
8-bit QCM approximate 483.0 1.51 1197∗ 1.4 22

exact 516.4 1.60 1337 0 0
∗ The value is the area of the approximate subcircuit only.

3 Formal error analysis

Determining the error of an approximate circuit or deciding whether an approximate
circuit satisfies a given error constraint represents not only fundamental theoretical
problems, but also highly practically relevant problems that must be routinely solved
during the design of approximate circuits. This subchapter is focused on the exact
error analysis of approximate arithmetic circuits by means of formal methods. But
the formal methods can be applied to effectively analyze errors of other combina-
tional circuits as well as sequential systems [3].

Fast and accurate error analysis is especially important in the case automated
approximation methods because they usually need to generate and evaluate many
candidate designs.

3.1 Error metrics

The functionality of approximate circuits is typically expressed using one or several
error metrics. When an arithmetic circuit is approximated, for example, it is nec-

8 Lukas Sekanina and Zdenek Vasicek and Vojtech Mrazek

essary to base the error quantification on an arithmetic error metric since the error
magnitude could have a significant impact on target application.

Let f : Bn→ Bm be an n-input m-output Boolean function that describes correct
functionality (specification) and f̂ : Bn→ Bm be an approximation of it, both imple-
mented by two circuits, namely F and F̂. The following paragraphs summarize the
error metrics that are relevant for arithmetic circuits.

One of the most popular metrics applied in the context of approximate computing
is the worst-case arithmetic error, sometimes denoted as error magnitude or error
significance. This metric corresponds with the maximum error the approximation
may give and is defined as

ewce(f , f̂) = max
∀x∈Bn

|nat(f (x))−nat(f̂ (x))| (1)

where nat(x) represents a function nat : Bm → Z returning a decimal value of the
m-bit binary vector x. Typically, a natural binary representation is considered, i.e.
nat(x) = ∑

m−1
i=0 2ixi. The worst-case error represents the fundamental metric which

is typically used as a design constraint and helps to guarantee that the approximate
output can differ from the correct output by at most ε (i.e. the condition ewce(f , f̂)≤
ε is always satisfied).

The worst-case arithmetic error is closely related to the relative worst-case error
defined as

ewcre(f , f̂) = max
∀x∈Bn

|nat(f (x))−nat(f̂ (x))|
nat(f (x))

. (2)

This metric can be used to constrain the approximate circuit to differ from the cor-
rect one by at most a certain margin. The maximum error magnitude is considered
in relation to the correct output value.

There are also statistically oriented error metrics such as the average-case arith-
metic error or average-case relative arithmetic error describing the mean absolute
or relative error magnitude. The average-case arithmetic error is defined as the sum
of absolute differences in magnitude between the original and approximate circuits,
averaged over all inputs:

emae(f , f̂) =
1
2n ∑
∀x∈Bn

|nat(f (x))−nat(f̂ (x))| (3)

When we replace the expression in the sum by the equation for relative error dis-
tance, we can calculate the mean relative error:

emre(f , f̂) =
1
2n ∑
∀x∈Bn

|nat(f (x))−nat(f̂ (x))|
nat(f (x))

. (4)

In addition to that, mean-squared error corresponding to the average squared error
magnitude represents an important metric especially for signal processing applica-
tions because it is inversely related to peak signal-to-noise ratio (PSNR). This metric
is defined as

Inexact Arithmetic Operators† 9

emse(f , f̂) =
1
2n ∑
∀x∈Bn

(nat(f (x))−nat(f̂ (x)))2. (5)

The error metrics mentioned in the previous paragraphs suppose uniform dis-
tribution of the input probabilities. There are, however, cases, where we need to
consider skewed input distributions. One example is represented by the approximate
multiplications carried out in deep neural networks [54]. To evaluate the error-metric
with respect to a given distribution of input probabilities, weighted mean error dis-
tance can be introduced as an extension of the conventional mean error [54]:

ewmae(f , f̂) = ∑
∀x∈Bn

D(x)|nat(f (x))−nat(f̂ (x))| (6)

where X corresponds to a discrete random variable representing data at the inputs
and D is a probability mass function of X defined as D(x) = Pr(X = x).

In addition to the arithmetic errors, error rate referred to as error probability can
be investigated. The error rate corresponds to the percentage of inputs vectors for
which the output value differs from the original one and is defined as

eprob(f , f̂) =
1
2n ∑
∀x∈Bn

J f (x) 6= f̂ (x)K, (7)

where J f (x) 6= f̂ (x)K = 1 iff the proposition P is satisfied and JPK = 0 otherwise.

3.2 Relaxed Equivalence Checking

Formal verification techniques that are widely adopted in the conventional circuit
design flow are often based on equivalence checking, i.e., checking whether a math-
ematical model of a circuit under design meets a given specification. Two main
approaches have been developed in this direction – techniques based on Reduced
Ordered Binary Decision Diagrams (ROBDD) and satisfiability (SAT) solvers [51].
In both cases, an auxiliary circuit, the so-called miter, is constructed and then an-
alyzed. Fig. 3(a) shows that the miter instantiates both the candidate circuit F̂ (to
be checked) and the golden circuit F , and compares their corresponding outputs to
detect a difference in their behaviour. In the context of approximate computing, we
need to extend this concept to relaxed equivalence checking, by stressing the fact
that the considered circuits will be checked to be equal up to some bound w.r.t. a
suitably chosen distance (error) metric such as the worst case error or the average
error. The (approximation) miter always contains an additional component enabling
us to determine the error, see Fig. 3(b).

Fig. 4 provides a brief overview of formal error analysis methods for approx-
imate circuits. If the error analysis is performed using ROBDDs, a new ROBDD
representing the miter is constructed by a procedure which reads the miter (gate by
gate) and adds appropriate nodes to ROBDD. ROBDDs can be directly used for the

10 Lukas Sekanina and Zdenek Vasicek and Vojtech Mrazek

a)

1

- m+1

Approximate
circuit (F)

Accurate
circuit (F)

F(x)

n
 F(x)x

m

m

Approximate
circuit (F)

Accurate
circuit (F)

F(x)

n
 F(x)x

m

m

E(x)

b)

E(x)

Fig. 3 Miter for equivalence checking (a) and arithmetic error analysis (b). For the equivalence
checking, the output E corresponds with E(x) = J f (x) 6= f̂ (x)K. For arithmetic error analysis, the
output E equals to the error magnitude E(x) = nat(f (x))−nat(f̂ (x)).

worst-case as well as the average-case analysis because every library for ROBDD
manipulation is equipped with operations enabling us to address questions related to
the satisfiability of the miter, namely finding one satisfying assignment and count-
ing the number of satisfying assignments. The first operation provides a single input
assignment x from the ON-set of a Boolean function. The second operation com-
putes the size of the ON-set. As ROBDDs are inefficient in representing classes of
circuits for which the number of nodes in BDD is growing exponentially with the
number of input variables (e.g., multipliers and dividers), their use in relaxed equiv-
alence checking is typically possible for adders and other less structurally complex
functions. Anyway, for example, 128 bit adders can be quickly analysed in terms of
all relevant error metrics [51].

