
Hardware-Aware Evolutionary Approaches to
Deep Neural Networks∗

Lukas Sekanina and Vojtech Mrazek and Michal Pinos

Abstract This chapter gives an overview of evolutionary algorithm (EA) based
methods applied to the design of efficient implementations of deep neural networks
(DNN). We introduce various acceleration hardware platforms for DNNs developed
especially for energy-efficient computing in edge devices. In addition to evolution-
ary optimization of their particular components or settings, we will describe neu-
ral architecture search (NAS) methods adopted to directly design highly optimized
DNN architectures for a given hardware platform. Techniques that co-optimize
hardware platforms and neural network architecture to maximize the accuracy-
energy trade-offs will be emphasized. Case studies will primarily be devoted to NAS
for image classification. Finally, the open challenges of this popular research area
will be discussed.

∗ This is an Author Accepted Manuscript version of the following chapter: Sekanina, L., Mrazek,
V., Pinos, M.: Hardware-Aware Evolutionary Approaches to Deep Neural Networks, published in
Handbook of Evolutionary Machine Learning, edited by Wolfgang Banzhaf, Penousal Machado,
Mengjie Zhang, 2024, Springer, reproduced with permission of publisher. The final authenticated
version is available online at: https://doi.org/10.1007/978-981-99-3814-8 12

Lukas Sekanina
Brno University of Technology, Faculty of Information Technology, Czech Republic, e-mail:
sekanina@fit.vutbr.cz

Vojtech Mrazek
Brno University of Technology, Faculty of Information Technology, Czech Republic, e-mail:
mrazek@fit.vutbr.cz

Michal Pinos
Brno University of Technology, Faculty of Information Technology, Czech Republic, e-mail:
ipinos@fit.vutbr.cz

1

2 Lukas Sekanina and Vojtech Mrazek and Michal Pinos

1 Introduction

Previous chapters have shown that Evolutionary Algorithms (EA) can be utilized for
neural architectures search (NAS) and for solving various hard optimization prob-
lems in the scope of machine learning applications. This chapter is devoted to the use
of evolutionary algorithms in the task of discovering high-quality implementations
of deep learning algorithms. We will focus on deep neural networks (DNN) and
their distinct subclass – convolutional neural networks (CNN) – that are currently
employed as machine learning engines in many challenging applications operated
on different types of platforms, ranging from ultra-low-power edge devices via mo-
bile phones to high-performance accelerators in data centers [68, 28, 8]. Hence, in
addition to producing high-quality outputs, many of these implementations have to
be energy efficient. This is achieved by developing specialized neural architectures
and hardware inference accelerators for CNNs (and DNNs in general).

Section 2 introduces the principles of efficient processing of CNNs in special-
ized hardware. It describes two fundamental architectures of CNN accelerators that
are currently used – temporal architecture which is typical for common processors
and Graphic Processing Units (GPUs), and spatial architecture, often adopted in
application-specific integrated circuits (ASICs) or field programmable gate arrays
(FPGAs). Particularly we emphasize the role of mapping, i.e. the strategy determin-
ing how a computational graph of (a potentially very complex) CNN is executed on
limited hardware resources available on a chip. This chapter also deals with hard-
ware simulators and fast predictors of hardware parameters of CNNs.

In Section 3, we start with a fully trained CNN model and discuss various opti-
mizations that can be conducted by EAs to obtain its hardware implementation with
desired properties. We focus on the evolutionary design of components (such as ap-
proximate multipliers and activation functions) of hardware accelerators, optimized
precision scaling, evolutionary optimization of the CNN-to-accelerator mapping,
and weight compression.

Section 4 is devoted to hardware-aware NAS methods and NAS methods with
hardware co-design. Considering a given task (e.g., image classification) and tar-
get hardware, the hardware-aware NAS algorithms try to deliver the most suitable
CNN architecture whose hardware implementation satisfies given constraints, e.g.
on maximum latency. Note that the hardware platform is not directly optimized;
it can be seen as a series of constraints for the NAS method. NAS with hardware
co-optimization evolves CNN architecture and configuration of a configurable hard-
ware accelerator in parallel, i.e., in addition to the space of CNN architectures, it
optimizes hardware configuration (e.g., type of used resources, mapping strategies,
buffer sizes, and compiler options). We survey the key evolutionary NAS methods
addressing the above-mentioned approaches.

Finally, conclusions and open research challenges are presented in Chapter 5.
Specifically, we address the problem of benchmarking of hardware-aware NAS
methods, security & reliability issues, novel unconventional hardware platforms for
DNNs, and design time reduction.

