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Abstract. Taking levodopa, a drug used to treat symptoms of Parkin-
son’s disease, is often connected with severe side effects, known as Le-
vodopa-induced dyskinesia (LID). It can fluctuate in severity through-
out the day and thus is difficult to classify during a short period of a
physician’s visit. A low-power wearable classifier enabling long-term and
continuous LID classification would thus significantly help with LID de-
tection and dosage adjustment. This paper deals with a co-evolutionary
design of energy-efficient hardware accelerators of LID classifiers that
can be implemented in wearable devices. The accelerator consists of a
feature extractor and a classifier co-evolved using cartesian genetic pro-
gramming (CGP). We introduce and evaluate a fast and accurate energy
consumption estimation method for the target architecture of consid-
ered classifiers. The proposed energy estimation method allows for a
multi-objective design enabled by introducing energy constraints. With
the introduction of variable data representation bit width, the proposed
method achieves a good trade-off between accuracy (AUC) and energy
consumption.
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1 Introduction
Parkinson’s disease (PD) is one of the most common neurological conditions
affecting the motor system. Patient care primarily suppresses symptoms using a
levodopa drug, which can result in levodopa-induced dyskinesia (LID). A wearable
device allowing long-term continuous LID classification would be a great source
of information and help physicians adjust the dosage to suppress PD symptoms
and, at the same time, reduce LID.

Lones et al. [4] proposed a LID-classifier model utilising a sliding window
of 32 samples of low-level movement features and designed it using genetic pro-
gramming (GP). Hurta et al. [3] further adopted this model for hardware im-
plementation and used cartesian GP (CGP) [6] for the evolutionary design of
an energy-efficient feature extractor (FE). The FE and classifier design – as a
complex problem – was solved using a co-evolution approach. Their model also
reduced data representation to an 8-bit integer.
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The evolution design in [3] is guided only by the solution accuracy in terms of
AUC (Area Under the receiver operating characteristics Curve). The number of
arithmetic operations was used to estimate the hardware complexity of the final
solutions. Only the best classifiers were selected and synthesised for the final
evaluation. Moreover, existing works do not consider the sub-byte arithmetics,
even though the sub-byte operations are currently successfully used in neural
networks and machine learning accelerators [7].

To address these challenges, we propose an improved co-evolutionary design
method. Our method allows for sub-byte data representation by encoding bit-
width inside candidate solutions. Further, we propose an effective way of precise
energy estimation during the evolution process and utilise it in a multi-objective
design. Multi-objective design is achieved by transforming the multi-objective
problem into a single-objective one by introducing constraints [5].

2 Proposed Methodology

The FE and classifier models are based on a co-evolutionary scheme proposed
by Hurta et al. [3]. FE and classifier are designed simultaneously by switching
the currently-evolved population in each epoch. Populations interact through the
evaluation phase, where candidate solutions of one population are evaluated in
connection with the currently best candidate solution from the other population.
The fitness of candidate solutions is given as the composition’s classifier accuracy
(AUC). Data from the clinical study [4] is used for the fitness calculation. We
also implement the co-evolution of Adaptive Size Fitness Predictors (ASFP) [1]
that accelerates evolution.

The selection of the bit width of individual parts (i.e. FE and classifier)
is incorporated into the evolution process. Bit widths are included inside the
candidate solutions’ chromosomes and evolve together with the cartesian grid
representing the evolved program. The value of bit width spans from 3 to 12 bits
and is mutated with probability equal to its portion of the chromosome.

Calculation of energy consumption traditionally involves a computationally
expensive synthesis of each candidate solution. To eliminate this issue, we pro-
pose to use pre-synthesised components. Hence, we designed and synthesised
each combination of 18 allowed functions and ten possible values of bit widths.
This results in a look-up table of 180 different possible values of energy con-
sumption. As the LID classifier comprises up to 32 registers, a similar table is
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Fig. 1. Overview of the proposed multi-objective method for the co-evolutionary design
of energy-efficient LID classifier.
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also created for ten different bit widths of registers. Further, as classifiers gener-
ally do not utilise full sliding windows, we propose the elimination of unrequired
circuits to reduce energy consumption.

The proposed solution of multi-objective design involves transforming a mul-
ti-objective problem into a single-objective. The evolution of candidate solutions
is guided by the objective of classification accuracy (AUC). The objective of en-
ergy consumption is transformed into constraint ε. The fitness f of the candidate
solution (the composition of feature extractor FE and classifier C) is equal to
the achieved accuracy AUC(FE,C) only if the energy consumption E(FE,C)
is lower than ε. In the opposite case, fitness f is given as −E(FE,C). This
fitness function allows the method to improve even energy-unfit candidate so-
lutions, which may happen especially in first generations. Combining solutions
from runs with different constraints ε allows for obtaining solutions spanning
a wide range of energy consumption requirements while maintaining the goal
of high precision and thus achieving a wide Pareto front. The overview of the
proposed method is shown in Fig. 1.

3 Results
The adopted parameter settings are based on the settings proposed by Hurta
et al. [3]. The evolutionary strategy (1 + λ) was employed together with a limit
of 10,000 generations, a grid size of 4x8 and the Goldman mutation operator
[2]. One hundred independent runs of each parameter setting were performed
to allow precise evaluation. Energy consumption of individual components was
synthesised with Synopsys Design Compiler targeting 45 nm ASIC technology
on 100 MHz frequency.

Introducing the variable width requires checking whether the maximum fit-
ness can still be reached. For this reason, a comparison of the baseline variant
with a fixed 8-bit width and the variable variant was made. Mann-Whitney
U-test confirmed a non-significant difference between both variants for all test
groups of the data set except LID1 and Sitting, where improvement was achieved.
Modifying the initialization in the initial population from 8-bit width to a ran-
dom value (in the range of 3-12) led to an additional improvement across most
test groups (except for test group LID1), with a significant improvement in test
groups LID3 and Siting.
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Fig. 2. Trade-offs between energy consumption and AUC on test group LID34. Green
represents solutions obtained by a union of 100 runs for each of the seven selected
energy constraints. Red represents 700 runs of the method without energy constraint.
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To obtain a rich Pareto front, 100 independent runs were performed for each
of seven logarithmically distributed energy constraint values from 0.01 pJ to
1pJ. To conduct a fair comparison with the standard variant, 700 independent
runs with unconstrained energy consumption (i.e., ε = ∞) were also performed.
Fig. 2 compares Pareto fronts obtained by combining the results of different
energy constraint settings and the standard variant. The Pareto front achieved
by the method utilizing the combined energy constraints dominates most space.
In contrast, the variant without energy constraints is better only in finding a
solution with the highest AUC.

4 Conclusions
In this paper, we proposed a method for the multi-objective design of HW accel-
erators for LID classifiers. The proposed efficient energy consumption estimation
allowed us to include energy consumption directly into the evolution process and
solve the multi-objective design problem (with a trade-off between accuracy and
energy consumption) by introducing constraints on energy consumption and thus
transforming it into a single-objective problem. With the introduction of vari-
able bit width, proposed improvements allowed the design of a wide range of
high-quality solutions achieving a good trade-off between accuracy and energy
consumption.
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