If the error analysis is based on SAT solving, the miter is represented as a logic
formula in Conjunctive Normal Form (CNF) for which SAT solver decides whether
is satisfiable or unsatisfiable. The interpretation of this outcome depends on con-
struction of the miter, see Section 3.3. Common SAT solvers are, in principle, appli-
cable to the worst-case analysis only. However, this approach is more scalable than
ROBDDs for the error analysis of multipliers [44]. Specialized SAT solvers (#SAT)
are capable of counting the number of satisfiable assignments, but their scalability
is very limited and thus they are currently less practical for the exact error analy-
sis [51].

Even though ROBDDs offer a more flexible approach than SAT considering the
possibilities of computation of approximate error metrics, their application is also
limited. Not every error metric can directly be calculated using this technique. ROB-

Inexact Arithmetic Operators† 11

CNF

 accurate
circuit F

BDD package

BDD

SAT solver #SAT solver

,

representation

approximation
miter

approximate circuit F

Fig. 4 Overview of formal error analysis approaches

DDs, for example, do not allow incorporating input probabilities [10]. Moreover, it
is not easy to evaluate statistical error metrics involving computation of the relative
error due to the presence of division. To address both issues, a more advanced ap-
proach needs to be introduced. The only approach allowing us to evaluate the error
metrics reflecting the distribution of input probabilities is based on the usage of a
more advanced representation known as Algebraic Decision Diagrams (ADDs) [10].
The usage of ADDs is naturally connected with a higher computational cost.

3.3 Worst Case Error Analysis

The worst-case error analysis is typically based on an iterative approach in which a
variant of binary search is applied.

Algorithm 1: Worst-case absolute error computation
Input: n-input approximation miter with m-bit signed output E in the two’s complement
Output: maximum absolute arithmetic error (ewce)

1 l← 0; r← 2m−1
2 while l ≤ r do
3 t← d(l + r)/2e
4 if WCEGT(E, t) then
5 l← t +1
6 else
7 r← t−1

8 return l

12 Lukas Sekanina and Zdenek Vasicek and Vojtech Mrazek

For computing the worst-case arithmetic error, for example, the miter given in
Fig. 3(b) is used. Algorithm 1 illustrates the principle of determining the worst case
arithmetic error, i.e. calculating the error magnitude at the m-bit output of the miter
denoted as E. The principle of this procedure is to iteratively check whether the
error is greater than a given threshold (denoted as t in the algorithm). The search
procedure gradually narrows down the interval where the exact error value lies.
After a finite number of steps, a single value is determined. As the binary search runs
in logarithmic time with respect to the range, at most m comparisons are required.
The checking can be ensured by means of the magnitude comparator which is used
to form a Boolean function whose output is equal to 1 if and only if a given worst-
case error T is violated by the circuit under analysis.

WCEGT(E,T) = ∃x∈Bn |E(x)|> T

= ON-set
(
[em∧ (E > T)]∨ [em∧ (E > (T −1))]

)
6=∅. (8)

Then, the satisfiability of this function can be investigated. An incremental SAT
solver should be employed to mitigate a potential overhead caused by the necessity
of constructing a different comparator in each iteration [51].

3.4 Average-case error analysis

Determining the average-case error represents a substantially harder problem be-
cause it requires the counting of the number of satisfiable assignments. For comput-
ing the average-case arithmetic error, for example, the same miter as in the previous
case is used. The mean absolute error can be obtained by determining the error prob-
ability per each output bit. The obtained counts are then weighted according to the
significance of the output bits and summed up. This is illustrated in Algorithm 2.

Algorithm 2: Mean absolute error computation
Input: n-input approximation miter with m-bit signed output e in the two’s complement,

i.e. E = 2mem−∑
m−1
i=0 2iei

Output: mean absolute arithmetic error (emae)
1 ε,c← |ON-set(em)|
2 for i ∈ {0,1, . . . ,m−1} do
3 if c > 0 then
4 ε ← ε +2i|ON-set(ei⊕ em)|
5 else
6 ε ← ε +2i|ON-set(ei)|

7 return 2−nε;

Inexact Arithmetic Operators† 13

4 Circuit approximation as a multi-objective optimization
problem

The circuit approximation problem can be seen as a multi-objective optimization
problem, i.e. an optimization problem that involves multiple objective functions
g1(x),g2(x), . . . ,gk(x), where gi : X → R, k is the number of objectives and x,x ∈ X
is a candidate circuit from the set of feasible circuits X [6]. In the context of approx-
imate circuits, multiple objectives are typically defined to minimize one or several
error metric(s), power consumption, area, and delay. The set of feasible solutions
consists of all candidate circuits that satisfy the constraints imposed on the target
circuit. For example, the worst-case error (ewce) has to be less than a given con-
stant, and the power consumption has to be smaller than another constant, as seen
in Fig. 5.

In the multi-objective optimization, there does not typically exist one feasible
solution that minimizes all objective functions simultaneously because the design
objectives are conflicting. Hence, rather than one (optimal) solution, the optimiza-
tion results in a set of solutions, i.e. the solutions that cannot be improved in any
of the objectives without degrading at least one of the other objectives. Formally, a
feasible solution x(1) ∈ X is said to (Pareto) dominate another solution x(2) ∈ X , if

• gi(x(1))≤ gi(x(2)) for all i ∈ {1,2, . . . ,k} and
• g j(x(1))< g j(x(2)) for at least one index j ∈ {1,2, . . . ,k}

and all gi have to be minimized. A solution x∗ ∈ X is called a non-dominated so-
lution, if there does not exist another solution that dominates it. The set of non-
dominated solutions is called the Pareto front.