Hardware-Aware Evolutionary Approaches to Deep Neural Networks† 3

2 Hardware platforms for efficient processing of DNNs

The efficient processing of deep neural networks has been addressed in the lit-
erature in great detail, including a prominent book [69] and comprehensive sur-
veys [8, 46, 51, 61]. This section aims to explain the basic concepts of efficient
processing of CNNs and briefly survey hardware accelerators introduced for infer-
ence. First, we recall the principles and terminology of CNNs in Section 2.1. We
distinguish two main architectures – temporal architecture (Section 2.2) and spatial
architecture (Section 2.3). In Section 2.4, we will also deal with simulators and per-
formance predictors developed to simplify the hardware accelerator design process.

2.1 Convolutional layers

A typical CNN consists of convolutional layers, pooling layers, fully connected lay-
ers, and some other less computationally intensive units. Convolutional layers are
responsible for more than 90% of overall computation, dominating runtime and en-
ergy consumption of inference [69]. Figure 1 illustrates how the output, the so-called
output feature maps (O), of a convolutional layer, are obtained. The input feature
maps (I), holding either the input image or an intermediate result of a previous layer,
are processed by applying a set of filter weights (Weights). As multiple input feature
maps can be processed in parallel, multiple output feature maps are obtained, where
N is their number; N also denotes the batch size. Table 1 summarizes all symbols
used.

Table 1 Symbols used to describe convolution layers.

Symbol Description

H - Input Feature Map Height
W - Input Feature Map Width
C - Number of Input Channels
R - Filter Height
S - Filter Width
M - Number of Output Channels
E - Output Feature Map Height
F - Output Feature Map Width
N - Number of Input/Output Feature Maps
U - Stride

A straightforward software implementation of the convolutional layer opera-
tion is depicted in Algorithm 1. The core operation is the so-called Multiply-And-
Accumulate (MAC) operation. It multiplies a weight with an input activation and
adds the product to a partial sum. Fig. 2 shows its basic circuit implementation,
including the number of bits for each signal when a fixed-point (FX) number rep-

4 Lukas Sekanina and Vojtech Mrazek and Michal Pinos

Off-chip

On-Chip

E

Input
Feature Maps

W

H

C

Filters Output
Feature Maps

F

M

M

S

R

C

S

R

C

* =

N

N

2NMUL
2N+M

2N+M

N
ADD ACC

Quantize
-To-

N-bits

Weight

Activation

Input
Feature Maps Filters Output

Feature Maps

* = NN

W

H

C

M

M
S

R

C

W

H

C

DECODE

SpatialMap(1,1) K;
TemporalMap(64,64) C;
TemporalMap(3,3) R;
TemporalMap(3,3) S;
TemporalMap(3,3) X';
TemporalMap(3,3) Y';
Cluster(64);
SpatialMap(1,1) C;
TemporalMap(1,1) K;
TemporalMap(3,3) Y';
TemporalMap(3,3) X';
TemporalMap(3,3) R;
TemporalMap(3,3) S;

Decoded
L2 mapping

Decoded
L1 mapping

Compute
order

Compute
order

N
et

w
or

k-
on

-C
hi

p
(N

oC
)

Sh
ar

ed
 B

uf
fe

r
(L

2
Sc

ra
tc

h
Pa

d)

PRIVATE
BUFFER

MAC

CONTROL

Processing
Element (PE)

DRAM

Configuration, Control

Compiler / Mapper

HW Architecture

Dimension

Tile Size

L1 Parallelizing
Dimension

L2 Parallelizing
Dimension

Compute order
L2-mapper L1-mapper

K K C R S X Y

- 1 64 3 3 3 3

Compute order

C C K Y X R S

64 1 1 3 3 3 3

PL1

GAMMA's Encoding Description

MAESTRO's Cost Model Description

W

H

C

S

R

C

S

R

C

F

E

M

F

E

M

S

R

C

F

E

M

M
S

R

C

W

H

C

S

R

C

F

E

M

DNN Architecture, Weights, Constraints

N

N

2NMUL

2N+M

N
ADD ACC

Quantize
-To-

N-bits

Weight

Activation

Off-chip

On-Chip

Sh
ar

ed
 B

uf
fe

r
(L

2
Sc

ra
tc

h
Pa

d)

PRIVATE
BUFFER

MAC

CONTROL

Processing
Element (PE)

DRAM

Configuration, Control

Compiler / Mapper

HW Architecture

DNN Architecture, Weights, Constraints

M
S

R

W

H

C

S

R

C

F

E

M

M
S

R

C

W

H

C

S

R

C

F

E

M

Input
Feature Maps

(I)

Filters
(Weights)

Output
Feature Maps

(O)

N N

C

Fig. 1 Applying a set of filters on the input feature maps to calculate the output feature maps in
convolutional layers. Symbols are defined in Table 1.

resentation is utilized. The 2N-bit product is added to a 2N +M bit partial sum,
where M depends on the number of weights. The result is quantized into N bits. The
floating-point (FP) number representation is typically used for training.

