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A B S T R A C T

x3 is a lossless optimizing dictionary-based data compressor. The algorithm uses a combination of a dictionary,
context modeling, and arithmetic coding. Optimization adds the ability to find the most appropriate parameters
for each file. Even without optimization, x3 can compress data with a compression ratio comparable to the
best dictionary compression methods like LZMA, zstd, or Brotli. Our work differs from others by explicitly
inserting phrases into the dictionary. This is a gap not yet covered by any other compression method.
. Introduction

This article is intended to provide a detailed description of the x3
ompression algorithm. The x3 is an open-source1 lossless data com-
ressor based on the concept of dictionary compression methods. The
ain goal of the x3 design was to achieve a maximal compression ratio,

ven at the cost of large memory requirements and long compression
imes. The core of the algorithm is a dictionary. Unlike methods based
n LZ77, the x3 algorithm looks for suitable fragments in a search
indow, which are then explicitly inserted into the dictionary. Each

ragment stored in the dictionary gets a unique number (index), and
sequence of these indexes then forms the compressed stream. The

ackend of the x3 algorithm consists of a context arithmetic encoder.
The x3 offers the possibility of optimization (search for suitable pa-

ameters for each file). This optimization only affects the compression
rocess and does not involve the need to transmit additional data to
he decoding side. The compressor’s fundamental parameters include
he size of the search window and the maximum number of matches in
his window.

This article further compares the x3 algorithm with other dictionary
ethods used in practice. The well-known Silesia corpus is used for

his comparison. Experimental evaluation shows that x3 can compress
iles with a higher compression ratio than all other state-of-the-art
ictionary methods (including Brotli, zstd, and LZMA).

This work was presented at the 2022 Data Compression Conference
DCC) [1]. The rest of the article is organized as follows. Section 2
eviews dictionary-based compression techniques such as the LZ77 and
Z78. Section 3 provides a high-level as well as a detailed description
f the algorithmic structure of the x3 compressor. Section 4 provides
n evaluation of well-known Silesia corpus. Finally, Section 5 concludes
he paper.

E-mail address: ibarina@fit.vutbr.cz.
1 https://github.com/xbarin02/x3-compressor.

2. Related work

This section describes dictionary compression methods, especially
the LZ77 and LZ78. However, their description is by no means detailed.
For readers who need to study the topic in more depth, we recommend
books [2,3] by David Salomon.

Dictionary methods parse an input stream into variable-length frag-
ments, place them into a dictionary, and then encode the fragments one
by one using short tags (usually containing indexes into the dictionary).
The dictionary, therefore, holds uncompressed strings of symbols. Since
the fragments must be initially transferred in uncompressed form, the
output stream contains tags (indexes) and raw fragments. The very
last step—tag encoding—often employs some statistical compression
method like Huffman coding. The compression–decompression chain
is usually highly asymmetric since the compressor must find good
partitioning of the input stream. In contrast, the decompressor simply
follows the tags written in the output stream.

The two fundamental dictionary methods are LZ77 and LZ78. The
LZ77 [4] method was published in 1977 by Israeli scientists Abraham
Lempel and Jacob Ziv. The core of the method is a sliding window
moving through uncompressed data. The window is divided into two
parts: the search buffer and the look-ahead buffer. The search buffer
serves as a dictionary, whereas the look-ahead buffer contains text
which still needs to be processed. The compressor tries to find the
longest possible match of the look-ahead buffer in the search buffer.
After each such step, the compressor produces a tag with information
about the location (offset) and length of the match found. The tag
consists explicitly of the triple (offset, length, symbol). The offset is a
position in the search buffer where a string matching the fragment at
the beginning of the look-ahead buffer was found. The length element
is the length of this string, and the symbol is the next symbol in the
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look-ahead buffer, which no longer matches the fragment in the search
buffer.