Figure 5 shows an example of Pareto front containing six non-dominated so-
lutions (circles) and many dominated solutions (crosses) for two objectives to be
minimized (emae and power consumption). The original (accurate) circuit is repre-
sented using a black diamond. Figure 5 also shows eight infeasible solutions that
satisfy the constraints imposed on neither power consumption nor ewce. We say
that non-dominated solutions are Pareto optimal solutions if all possible candidate
solutions are considered during the optimization, and there are no provably better
non-dominated solutions in the search space. Claiming that some method finds a
Pareto optimal solution without providing a correct proof of it is a clear failure of
the author of the method. In practice, we are almost always faced with a situation in
which a given method produces suboptimal solutions, i.e., the Pareto front contains
the best non-dominated solutions obtained during the experiments conducted with
the method. As it is not known “how far” the obtained solutions are from the truly
Pareto optimal solutions, a common practice is to introduce a quality metric capable
of measuring the distance between two sets of solutions obtained with two multi-
objective optimization methods (see, for example, [6]) and compare them under this
metric to conclude whether the first method is better than the second method or vice
versa.

Another issue is the proper handling of constraints if two approximation methods
are compared. For example, solution C4 on Fig. 5 would be on the Pareto front if

14 Lukas Sekanina and Zdenek Vasicek and Vojtech Mrazek

Fig. 5 Example of candidate designs in the objective space (power, MAE). Four types of designs
are distinguished: non-dominated solutions (circles), dominated solutions (crosses), infeasible so-
lutions (squares) and original solution (diamond).

no constraint were imposed on ewce. But in our example, this constraint is specified.
A direct comparison with a hypothetical approximation method, which does not
specify the same constraint on ewce and claims that C4 is a correct solution is then
meaningless.

In Fig. 5, non-dominated solution C1 dominates solutions C2 and C3 (and also
some infeasible solutions). A common misinterpretation of this situation is that if
one is optimizing for selected criterion (e.g., emea = MAEc). then solutions C1, C2,
and C3 are good candidates and one of them can be selected depending on the
available power budget. However, it makes no sense to choose C2 or C3 because C1
is always a strictly better solution under our original assumption that only emae and
power consumption are considered.

5 Problem-specific approximation methods

This chapter deals with problem-specific approaches that were developed for ob-
taining approximate implementations of arithmetic circuits. They are created by ex-
perienced engineers who usually start with a common exact implementation. The
approximation strategy is dependent on one particular type of circuits (e.g., adders
or multipliers). It is not always possible to directly apply these techniques to other
types of circuits.

A straightforward approximation technique that can be applied to various arith-
metic circuits is truncation. In truncation, h-bit (exact) arithmetic circuit is used
instead of n-bit circuit (h < n) to reduce area, delay and power consumption. This
h bit circuit is employed to process the most significant h bits of the n bit operands
and the remaining n−h bits are truncated, see also ??. Because of its simplicity and

Inexact Arithmetic Operators† 15

good results, this technique should be used as a baseline implementation for any
comparisons. Moreover, the error profile obtained by truncation is well understood
and, hence, the error of complex approximate circuits composed of the truncated
circuits can naturally be analyzed.

As stated at the beginning of this chapter, we will primarily deal with approxi-
mate adders and multipliers because these circuits are essential in many applications
and there is a rich body of literature on this topic.

5.1 Approximate Adders

An n-bit (common) adder adds two n-bit operands and produces an n+1 bit result.
The most straightforward implementation (the so-called ripple-carry adder) is based
on employing n one-bit full adders (FA) and propagating the carry from the least
significant FA to the most significant FA. Although it requires a low amount of
logic, its main disadvantage is that the carry chain introduces a long delay increasing
linearly with respect to n. In order to reduce this delay, a carry-lookahead adder
(CLA) is often employed, which is capable of predicting the input carry to any
of the FAs in constant or log time, depending on available additional logic. Other
circuit structures that provide some speedup with respect to the ripple-carry adder
are carry-select adders and carry-skip adders, but again, additional logic must be
available.

A recent detailed survey of Jiang et al. [21] classified the approximate implemen-
tations of n-bit adders into the following classes:

• Speculative adders, in which k bits (k < n) are used to speculate the carry for
each sum bit [57]. This setup leads to a shorter carry chain and thus faster, but
inexact addition.

• Segmented adders, in which the adder is divided into a number of smaller k-bit
sub-adders (segments) operating in parallel. Fast addition is obtained as the carry
propagation chain is truncated into shorter segments [22, 34, 41] and no carry is
propagated among the sub-adders.

• Carry-select adders, in which the adder is also divided into segments, but the
carry input for each subadder is selected using different strategies [7, 24, 29, 27,
15, 60, 1, 8].

• Approximate multi-bit full adders, in which the least significant bits are imple-
mented by approximate FAs that are typically obtained by simplifying the exact
FA at the transistor level [11, 30].

Some of these adders are constructed as accuracy configurable circuits, for ex-
ample [45, 15, 22].

A detailed analysis conducted in [21] for these approximate adders under several
error metrics revealed there is no superior approximation implementation which
always provides the best tradeoffs. The user has to carefully choose the most suitable
implementation for a particular application.

16 Lukas Sekanina and Zdenek Vasicek and Vojtech Mrazek

5.2 Approximate Multipliers

A typical implementation of the exact unsigned combinational n-bit multiplier is
based on generating n n-bit partial products and summing them using n−1 ripple-
carry adders organized in an array. In order to reduce delay, the ripple-carry adders
are replaced with carry-save adders (the carry and sum signals generated by the
adders in a row are passed on to the adders in the next row of the array) and partial
results are summed with a structure called Wallace tree, which requires log(n) rows
of adders. In these optimized multipliers, a-input / b-output important summing
subcircuits (called counters and compressors) can be identified as building blocks.
Multiplying of signed binary numbers in the two’s complement notation is usually
performed with Booth’s algorithm, which effectively reduces the number of partial
products and their bit width.

A recent detailed survey of Jiang et al. [21] classified the approximation methods
for multipliers into the following classes:

• Approximation in generating partial products. Complex multipliers are com-
posed of simplified elementary multipliers (such as the 2-bit approximate multi-
plier [25] that we discussed in section 2 or other smaller approximate multipli-
ers [52]), but the accumulation becomes accurate.

