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Abstract. We propose a generic framework for generating scenarios for orches-
trating digital twins of distributed manufacturing execution systems (MES). The
orchestration is a typical technique for configuring, managing and coordinating
communication in various types of systems. We focus on its particular applica-
tion for testing of distributed systems: e.g., when a new version of MES is about
to be released, one may create the testing scenario observing the behaviour of
the older version already deployed in the production and then use the scenario
to orchestrate the digital twin to test the new version. Specifically, we build on
communication logs captured from a manufactory with deployed MES and cre-
ate an abstract model of communication inside the distributed system and abstract
models of messages passed in communication. Based on these models, we then
generate a scenario, which is further used to orchestrate the digital twin. More-
over, our approach can also automatically extrapolate the new testing scenarios
from the derived models allowing efficient automated testing.

1 Introduction

One of the main challenges of Industry 4.0 is to develop secure and bug-free com-
ponents, especially in distributed, manufacturing execution systems. These sys-
tems usually include manufacturing machines paired with controlling terminals,
industrial control systems (ICS), and/or system that controls the whole manufac-
tory process (manufactory execution system). Development and testing of such
systems are quite complex because their components (1) work in a distributed
environment, (2) use different communication protocols, (3) use different soft-
ware ranging from low-level embedded software to complex information sys-
tems, (4) require interaction between humans and machines, and (5) often cannot
be tested in a real-world environment during the common traffic.
Moreover, any bug or security issue may be quite costly, which can be substanti-
ated by the expected growth of the market of ICS security up to $22.2 billions by
2025 [1]. Quality assurance teams usually utilize some form of test automation
while keeping the effort spent on the testing itself. Unfortunately, test automation
of distributed manufacturing systems is hard for two main reasons.
First, testing in a real-world environment (so-called out-of-the-lab testing) is ex-
pensive. Hence, we usually construct the so-called digital twin: a virtual environ-
ment where components (such as production machines) are emulated or simulated
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to replicate the digital copy of the manufacturing process. Such a copy can then
be used for testing in an environment as close as possible to a real system.
The other problem is how to model communication among a number of quite dif-
ferent components common in the manufacturing process. The communication
within the system is often purpose-specific and requires strong domain knowl-
edge. Hence, creating the automated test suite is complicated as it requires effort
spent on precise test environment setup and deterministic test case description.
In this work, we propose a generic framework for creating automated test suites
for digital twins of manufacturing execution systems (MES). The framework
analyses the communication captured from a run of the real system, learns a model
of the communication protocol, and models of data sent. Based on these models,
we generate test scenarios that are used for orchestration of corresponding digital
twin. In particular, we suggest using such scenarios for the automated testing of
systems, e.g., when a new version of MES is being developed.

2 Framework for Generating Orchestration Scenarios

We propose a generic framework that can be applied to various settings of dis-
tributed MES systems. In this paper, however, we will demonstrate it on a partic-
ular use case consisting of various types of nodes communicating using various
protocols. We assume the following infrastructure: the distributed system consists
of an Enterprise Resource Planning (ERP) system, the MES system that controls
the actual production, manufacturing machines and their corresponding terminals
used by human operators. We expect that the communication between particular
components uses different protocols and data structures, e.g.: (1) MES and ERP
communicate using REST protocol with XML data, (2) MES and Terminal com-
municate using REST protocol with JSON data, and (3) MES communicates with
machines using OPC-UA protocol, although some minor manual tweaks for un-
derstanding specific-purpose data might be necessary.
An overview of our framework is shown in Figure 1. Our framework requires
logs of communication collected from a real-world system, e.g., with an older
version of the MES system under testing: the collected log usually represents ei-
ther expected communication in the system or a log of communication that led to
some incidents. The log is in the form of a sequence of messages between pairs
of communicating components logged with the timestamps of the communication
and the data that were transferred. We derive two kinds of model based on this
log: (1) model of the data transmitted in the messages, and (2) the model of the
whole communication in the system. To model communication, we convert the
log to a so called event calendar which provides efficient and direct manipulation
with seen messages. Then, we eventually convert event the calendar to a finite
automaton (where every event is a symbol) which is a more abstract representa-
tion but provides options for postprocessing (e.g., by applying length abstraction
to generate new test cases) or analyses (e.g., by searching for a particular string
representing an error behaviour). From the derived (abstract) models, we generate
a so-called scenario: a sequence of concrete messages that will be sent in a real-
world or simulated environment. A scenario is later used by a digital twin orches-
trator to perform simulation of the real system in digital twins. In our case, we use
the Cryton tool [2] to orchestrate the simulated environment. Other orchestrators
that conform to our scenarios format can also be naturally used. Finally, based
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Fig. 1. Scheme of our solution.

on the result of orchestration, developers can observe whether the new version of
a digital twin behaves as expected.
The framework can also be quite easily extended to support the performance test-
ing of the digital twins. In particular, we propose to mine selected performance
metrics (e.g., among others, the duration of communications) from the captured
logs. The metrics are then used for comparison of runs from different environ-
ments or from different versions to detect, e.g., anomalies in the performance.