Many commonly used methods are based on the concept of LZ77
(e.g., DEFLATE, LZ4, zstd, Brotli, or LZMA). For example, DEFLATE is a
combination of LZ77 and Huffman coding. Unlike the original LZ77, the
tags consist only of two elements (offset, length). The missing element
(symbol) is written to the output stream separately. These entities are
coded using two Huffman tables (one for symbols and lengths, the other
for offsets). The size of the search buffer can be up to 32 kilobytes.
Unlike the original LZ77, the compressor can defer the match selection
and encode the first symbol of the look-ahead buffer separately. Zstd
and Brotli [5] extend the basic LZ77 principle in that they allow a
sequence of symbols to be encoded at once (instead of writing each
symbol separately). Tags in LZMA (xz format) are even more diverse
(e.g., a tag indicating that the offset is equal to the last used offset).
However, all these methods have one thing in common: the dictionary
is a search buffer referenced by offsets and lengths.

The LZ78 [6] method was published by A. Lempel and J. Ziv in
1978. Unlike the LZ77, it is no longer based on a sliding window. It
uses a dictionary in which an integer index references fragments of
the uncompressed stream. The encoder creates tags of the form (index,
symbol). The compressor searches for the longest matching string in the
dictionary and generates a tag with its index and the following symbol
that breaks the match. At the same time, each tag specifies a new string
to be placed into the dictionary.

As can be understood from the text above, there is a big difference
between LZ77-based and LZ78-based methods. The latter uses a dictio-
nary that maps an integer index to a fragment of the input data stream,
whereas the former uses a pair (offset, length). The method presented
in this article is more or less based on the LZ78 paradigm. It uses two
tags—index referring to a fragment in a dictionary and raw fragments
of the input stream. Details are described in the following section.

3. Overview of x3

The x3 encoder maintains a dictionary that maps integers to frag-
ments of uncompressed data. The encoder offers two main options
affecting compression ratio and speed. The first one is the size of
a window in which the search for the most appropriate fragment
for insertion into the dictionary is performed. The second one is the
maximum number of matches inside this window (to be explained
below in the text). It turns out to be a difficult task to choose a suitable
fragment to insert into the dictionary. As one would expect, in a certain
sense, the two above options trade compression speed for compression
efficiency (a short window leads to a quick search for the most suitable
fragment).

The compression algorithm consists of two main phrases—input
parsing and entropy coding. These are described below. The goal of
input parsing is to find the most suitable fragment in a window starting
at the current position in an uncompressed stream (everything behind
this position is already compressed), so the subsequent entropy coding
phase will produce the shortest possible number of bits. Note that,
usually, longer and more frequently used fragments tend to lead to
a better compression ratio. The encoder can decide at any time that
it does not use the fragment just found and instead use a fragment
previously stored in the dictionary. All the same, the necessary con-
dition is that the fragment in the dictionary must match the string
at the beginning of the window. This decision is made based on the
length of the fragment from the dictionary and the length of the
fragment just found in the window. The above algorithm is formally
described in Algorithm 1. It is important to note that the meaning of
the window in this algorithm is fundamentally different from the search
window in LZ77-type algorithms. In LZ77-type algorithms, the search
window contains information already known to the decoding side. In
the algorithm presented in this paper, the window contains data that
has not yet been compressed.
2

Algorithm 1 Compression algorithm overview.
1: 𝑝 ← 0 ⊳ The 𝑝 is a position in input stream.
2: while 𝑝 ≠ EOF do
3: 𝑙𝑑 ← QueryDictionary(𝑝) ⊳ Length of the fragment.
4: 𝑙𝑤 ← SearchInWindow(𝑝) ⊳ Length of the fragment.
5: if 𝑙𝑑 > 𝑙𝑤 then
6: EncodeDictionaryIndex(𝑝, 𝑙𝑑 )
7: 𝑝 ← 𝑝 + 𝑙𝑑
8: else
9: EncodeRawFragment(𝑝, 𝑙𝑤)