• Approximation in the partial product tree, in which some adders or their parts are
omitted, for example, because of truncation. Examples include broken array mul-
tipliers [30], error-tolerant multipliers [23] and static segment multipliers [39].

• Using approximate designs of adders, counters or compressors to accumulate the
partial products, for example, [28, 35, 20, 13].

• Approximate Booth multipliers [26, 48, 58, 5, 9, 19].

Another group of approximation methods does not immediately start with a com-
mon multiplier but employs a different approach to obtaining the product. For ex-
ample, rounding-based approximate (RoBA) multiplier tries to round the operands
to the nearest exponent of two to omit the most computationally intensive part of
the multiplication [60]. Truncation- and rounding-based scalable approximate mul-
tiplier (TOSAM) reduces the number of partial products by truncating each of the
input operands based on their leading one-bit position. Hence, the multiplication can
be replaced with shift, add, and small fixed-width multiplication operations [50]. In
a dynamic range unbiased multiplier (DRUM), an m-bit segment is selected starting
from the leading one bit of the input operands and the least significant bit of the trun-
cated values is set to one. The truncated values are multiplied and shifted to the left
to generate the final output [14]. Finally, the approximate multiplier can be based on
computing an approximate logarithm for both the operands, summing the obtained
values and computing antilog [43]. Several schemes for hardware implementation
of log and antilog computation exist, but the linear Mitchells’ approximation tech-
niques are the most area-efficient [33].

With the development of specialized accelerators for deep learning in which it
is useful to employ FP number representation, approximate implementations of FP
multipliers have been proposed. Some of them are based on converting multiplica-

Inexact Arithmetic Operators† 17

tion to the addition of approximate logarithms of the operands [43]. Another ap-
proach is to introduce a specific easy-to-compute function capable of approximat-
ing the multiplication [18]. Examples of configurable approximate FP multipliers
are [17, 16].

A scalable divide-and-conquer strategy was developed for synthesizing a 2n-bit
approximate multiplier from four n-bit multipliers [38]. The operands are divided
into four n-bit chunks (each operand has a lower and higher part) that are indepen-
dently processed using four multipliers whose outputs are reduced using two adders
with one n-bit and one 2n-bit operand each. The key advantage of this method is that
if accurate adders are employed and some of the n-bit multipliers are arbitrary cho-
sen approximate multipliers with known ewce, the upper bound of ewce of the 2n-bit
approximate multiplier can be derived. If only one type of approximate multipliers
is used, then ewce can be calculated exactly. Moreover, this construction provides su-
perior tradeoffs between the area and error in comparison with many state-of-the-art
approximate multipliers [38].

6 Automated Approximation and EvoApprox Library

6.1 Automated methods

Automated functional approximation methods start with a common (exact) circuit
implementation and define one or several design objectives and constraints. As dis-
cussed in Chapter 4, the circuit approximation problem can be seen as a multi-
objective design problem, where the desired output is a set of non-dominated de-
signs from a Pareto front. As this chapter deals with arithmetic circuits, the ap-
proximation is typically conducted at the gate level. The initial circuit is modified
by an iterative approximation algorithm to produce an approximate implementation
satisfying design objectives and other constraints.

The basic algorithmic approximation techniques are pruning (i.e., removing
some parts of the circuit), component replacement (i.e., complex subcircuits are re-
placed with simpler subcircuits), and approximate re-synthesis. If, however, the cir-
cuit is provided in a behavioral HDL representation, other more software-oriented
techniques (such as loop perforation and memorization, see chapter ?? for more
details on these techniques) can be applied. The automated approximation meth-
ods select either randomly or heuristically which parts of the circuit have to be re-
moved, re-connected or replaced. Table 2 gives examples of automated approxima-
tion methods, benchmark problems used to evaluate them, and the error evaluation
approaches.

One of the automated methods – Cartesian genetic programming (CGP) – is
briefly introduced in Fig. 6. Based on an original circuit that is supplied by the
user, CGP instantiates a population of candidate designs. As CGP is an evolutionary
circuit design method, new candidate designs are created by introducing random

18 Lukas Sekanina and Zdenek Vasicek and Vojtech Mrazek

Table 2 Selected automated approximation methods, benchmark problems used to evaluate
them and the error evaluation approaches.

Method Ref. Benchmarks Error analysis by:
ABACUS [40] FIRb, perceptron, block matcher simulation
ABM [47] 6 ISCAS85 benchmark circuits BDD
ALFANS [59] 8 bit multipliers, 32 bit adders, MCNC benchmarks SAT, BDD
ASLAN [42] FIRb, IIRc, MACf, DCTd, Sobel and 8-input neuron sequential QCCa(SAT)
CGP [52] 2 to 16 bit multipliers, 9-input and 25-input median simulation
CGP-BDD [53] 16 circuits from LGSynth, ITC and ISCAS BDD
CGP-SAT [2] 8 to 32 bit multipliers, 128 bit adders SAT
SALSA [55] Adders, multipliers, FIRb, IIRc, DCTd... QCCa(SAT)
SASIMI [56] ISCAS85 benchmarks, multipliers, adders,... simulation
a Quality Constraint Circuit b Finite Impulse Response filter c Infinite Impulse Response
filter d Discrete Cosine Transform e Fast Fourier Transform f Vector Dot Product

mutations (i.e., modifications) to the circuit netlist. Candidate designs generated by
Circuit Generator can be constrained in various ways; for example, only circuits
having an acceptable number of gates or showing an error below a given threshold
are marked as feasible. Candidate designs are evaluated in terms of error (circuit
simulation is combined with formal error analysis methods) and the key electrical
parameters are quickly estimated. The best-scored circuits then serve as the parents
of the new population. This iterative process is repeated for a predefined number of
iterations. The resulting approximate circuits are fully characterized using profes-
sional design tools. Details of the method are presented in [52, 2, 44]. CGP was also
employed to evolve efficient implementations of quality configurable circuits [37].

Fig. 6 Employing Cartesian genetic programming for automated design of approximate circuits

6.2 EvoApprox Library

A comprehensive library of approximate arithmetic circuits called EvoApprox8b [36]
was introduced in 2017. The idea was to provide well-characterized circuits that can

Inexact Arithmetic Operators† 19

immediately be used in target applications. All circuits were automatically designed
by means of CGP. EvoApprox8b contains hundreds of 8-bit approximate adders
and multipliers. All circuits were fully characterized in terms of several error met-
rics and synthesized with Synopsys Design Compiler (45 nm process, Vdd =1V) to
obtain their area, delay, and power consumption. By means of a simple web user
interface, the user can choose the most suitable circuit based on the criteria she
provides.