Related work. There have been several different approaches for modelling com-
munication in manufacturing and deriving new test cases. [5] uses Finite Au-
tomata to model the communication in systems, however, their approach is lim-
ited to learning only fixed number of components. Another approach is process
mining [10], a mature technique for modelling event-based systems. We see the
technique as unsuitable for MES systems as it analyses one-to-one communica-
tions and is restricted to a single thread per node [8]. Modelling of communi-
cation for anomaly detection [9] implements an approach based on probabilistic
automata. The usual communication in manufactory is, however, mostly deter-
ministic, hence, no probabilistic transitions are created in a derived automaton.
Finally, we can mention approaches of [6,7,4] which are research prototypes only
and possibly not mature enough for the use case in real-world distributed systems.

3 Modelling Messages

In a distributed system, components usually communicate through messages. We
assume that each message that was captured in the log has the following parts: (1)
a timestamp (when the message was sent), (2) data (what was sent), and, (3) a type
(what kind of message was sent). A suitable data representation of such messages
can be a challenging task, especially, when modelling the communication among
different components. The representation should be unified for different kinds
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of data formats (such as JSON, XML or YAML), should preserve the original
semantics, and should allow generating new test cases from the observed data
(e.g., extrapolating extreme values from the underlying domains).
Communication logs usually contain lots of subsets of messages that are struc-
turally similar to each other and differ only in certain aspects (mainly in the data
that were sent and the type of the message). Thus, we propose classification of
the messages into groups of similar messages before creating abstract models. In
particular, we classify the seen messages based on the so-called fingerprint of the
message (i.e., the spanning tree of the nested structure with respect to the fields
of the data) and based on the type of the message. The idea is that messages hav-
ing similar structure (but that differ in, e.g., number of items in a list, or values in
leaves) should have the same abstract model. For each such class, we construct an
abstract model that represents all seen messages of the given class. Such a model
can then be used not just to reproduce the communication but also to create new
(potentially unseen) messages, e.g., by generating syntactically-similar messages.
We propose to model the messages using the following representation (simplified
for the sake of presentation). We assume two types of nodes: (1) a leaf node is
a quadruple n = 〈k, l, u, V 〉, where k is a key associated with the node (e.g., as
in JSON key-value pairs), l (resp. u) is the minimum (resp. maximum) number
of occurrences of the node in the given part of the message, and V is the set
of all seen values for the node; and (2) a composite node is a quadruple n =
〈k, l, u,N〉, where k, l, and u are defined the same as previously and N is a set
of child nodes (leaves or composite). We assume that the root of every message
is represented by the root key. Note that we also support other types of nodes,
e.g., the attribute node, used in XML format, but due to the limited scope of this
paper, we omit their description.
To create abstract models, we process input log message by message (which are in
XML or JSON format). Atomic values correspond to leaf nodes and composite
values (lists, dictionaries, nested tags) correspond to composite nodes. Further,
we will work with predicate c over node n written as c(n) (e.g., representing that
node n has a specific key). We denote the set of all possible predicates as C.
We define the function reduce over a set of leaves {n1, . . . , nm} with the same
key k as reduce({〈k, l1, u1, V1〉, . . ., 〈k, ln, un, Vn〉}) = 〈k,

∑n

1 li,
∑n

1 ui,⋃n

1 Vi〉; similarly, we define the reduce of a set of composite nodes {n1, . . . , nm}
corresponding to a key k as reduce({〈k, l1, u1, N1〉, . . . , 〈k, ln, un, Nn〉}) =
〈k,
∑n

1 li,
∑n

1 ui,
⋃n

1 Ni〉. Then, for composite nodes, we define the group and
reduce function as grpreduce(〈k, l, u,N〉, 〈c1, . . . , cm〉) = 〈k, l, u,N ′〉, where
〈c1, . . . , cm〉 are predicates and N ′ =

⋃m

1

{
reduce({n ∈ N | ci(n)})