10: AddFragmentToDictionary(𝑝, 𝑙𝑤)
11: 𝑝 ← 𝑝 + 𝑙𝑤
12: end if
13: end while

The QueryDictionary function queries the dictionary and returns the
ength of the longest2 fragment found (or infinity if not found). Further,
he EncodeDictionaryIndex emits the event (the event is encoded using

an arithmetic coder), which indicates the index of this fragment in the
dictionary. This procedure will be detailed below. On the other hand,
the SearchInWindow function searches the window for the longest most
frequently repeated string starting at position 𝑝. The search is controlled
by a parameter ceiling the maximum number of matches (thus also
affecting speed–efficiency tradeoff). The pseudocode is given in Algo-
rithm 2. The CountOccurrences returns the number of occurrences of a
fragment of the length 𝑙 positioned at the position 𝑝 in the window
(𝑝 + 1 ⋯ 𝑝 + 𝑊 − 1), where 𝑊 is the window length. The entire
process is a little more complicated because the function must avoid
choosing such matches that would break the future match of substantial
length, or would break the future match with the fragment already
stored in the dictionary. This introduces additional options into the
encoder (enable/disable future match detection). Since several options
control the encoder, this gives us the ability to find the most suitable
settings for each compressed file individually. The disadvantage of this
approach is that it is very time-consuming. However, one can use a
setting that gives good results on most files and thus avoids searching
for suitable parameters.

Algorithm 2 SearchInWindow function.
Require: 𝑀 : maximum number of matches; 𝐿 : maximum match

length
Ensure: returns length of the best match

1: function SearchInWindow(𝑝)
2: for 𝑙 ← 1 . . .𝐿 do
3: 𝑐𝑙 ← CountOccurrences(𝑝, 𝑙)
4: end for
5: for 𝑚 ← 𝑀 . . . 1 do
6: for 𝑙 ← 𝐿 . . . 1 do
7: if 𝑐𝑙 > 𝑚 then
8: return 𝑙
9: end if

10: end for
11: end for
12: end function

Now the EncodeDictionaryIndex and EncodeRawFragment produce
events which are passed on to an adaptive 2nd order context arithmetic
encoder, as described in [7]. One of the following contexts is used: the
last two indexes into the dictionary, the last index into the dictionary,

2 The dictionary does not have the prefix property.
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Table 1
Compression ratio on Silesia corpus. Best results in bold.

File LZ4 gzip xz zstd Brotli x3

dickens 2.2948 2.6461 3.6000 3.5765 3.6044 3.7168
mozilla 2.3176 2.6966 3.8292 3.3769 3.6922 2.7432
mr 2.3472 2.7138 3.6231 3.2132 3.5317 4.0364
nci 9.1071 11.2311 23.1519 20.7925 22.0780 19.1103
ooffice 1.7349 1.9907 2.5346 2.3587 2.4818 2.0668
osdb 2.5290 2.7138 3.5456 3.2855 3.5812 3.6151
reymont 3.1345 3.6396 5.0374 4.9060 4.9747 5.1010
samba 3.5122 3.9950 5.7778 5.5267 5.7367 4.1871
sao 1.2639 1.3613 1.6386 1.4479 1.5812 1.5042
webster 2.9554 3.4372 4.9540 4.8970 4.9188 4.9685
xml 6.9277 8.0709 12.2910 11.8004 12.4145 9.2249
x-ray 1.1798 1.4035 1.8868 1.6457 1.8096 1.9649

or no context (encode directly the index into the dictionary). Unlike
PAQ-type methods, the algorithm does not perform any context mixing.
The decision on which context to use is based on estimating the com-
pression ratio using the frequency of prior occurrence. No parameters
control this part of the compression chain. The only notable exception
is the initialization of occurrence frequencies in favor of the first two
named contexts.

An example that parses string ABRAKADABRAKABRADABRAKA,
for 𝑀 = 15, follows. Fragments that are selected for insertion into
he dictionary are given in red. Fragments that are already in the
ictionary are in blue. Note that initially, the dictionary is empty, so
ost fragments are intended to be inserted into the dictionary.

←ABRAKADABRAKABRADABRAKA...←

. Evaluation

The evaluation in Table 1 was performed on the well-known Silesia
orpus. We included only significant dictionary methods in comparison.
owever, it must be said that there are other state-of-the-art methods

e.g., bzip2) that, in some cases, provide more efficient compression. It
hould also be said that we set all evaluated programs to an extreme
ompression ratios: lz4 -9, gzip --best, xz −9 -e, zstd --
ultra -22, and brotli -q 11. The LZ4 compressor is focused
on speed, not compression ratio. It was included in the comparison
because it is currently very popular. The xz compressor implements the
LZMA method. The x3 compressor was instructed by such parameters,
which were selected by the state–space search for the 8 KiB window.
Longer windows improve the compression ratio but significantly slow
down the compression time. The decompression time does not de-
pend on the compression parameters because decompression simply
executes the events written in the bitstream. The comparison in Ta-
ble 1 shows that x3 and xz provide superior compression performance.
Furthermore, in all cases, x3 has better performance than LZ4 and gzip.