In 2019, the library was extended by running additional CGP runs for different
objectives and bit widths. It now contains thousands of various arithmetic circuits,
as shown in Table 3. In order to simplify the selection of the most suitable circuit for
a given application, we identified a subset of circuits and composed EvoApprox8b-
Lite. The selection follows the principles of Pareto optimality with respect to several
objectives in which power consumption is compared against eprob, emae, ewce, emse
and emre metrics. For each of the five subsets of components, ten circuits evenly
distributed along the power axis were included to EvoApprox8b-Lite.

Table 3 The number of approximate implementations of arithmetic circuits in extended EvoAp-
prox library (December 2019)

Circuit Bit-width # approx. implementations

adder

8 6,979
9 332
12 4,661
16 1,437
32 916
64 176
128 196

multiplier

8 29,911
12 3,495
16 35,406
32 349

Power vs. emae tradeoffs of thousands of 8-bit approximate multipliers are shown
in Fig. 7. The black points (corresponding with the EvoApprox8b-Lite) are con-
trasted with the original circuits of EvoApprox8b (red points) and conventional bro-
ken array multipliers (green points) and truncated multipliers (blue points). Note
that EvoApprox8b was compared with state of art approximate circuits in a greater
detail [36]. Selected approximate circuits and their various parameters can be down-
loaded from https://ehw.fit.vutbr.cz/evoapproxlib.

The library provides circuit models in Verilog, Matlab, Python, and C. These
models enable the user to integrate the approximate circuits to hardware as well as
software projects and design tools. All approximate circuits can thus be simulated
in order to obtain their other parameters that are not listed on the website (e.g., the
errors under different error metrics or power consumption for another fabrication
technology).

20 Lukas Sekanina and Zdenek Vasicek and Vojtech Mrazek

Fig. 7 The 8-bit approximate multipliers (black points) that were selected to EvoApprox8b-Lite
from all the evolved approximate multipliers (gray points) and compared to the former version of
EvoApprox8b library (red points), broken array multipliers (green points) and truncated multipliers
(blue points).

7 Experiments with Error Analysis Methods

This section includes case studies that demonstrate some interesting aspects of the
circuit approximation methods, particularly the issues related to the exact error anal-
ysis.

7.1 Computational requirements of error analysis methods

Detailed analysis of relaxed equivalence checking algorithms has recently been pre-
sented in [51]. The analysis revealed that the computational complexity of the SAT-
based methods heavily depends on the actual worst-case error. The computational
time increases with a decreasing error, which is noticeable, especially on multipli-
ers. For example, tens of milliseconds are needed to analyze the 12-bit multipliers
having an error higher than 2.7%. On the other hand, higher tens of seconds are
needed for instances having the error in the range (0.37%, 2.71%], and no result
was obtained for multipliers having the worst-case error below 0.05% [51].

Figure 8 shows the computational requirements of the WCEGT procedure (i.e.
worst-case error checking) for five different thresholds applied to 8-bit multipliers
taken from the EvoApprox library. The worst-case error checking is extremely fast
(few milliseconds are required) but only if the actual worst-case error (denoted as
wce) is higher than a given threshold T . If this condition is violated, the CPU time
may increase by several orders of magnitude. Surprisingly, the difference between
the worst case and the best case CPU time increases with decreasing the threshold

Inexact Arithmetic Operators† 21

Fig. 8 The computational requirements of the WCEGT procedure proving that ewce > T of 8-bit
approximate multipliers taken from EvoApprox library.

T . Performing WCEGT for thresholds below 1.5% represents the most difficult
case. We have to emphasize that the algorithm always terminates for the 8-bit mul-
tipliers. Up to 100 seconds are required to analyze the circuit instances whose wce
is lower than the chosen threshold.

The same trend was also observed for bigger multipliers. Considering this fact,
the design of multiplier-based approximate circuits with low error will be a challeng-
ing task because the error analysis will represent a bottleneck of the whole design
process.

7.2 The accuracy of circuit simulation

For all 8-bit and 16-bit approximate adders and multipliers available in the EvoAp-
prox library, the error was exactly calculated for all relevant error metrics. Know-
ing the exact errors, we could perfectly analyze the error of the circuit simulation
method, which is conducted with a subset of all input vectors. The objective is to
determine the minimum number of test vectors that has to be applied to keep the
error of circuit simulation below a given threshold.

Let Eexact and Eest denote the exact error and the error estimated by circuit sim-
ulation. Relative difference (RD) [%] between Eexact and Eest is defined as

RD = 100
Eest −Eexact

Eexact
[%]. (9)

22 Lukas Sekanina and Zdenek Vasicek and Vojtech Mrazek

Boxplots in Figures 9, 10 and 11 show how RD depends on the number of input
vectors for different circuits. To create one boxplot for ewce, we randomly generated
the requested number of input vectors, applied them on 6,275 approximate circuits
taken from EvoApprox library and calculated RD. No accurate circuit was consid-
ered in the evaluation, i.e. Eexact is always greater than zero. The same was done for
emae. A clear consequence of this approach which utilizes randomly generated (but
not necessarily unique) vectors is that a non-zero RD is obtained even if the number
of generated vectors is identical with the number of all possible input combinations.

In the case of 8-bit approximate multipliers, it makes no sense to use a sub-
set of input vectors during simulation because RD can be higher than 5% even
if two-thirds of vectors are used. Moreover, analyzing circuit responses for all
28+8 = 216 = 65,536 vectors is very fast (few milliseconds on a common CPU [51]).
Hence, performing the simulation for all possible input combinations is the best
choice.

In the case of 16-bit multipliers, RD for ewce can reach over 10% if 144 · 106

vectors are used. Note that 16-bit approximate multipliers are usually analyzed using
only 10 · 106 vectors in some studies [21]. On the other hand, we obtained very
reliable error estimates for emae with less than 5 ·106 vectors. Finally, we analyzed
16-bit adders. A very reliable error characterization in terms of ewce as well as emae
requires a considerably lower number of randomly generated vectors, i.e. less than
5 ·106 vectors as seen in Fig. 11.