}
. Basi-

cally, the operation groups the children nodes according to a given predicate (e.g.,
it groups children named with the same key), merges their values and aggregates
their occurrences.
Finally, we define the merge of two nodes (n ◦ n′) with the same key k as
follows: (1) 〈k, l1, u1, V1〉 ◦ 〈k, l2, u2, V2〉 = 〈k,min(l1, l2),max(u1, u2), V1
∪V2〉, and (2) 〈k, l1, u1, N1〉 ◦ 〈k, l2, u2, N2〉 = 〈k,min(l1, l2),max(u1, u2),
Merged(N1, N2) ∪ Copy(N1, N2) ∪ Copy(N2, N1)〉, where Merged(N,
N ′) = {n ◦ n′ | ∃c ∈ C ∃n ∈ N ∃n′ ∈ N ′ : c(n) ∧ c(n′)} and Copied(N,
N ′) = {n | ∃c ∈ C ∃n ∈ N ∀n′ ∈ N ′ : c(n) ∧ ¬c(n′)}. We choose val-
ues of the minimal and maximal number of occurrences to cover both nodes. In
the composite nodes, we group the children satisfying the same criteria and re-
cursively merge them. If a child node from N1 (resp. N2) with no node from
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N2 (resp. N1) matches the same criterion, the first node is simply copied to
the result. For simplicity, we assume that a criterion c is satisfied by maximally
one node in one subtree. Finally, for each class and its messages with the root
nodes r1, . . . , rn, we compute the final abstract node n representing the class as
n = grpreduce(r1, 〈c1, . . . , cm〉) ◦ . . . ◦ grpreduce(rn, 〈c1, . . . , cm〉).

4 Modelling Communication of Monitored System

Once we derived the models of messages communicated in a system, we further
learn the communication protocol used in the environment. We first use an in-
termediate data structure called the event calendar to represent messages in the
monitored system where each event corresponds to one message. The messages
are ordered chronologically in the calendar by their timestamps. This way, we can
represent the communication using different protocols and data formats in a uni-
fied and regular manner, and we are not limited to a fixed number of components.
That would not be possible with other representations, which need predefined
topology of a represented system. The calendar is later used to generate scenarios
precisely reproducing the learnt communication by transforming each event to
a single step in a scenario for orchestrating digital twin.
Moreover, we want to generate new test cases allowing to experiment on sce-
narios which have not yet been seen but are similar to a real-world situations.
Such scenarios sometimes bring more testing value since they are relatively easy
to generate in contrast to the time-demanding process of writing tests manually.
Hence, we propose to transform the event calendar to finite automaton and apply,
e.g., length abstraction, which over-approximates language of the automaton. In
the following paragraphs, we define our method in a formal way.
An event is a tuple e = (t, s, r, time,m) where t is the type of communication
protocol (i.e., OPC-UA or REST), s is the identification of the sender, r is the
identification of the receiver, time is a timestamp, and m is an abstract represen-
tation of the sent message described in the previous section. Event calendar c is
a list of events c = (e1, . . . , en). A finite automaton is tupleA = (Q,Σ, δ, I, F )
where Q is a finite set of states, Σ is a finite alphabet, δ ⊂ Q × Σ × 2Q
is a transition relation, I ⊆ Q is a set of initial states, F ⊆ Q is a set of
final states. A language L of automaton A, denoted by L(A), is a subset of
Σ∗. A run ρ of automaton A is a sequence of states (q1, . . . , qn) such that
∀1 ≤ i ≤ n − 1 : ∃a ∈ Σ : qi+1 ∈ δ(qi, a). A word w = a1, . . . , an is
accepted by the automatonA iff there is a run ρ = (q1, . . . , qn+1) ofA such that
∀1 ≤ i ≤ n : qi+1 ∈ δ(qi, ai) and qn+1 ∈ F . A language Lq of a state q ∈ Q is
a set {w = a1, . . . , an |w is accepted by a run ρ = q1, . . . , qn+1 such that q1 ∈
I ∧ qn+1 ∈ F}.
Event calendar c = (e1, . . . , en) is transformed to a finite automaton Ac =
(Qc, Σ, δc, Ic, F c) as follows: the set of states is Qc = {q1, . . . , qn+1}, the
alphabet Σ is obtained by transforming each event e = (t, s, r, time,m) to an
unique symbol ae by applying a hashing function over (t, s, r, time), i.e., giving
away m, the set of initial states is Ic = {q1} and the set of final states is F c =
{qn+1}. Finally, ∀2 ≤ i ≤ n+ 1 : (qi−1, a