Because the construction of internal data structures is generally
memory intensive, we also compared the x3 memory consumption on
Silesia corpus. Results are given in Table 2. The Size column indicates
the file size. MaxRSS3 indicates the maximum amount of space of
physical memory (RAM) held by the x3 process. The Factor is the ratio
MaxRSS/Size, indicating how memory intensive the compression of the
file was. The x3 compressor has been instructed with such settings that
it gives good results on most files (no optimization was used). Note that
memory consumption of the x3 compressor includes the entire input
stream, internal data structures, and output stream. The internal data
structures consist mainly of the dictionary, first-order context structure,
a tree for mapping second-order contexts to integers, and second-order
context structure. It is clear from Table 2 that the memory requirements
are not directly proportional to the size of the input data. Instead, they
reflect the internal structure of the compressed data. On the Silesia
corpus, the expansive factor ranges from 1.7 to 18.

3 Maximum resident set size.
3

d

Table 2
Memory consumption on Silesia corpus. Size and MaxRSS are given in megabytes.
Factor is the ratio MaxRSS/Size.

File Size MaxRSS Factor

dickens 9.8 42.3 4.4
mozilla 49.0 697.2 14.3
mr 9.6 53.1 5.6
nci 32.0 53.3 1.7
ooffice 5.9 105.8 18.0
osdb 9.7 51.2 5.3
reymont 6.4 27.9 4.4
samba 21.0 163.6 7.9
sao 7.0 100.7 14.6
webster 40.0 177.1 4.5
xml 5.1 22.1 4.3
x-ray 8.1 59.0 7.3

Table 3
Impact of window size. Window size is given in kilobytes. Matches indicate the optimal
number of matches for the given window size.

Window size Matches Compression ratio

1 7 3.5359
2 9 3.5548
4 15 3.5684
8 28 3.5799

16 38 3.5963
32 73 3.6117
64 136 3.6358

Since the window size significantly affects compression perfor-
mance, we decided to demonstrate the effect of this parameter on the
selected file. We have chosen the dickens file for this demonstration
because it is small enough for experiments with a very long window.
The file is a simple text (a concatenation of some of Charles Dickens’s
works). For each window size, we then determined the most appro-
priate number of matches in the window. The future match detection
parameter was disabled for simplicity. Table 3 shows the selected
window sizes, the optimal number of matches for each size, and the
achieved compression ratio. A longer window leads to a higher optimal
number of matches as well as a higher compression ratio. Based on
our experiments, we chose an 8 KiB window as the default one (gives
sufficiently good results on most files).

From the theoretical analysis of complexity it follows that, for input
size 𝑛, the worst case time complexity is 𝑂

(

𝑛
(

(𝐿+1
2

)

𝑊 + 𝐿𝑀
))

. This

evaluation is based on the pseudocode given in Algorithm 2. Usually,
the 𝐿 and 𝑀 are small constants. So their influence is amortized. This
gives the complexity 𝑂(𝑛𝑊 ).

. Conclusions

This article introduced x3—a new open-source dictionary compres-
or. x3 demonstrates that explicit mapping of fragments to indexes
oupled with a compressed stream formed by a sequence of these
ndexes is comparable in compression to the best currently available
ictionary compression methods. This result comes at the cost of higher
emory consumption. Unlike other existing compression methods, x3

ompression can be optimized for each specific file. This optimization
ubstantially improves the compression ratio. However, even without
ptimization, x3 can compress data with a compression ratio compara-
le to the state-of-the-art dictionary methods. The main contribution of
he presented method is the ability to insert phrases into the dictionary
xplicitly.

Future work can focus on limiting the size of the dictionary. Another
irection to explore is automatic parameter adjustment.
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