We can summarize an intuitive fact that estimating emae with circuit simulation
is more reliable than estimating ewce if only a subset of input vectors is used. We
encourage the practitioners to provide more statistically relevant error characteri-
zations (e.g., the mean RD and its standard deviation) if the error of approximate
circuits is estimated.

1,
02

4

1,
60

0

2,
56

0

4,
09

6

6,
46

4

10
,3

04

16
,3

84

25
,9

84

41
,2

80

65
,5

36

vectors

0%

10%

20%

30%

RD
 e

w
ce

1,
02

4

1,
60

0

2,
56

0

4,
09

6

6,
46

4

10
,3

04

16
,3

84

25
,9

84

41
,2

80

65
,5

36

vectors

0%

10%

20%

30%

RD
 e

m
ae

Fig. 9 Relative difference between exact and estimated error for 8 bit approximate multipliers.
The whiskers show the 2nd percentile and the 98th percentile. Triangles indicate that there is even
higher RD than shown.

Inexact Arithmetic Operators† 23

1,
02

4

5,
56

8

30
,3

36

16
5,

12
0

89
8,

88
0

4,
89

2,
73

6

26
,6

32
,1

28

14
4,

96
3,

13
6

78
9,

05
7,

66
4

4,
29

4,
96

7,
29

6

vectors

0%

20%

40%

60%

RD
 e

w
ce

1,
02

4

5,
56

8

30
,3

36

16
5,

12
0

89
8,

88
0

4,
89

2,
73

6

26
,6

32
,1

28

14
4,

96
3,

13
6

78
9,

05
7,

66
4

4,
29

4,
96

7,
29

6

vectors

0%

10%

20%

30%

RD
 e

m
ae

Fig. 10 Relative difference between exact and estimated error for 16 bit approximate multipliers.
The whiskers show the 2nd percentile and the 98th percentile. Triangles indicate that there is even
higher RD than shown.

1,
02

4

5,
56

8

30
,3

36

16
5,

12
0

89
8,

88
0

4,
89

2,
73

6

26
,6

32
,1

28

14
4,

96
3,

13
6

78
9,

05
7,

66
4

4,
29

4,
96

7,
29

6

vectors

0%

20%

40%

60%

RD
 e

w
ce

1,
02

4

5,
56

8

30
,3

36

16
5,

12
0

89
8,

88
0

4,
89

2,
73

6

26
,6

32
,1

28

14
4,

96
3,

13
6

78
9,

05
7,

66
4

4,
29

4,
96

7,
29

6

vectors

0%

20%

40%

60%

RD
 e

m
ae

Fig. 11 Relative difference between exact and estimated error for 16 bit approximate adders. The
whiskers show the 2nd percentile and the 98th percentile. Triangles indicate that there is even
higher RD than shown.

8 Conclusions

In this chapter, we surveyed various methodological aspects that are relevant for the
design of approximate arithmetic circuits. Special attention was given to exact error
analysis methods and understanding the circuit approximation problem as a multi-
objective optimization problem. We briefly presented problem-specific as well as
automated approximation methods developed for adders and multipliers. Unfortu-
nately, misunderstanding of the principles of correct evaluation of approximate cir-
cuits and correct benchmarking of circuit approximation methods are still visible in
the literature. We believe that this chapter can help in establishing a better practice
in this emerging area.

Acknowledgements This work was supported by the Czech science foundation project 19-
10137S.

24 Lukas Sekanina and Zdenek Vasicek and Vojtech Mrazek

References

[1] Camus V, Schlachter J, Enz C (2016) A low-power carry cut-back approximate
adder with fixed-point implementation and floating-point precision. In: 2016
53nd ACM/EDAC/IEEE Design Automation Conference (DAC), pp 1–6

[2] Ceska M, Matyas J, Mrazek V, Sekanina L, Vasicek Z, Vojnar T (2017) Ap-
proximating complex arithmetic circuits with formal error guarantees: 32-bit
multipliers accomplished. In: 2017 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD), pp 416–423

[3] Chandrasekharan A, Soeken M, Große D, Drechsler R (2016) Precise error
determination of approximated components in sequential circuits with model
checking. In: Proc. of DAC’16, ACM, pp 1–6

[4] Chen L, Han J, Liu W, Lombardi F (2017) Algorithm and design of a fully par-
allel approximate coordinate rotation digital computer (cordic). IEEE Trans-
actions on Multi-Scale Computing Systems 3(3):139–151

[5] Chen Y, Chang T (2012) A high-accuracy adaptive conditional-probability es-
timator for fixed-width booth multipliers. IEEE Transactions on Circuits and
Systems I: Regular Papers 59(3):594–603, DOI 10.1109/TCSI.2011.2167275

[6] Coello Coello CA, Gonzalez Brambila S, Figueroa Gamboa J, Castillo Tapia
MG, Hernandez Gomez R (2020) Evolutionary multiobjective optimization:
open research areas and some challenges lying ahead. Complex & Intelligent
Systems 2020:1–16

[7] Du K, Varman P, Mohanram K (2012) High performance reliable
variable latency carry select addition. In: 2012 Design, Automation
Test in Europe Conference Exhibition (DATE), pp 1257–1262, DOI
10.1109/DATE.2012.6176685

[8] Ebrahimi-Azandaryani F, Akbari O, Kamal M, Afzali-Kusha A, Pedram M
(2019) Block-based carry speculative approximate adder for energy-efficient
applications. IEEE Transactions on Circuits and Systems II: Express Briefs pp
1–1, DOI 10.1109/TCSII.2019.2901060

[9] Farshchi F, Abrishami MS, Fakhraie SM (2013) New approximate multiplier
for low power digital signal processing. In: The 17th CSI International Sym-
posium on Computer Architecture Digital Systems (CADS 2013), pp 25–30,
DOI 10.1109/CADS.2013.6714233

[10] Froehlich S, Große D, Drechsler R (2019) One method - all error-metrics: A
three-stage approach for error-metric evaluation in approximate computing.
In: 2019 Design, Automation Test in Europe Conference Exhibition (DATE),
pp 284–287

[11] Gupta V, Mohapatra D, Raghunathan A, Roy K (2013) Low-power digital sig-
nal processing using approximate adders. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems 32(1):124–137

[12] Gysel P, Pimentel J, Motamedi M, Ghiasi S (2018) Ristretto: A framework
for empirical study of resource-efficient inference in convolutional neural net-
works. IEEE Trans Neural Netw Learn Syst 29(11):5784–5789