ei , {qi}) is added to δc.
In order to create the new scenarios, we need to overapproximate the models. In
particular, we propose to use the length abstraction to transform the automaton
A to an abstracted automaton Ak by merging all states with the same language
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with respect to a given length. Formally, a length abstraction over an automa-
ton A = (Q,Σ, δ, I, F ) is an equivalence relation αk ⊆ Q × Q such that
(p, p′) ∈ αk iff Lnp = Lnp′ where Lnq = {w′ | ∃w ∈ Lq : w′ is a prefix of w ∧
length of w′ is up to n}. We denote an equivalence class of q ∈ Q by JqK. An
abstracted automaton αk(A) = (Qα, Σ, δα, Iα, Fα) is obtained using αk in the
following way: Qα = {JqK | q ∈ Q}, for each q ∈ δ(p, a) there is (JpK, a,X) ∈
δα such that JqK ∈ X , and finally, Iα = {JqK | q ∈ I} and Fα = {JqK | q ∈ F}.
The length abstraction overaproximates language of the original automata, i.e.,
L(A) ⊆ L(Aα) meaning that there may exist a word w = a1, . . . , an such that
w ∈ L(Aα) ∧ w 6∈ L(A). Both automata have the same alphabet originally
derived from a set of events. Therefore, it is possible to convert the word w to
a series of actual messages. Supposing thatw is not in the language of the original
automaton, we thus obtain a series of events not present in the original system that
can be used as a new test case for testing the MES system in a digital twin.

5 Generating Scenario
Finally, we generate a scenario that will be used for the orchestration of the digital
twin of the tested system. We iterate over the event calendar, and, for each event,
we generate one step in the scenario. Each step consists of sending messages in
the digital twin. The concrete messages sent during the orchestration are gener-
ated from the abstract representation. By default, we support exact replication of
the seen communication, however, we provide also experimental support for, e.g.,
generating syntactically or semantically similar messages.
We implemented our framework in our tool Tyrant [3] which generates scenar-
ios for the orchestrating tool Cryton. Cryton uses as an input a configuration for
creating the digital twin (i.e., a description of digital twin components) and a sce-
nario generated by Tyrant in the YAML format.
In the following, we will illustrate the transformation of communication logs
from a real system to a YAML scenario. We remark we consider a system consist-
ing of an ERP system, MES system, and manufacturing machines and their cor-
responding terminals used by human operators. Listing 1.1 shows a message be-
tween ERP and MES. The message is stored in the file 20211207-125952.xml
which has a timestamp encoded in its name. The message is in XML format and
its semantics is that there are 42 items of Material 1 in stock. Listing 1.2 shows
a message between a machine and MES. The message was sent one second after
the previous one. The message semantics is that the value of the node 0 should be
set to 99 in Machine 001. Finally, Listing 1.3 shows a generated scenario consist-
ing of two steps. The first step is executed in (logical) time 0 hours, 0 minutes, 0
seconds: the orchestrator will send a message from ERP to MES using the REST
protocol. The message has the XML data attached. The second step is executed
one second after the first step: the orchestrator will send another message from
MES to Machine 001 using the OPC-UA protocol. The message says that the
value of the node with path 0 should be set to 99.
We implemented the proposed framework in the tool called the Tyrant. We tested
our approach on the captured communication provided by a partner company
that offers the MES as their product. We were able to successfully generate valid
scenarios for the Cryton tool which then subsequently orchestrated a digital twin
using our scenarios. However, our Tyrant is still a prototype and it would need
extensive collaboration with the company to deploy it to production.
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Listing 1.1. 20211207-125952.xml

<DataSource>
<Data>
<Name>Material1</Name>
<Value>42</Value>

</Data>
</DataSource>

Listing 1.2. MES and Machine message

SampleDataTime ; Value ; Name ; Path
2021-12-07 12:59:53.617 ; 99 ; Machine 001 ; 0

Listing 1.3. Generated scenario

---
timestamps:
- delta:

seconds: 0
minutes: 0
hours: 0

steps:
- type: ERP
host: ERP
target: MES
args:

xml: |-
<DataSource>
<Data>
<Name>Data1</Name>
<Value>42</Value>

</Data>
</DataSource>

- delta:
seconds: 1
minutes: 0
hours: 0

steps:
- type: OPC-UA
host: MES
target: Machine 001
args:
value: 99
node: 0
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6 Conclusion

In this work, we proposed a generic framework for orchestrating the digital twins
of distributed systems in manufacturing environments. The main challenges of
generating scenarios suitable for orchestrating digital twins are finding suitable
models of (1) the communication in the systems, and (2) messages sent during
the communications. We proposed to use the simple approach: finite automata for
communication and simple abstract representation for messages.
However, in our experience applying the framework in practice requires much
more effort. Lots of testing scenarios and components require specific preparation
before the orchestration: e.g., setting of the initial database or sending a specific
sequence of (hard-coded) messages to prepare the system that are usually not
being captured in the communication log. Currently, our tool supports a concrete
use case in a concrete manufacturing environment. Hence, extending our solution
to a broader class of manufacturing environments is our future work.
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