Inexact Arithmetic Operators† 25

[13] Ha M, Lee S (2018) Multipliers with approximate 4 – 2 compressors and
error recovery modules. IEEE Embedded Systems Letters 10(1):6–9, DOI
10.1109/LES.2017.2746084

[14] Hashemi S, Bahar RI, Reda S (2015) Drum: A dynamic range unbi-
ased multiplier for approximate applications. In: 2015 IEEE/ACM Interna-
tional Conference on Computer-Aided Design (ICCAD), pp 418–425, DOI
10.1109/ICCAD.2015.7372600

[15] Hu J, Qian W (2015) A new approximate adder with low relative error and cor-
rect sign calculation. In: 2015 Design, Automation Test in Europe Conference
Exhibition (DATE), pp 1449–1454

[16] Imani M, Peroni D, Rosing T (2017) Cfpu: Configurable floating point multi-
plier for energy-efficient computing. In: 2017 54th ACM/EDAC/IEEE Design
Automation Conference (DAC), pp 1–6, DOI 10.1145/3061639.3062210

[17] Imani M, Garcia R, Gupta S, Rosing T (2018) Rmac: Runtime configurable
floating point multiplier for approximate computing. In: Proceedings of the
International Symposium on Low Power Electronics and Design, ACM, New
York, NY, USA, ISLPED ’18, pp 12:1–12:6, DOI 10.1145/3218603.3218621,
URL http://doi.acm.org/10.1145/3218603.3218621

[18] Imani M, Sokolova A, Garcia R, Huang A, Wu F, Aksanli B, Rosing T (2019)
Approxlp: Approximate multiplication with linearization and iterative error
control. In: 2019 56th ACM/IEEE Design Automation Conference (DAC), pp
1–6

[19] Jiang H, Han J, Qiao F, Lombardi F (2016) Approximate radix-8 booth mul-
tipliers for low-power and high-performance operation. IEEE Transactions on
Computers 65(8):2638–2644, DOI 10.1109/TC.2015.2493547

[20] Jiang H, Liu C, Lombardi F, Han J (2019) Low-power approximate
unsigned multipliers with configurable error recovery. IEEE Transac-
tions on Circuits and Systems I: Regular Papers 66(1):189–202, DOI
10.1109/TCSI.2018.2856245

[21] Jiang H, Liu L, Lombardi F, Han J (2019) Approximate arithmetic cir-
cuits: Design and evaluation. In: Reda S, Shafique M (eds) Approximate Cir-
cuits, Methodologies and CAD, Springer, pp 67–98, DOI 10.1007/978-3-319-
99322-5 4, URL https://doi.org/10.1007/978-3-319-99322-5 4

[22] Kahng AB, Kang S (2012) Accuracy-configurable adder for approximate arith-
metic designs. In: DAC Design Automation Conference 2012, pp 820–825,
DOI 10.1145/2228360.2228509

[23] Khaing Yin Kyaw, Wang Ling Goh, Kiat Seng Yeo (2010) Low-power high-
speed multiplier for error-tolerant application. In: 2010 IEEE International
Conference of Electron Devices and Solid-State Circuits (EDSSC), pp 1–4,
DOI 10.1109/EDSSC.2010.5713751

[24] Kim Y, Zhang Y, Li P (2013) An energy efficient approximate adder with carry
skip for error resilient neuromorphic vlsi systems. In: 2013 IEEE/ACM Inter-
national Conference on Computer-Aided Design (ICCAD), pp 130–137

26 Lukas Sekanina and Zdenek Vasicek and Vojtech Mrazek

[25] Kulkarni P, Gupta P, Ercegovac M (2011) Trading accuracy for power with an
underdesigned multiplier architecture. In: 2011 24th Internatioal Conference
on VLSI Design, pp 346–351, DOI 10.1109/VLSID.2011.51

[26] Kyung-Ju Cho, Kwang-Chul Lee, Jin-Gyun Chung, Parhi KK (2004) De-
sign of low-error fixed-width modified booth multiplier. IEEE Transactions
on Very Large Scale Integration (VLSI) Systems 12(5):522–531, DOI
10.1109/TVLSI.2004.825853

[27] Li L, Zhou H (2014) On error modeling and analysis of approximate adders.
In: 2014 IEEE/ACM International Conference on Computer-Aided Design
(ICCAD), pp 511–518

[28] Lin C, Lin I (2013) High accuracy approximate multiplier with error cor-
rection. In: 2013 IEEE 31st International Conference on Computer Design
(ICCD), pp 33–38, DOI 10.1109/ICCD.2013.6657022

[29] Lin I, Yang Y, Lin C (2015) High-performance low-power carry speculative
addition with variable latency. IEEE Transactions on Very Large Scale Integra-
tion (VLSI) Systems 23(9):1591–1603, DOI 10.1109/TVLSI.2014.2355217

[30] Mahdiani HR, Ahmadi A, Fakhraie SM, Lucas C (2010) Bio-inspired impre-
cise computational blocks for efficient vlsi implementation of soft-computing
applications. IEEE Transactions on Circuits and Systems I: Regular Papers
57(4):850–862, DOI 10.1109/TCSI.2009.2027626

[31] Mazahir S, Hasan O, Hafiz R, Shafique M, Henkel J (2017) Probabilistic
error modeling for approximate adders. IEEE Transactions on Computers
66(3):515–530

[32] Melchert J, Behroozi S, Li J, Kim Y (2019) Saadi-ec: A quality-configurable
approximate divider for energy efficiency. IEEE Transactions on Very Large
Scale Integration (VLSI) Systems 27(11):2680–2692

[33] Mitchell JN (1962) Computer multiplication and division using binary loga-
rithms. IRE Transactions on Electronic Computers EC-11(4):512—-517

[34] Mohapatra D, Chippa VK, Raghunathan A, Roy K (2011) Design of voltage-
scalable meta-functions for approximate computing. In: 2011 Design, Au-
tomation Test in Europe, pp 1–6, DOI 10.1109/DATE.2011.5763154

[35] Momeni A, Han J, Montuschi P, Lombardi F (2015) Design and analysis of
approximate compressors for multiplication. IEEE Transactions on Computers
64(4):984–994, DOI 10.1109/TC.2014.2308214

[36] Mrazek V, Hrbacek R, Vasicek Z, Sekanina L (2017) Evoapprox8b: Library
of approximate adders and multipliers for circuit design and benchmarking of
approximation methods. In: Design, Automation Test in Europe Conference
Exhibition (DATE), 2017, pp 258–261

[37] Mrazek V, Vasicek Z, Sekanina L (2018) Design of quality-configurable ap-
proximate multipliers suitable for dynamic environment. In: Proceedings of
the 2018 NASA/ESA Conference on Adaptive Hardware and Systems, IEEE,
pp 264–271

[38] Mrazek V, Vasicek Z, Sekanina L, Jiang H, Han J (2018) Scalable construction
of approximate multipliers with formally guaranteed worst case error. IEEE

Inexact Arithmetic Operators† 27

Transactions on Very Large Scale Integration (VLSI) Systems 26(11):2572–
2576, DOI 10.1109/TVLSI.2018.2856362

[39] Narayanamoorthy S, Moghaddam HA, Liu Z, Park T, Kim NS (2015) Energy-
efficient approximate multiplication for digital signal processing and classifi-
cation applications. IEEE Transactions on Very Large Scale Integration (VLSI)
Systems 23(6):1180–1184, DOI 10.1109/TVLSI.2014.2333366

[40] Nepal K, Hashemi S, Tann H, Bahar RI, Reda S (2019) Automated high-level
generation of low-power approximate computing circuits. IEEE Transactions
on Emerging Topics in Computing 7(1):18–30

[41] Ning Zhu, Goh WL, Yeo KS (2009) An enhanced low-power high-speed adder
for error-tolerant application. In: Proceedings of the 2009 12th International
Symposium on Integrated Circuits, pp 69–72

[42] Ranjan A, Raha A, Venkataramani S, Roy K, Raghunathan A (2014) ASLAN:
Synthesis of approximate sequential circuits. In: Proceedings of the Confer-
ence on Design, Automation and Test in Europe, EDA Consortium, DATE’14,
pp 1–6

[43] Saadat H, Bokhari H, Parameswaran S (2018) Minimally biased multipliers
for approximate integer and floating-point multiplication. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems 37(11):2623–
2635

[44] Sekanina L, Vasicek Z, Mrazek V (2019) Automated search-based functional
approximation for digital circuits. In: Reda S, Shafique M (eds) Approximate
Circuits, Methodologies and CAD, Springer, pp 175–203, DOI 10.1007/978-
3-319-99322-5 9, URL https://doi.org/10.1007/978-3-319-99322-5 9

[45] Shafique M, Ahmad W, Hafiz R, Henkel J (2015) A low latency generic accu-
racy configurable adder. In: 2015 52nd ACM/EDAC/IEEE Design Automation
Conference (DAC), pp 1–6

[46] Shafique M, Hafiz R, Rehman S, et al (2016) Invited: Cross-layer approximate
computing: From logic to architectures. In: DAC’16

[47] Soeken M, Grosse D, Chandrasekharan A, Drechsler R (2016) BDD mini-
mization for approximate computing. In: 21st Asia and South Pacific Design
Automation Conference ASP-DAC 2016, IEEE, pp 1–6

[48] Song MA, Van LD, Kuo SY (2007) Adaptive low-error fixed-width
booth multipliers. IEICE Trans Fundam Electron Commun Com-
put Sci E90-A(6):1180–1187, DOI 10.1093/ietfec/e90-a.6.1180, URL
http://dx.doi.org/10.1093/ietfec/e90-a.6.1180

[49] Ullah S, Rehman S, Prabakaran BS, Kriebel F, Hanif MA, Shafique M, Kumar
A (2018) Area-optimized low-latency approximate multipliers for fpga-based
hardware accelerators. In: 2018 55th ACM/ESDA/IEEE Design Automation
Conference (DAC), pp 1–6, DOI 10.1109/DAC.2018.8465781

[50] Vahdat S, Kamal M, Afzali-Kusha A, Pedram M (2019) Tosam: An
energy-efficient truncation- and rounding-based scalable approximate multi-
plier. IEEE Transactions on Very Large Scale Integration (VLSI) Systems
27(5):1161–1173

28 Lukas Sekanina and Zdenek Vasicek and Vojtech Mrazek

[51] Vasicek Z (2019) Formal methods for exact analysis of approximate circuits.
IEEE Access 7(1):177,309–177,331

[52] Vasicek Z, Sekanina L (2015) Evolutionary approach to approximate digital
circuits design. IEEE Transactions on Evolutionary Computation 19(3):432–
444

[53] Vasicek Z, Sekanina L (2016) Evolutionary design of complex approxi-
mate combinational circuits. Genetic Programming and Evolvable Machines
17(2):1–24

[54] Vasicek Z, Mrazek V, Sekanina L (2019) Automated circuit approximation
method driven by data distribution. In: Design, Automation and Test in Europe
Conference, European Design and Automation Association, pp 96–101

[55] Venkataramani S, Sabne A, Kozhikkottu VJ, Roy K, Raghunathan A
(2012) SALSA: systematic logic synthesis of approximate circuits. In:
The 49th Design Automation Conference, ACM, pp 796–801, DOI
10.1145/2228360.2228504

[56] Venkataramani S, Roy K, Raghunathan A (2013) Substitute-and-simplify: a
unified design paradigm for approximate and quality configurable circuits.
In: Design, Automation and Test in Europe, DATE’13, EDA Consortium, pp
1367–1372

[57] Verma AK, Brisk P, Ienne P (2008) Variable latency speculative addition: A
new paradigm for arithmetic circuit design. In: 2008 Design, Automation and
Test in Europe, pp 1250–1255, DOI 10.1109/DATE.2008.4484850

[58] Wang J, Kuang S, Liang S (2011) High-accuracy fixed-width modified booth
multipliers for lossy applications. IEEE Transactions on Very Large Scale In-
tegration (VLSI) Systems 19(1):52–60, DOI 10.1109/TVLSI.2009.2032289

[59] Wu Y, Qian W (2019) Alfans: Multi-level approximate logic synthesis frame-
work by approximate node simplification. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems pp 1–14

[60] Zendegani R, Kamal M, Bahadori M, Afzali-Kusha A, Pedram M
(2017) Roba multiplier: A rounding-based approximate multiplier for high-
speed yet energy-efficient digital signal processing. IEEE Transactions
on Very Large Scale Integration (VLSI) Systems 25(2):393–401, DOI
10.1109/TVLSI.2016.2587696