Algorithm 1: Generalized convolution in CNNs

1 for (n = 0; n < N; n++) {
2 for (m = 0; m < M; m++) {
3 for (x = 0; x < F ; x++) {
4 for (y = 0; y < E; y++) {
5 O[n][m][x][y] = 0;
6 for (i = 0; i < R; i++) {
7 for (j = 0; j < S; j++) {
8 for (k = 0; k <C; k++) {
9 O[n][m][x][y] +=

I[n][k][Ux+ i][Uy+ j]×Weight[n][k][i][j];

10 O[n][m][x][y] += B[m];
11 O[n][m][x][y] = Activation(O[n][m][x][y]);

Computing the resulting output feature maps of convolutional layers and fully
connected layers is usually transformed into matrix multiplications. The key factors
determining how much time and energy will one inference require are the size of

Hardware-Aware Evolutionary Approaches to Deep Neural Networks† 5

Off-chip

On-Chip

E

Input
Feature Maps

W

H

C

Filters Output
Feature Maps

F

M

M

S

R

C

S

R

C

* =

N

N

2NMUL
2N+M

2N+M

N
ADD ACC

Quantize
-To-

N-bits

Weight

Activation

Input
Feature Maps Filters Output

Feature Maps

* = NN

W

H

C

M

M
S

R

C

W

H

C

DECODE

SpatialMap(1,1) K;
TemporalMap(64,64) C;
TemporalMap(3,3) R;
TemporalMap(3,3) S;
TemporalMap(3,3) X';
TemporalMap(3,3) Y';
Cluster(64);
SpatialMap(1,1) C;
TemporalMap(1,1) K;
TemporalMap(3,3) Y';
TemporalMap(3,3) X';
TemporalMap(3,3) R;
TemporalMap(3,3) S;

Decoded
L2 mapping

Decoded
L1 mapping

Compute
order

Compute
order

N
et

w
or

k-
on

-C
hi

p
(N

oC
)

Sh
ar

ed
 B

uf
fe

r
(L

2
Sc

ra
tc

h
Pa

d)

PRIVATE
BUFFER

MAC

CONTROL

Processing
Element (PE)

DRAM

Configuration, Control

Compiler / Mapper

HW Architecture

Dimension

Tile Size

L1 Parallelizing
Dimension

L2 Parallelizing
Dimension

Compute order
L2-mapper L1-mapper

K K C R S X Y

- 1 64 3 3 3 3

Compute order

C C K Y X R S

64 1 1 3 3 3 3

PL1

GAMMA's Encoding Description

MAESTRO's Cost Model Description

W

H

C

S

R

C

S

R

C

F

E

M

F

E

M

S

R

C

F

E

M

M
S

R

C

W

H

C

S

R

C

F

E

M

DNN Architecture, Weights, Constraints

N

N

2NMUL

2N+M

N
ADD ACC

Quantize
-To-

N-bits

Weight

Activation

Off-chip

On-Chip

Sh
ar

ed
 B

uf
fe

r
(L

2
Sc

ra
tc

h
Pa

d)

PRIVATE
BUFFER

MAC

CONTROL

Processing
Element (PE)

DRAM

Configuration, Control

Compiler / Mapper

HW Architecture

DNN Architecture, Weights, Constraints

Fig. 2 A typical implementation of the Multiply&Accumulate (MAC) circuit utilizing the N-bit
fixed point number representation for the weights.

these matrices, resources available on a given hardware platform, and a data flow
control algorithm. Since a moderate CNN can have millions of parameters, these
matrices do not fit the local memory of the accelerator. Hence, they must be pro-
cessed at the block level, where a block is a submatrix that can be stored in local
memory. These blocks are sent from the main (external) memory to local memory,
then read and processed using arithmetic units (in MAC circuits). The partial results
are stored in local memory or copied into the main memory when needed.

2.2 DNN accelerators: Temporal architecture

Hardware accelerators with temporal architecture employ a set of Arithmetic Logic
Units (ALUs) with a fixed connection pattern and a hierarchical memory subsystem.
General-purpose CPUs and GPUs are typical examples of temporal architectures.
The ALU always receives data from local memory and returns the result to the
same memory. As there is minimal support for data reuse, i.e., direct data sending
between multiple ALUs, memory access becomes the main performance and energy
bottleneck. Libraries such as MKL [25] and cuDNN [12] provide highly-optimized
matrix multiplication and other algorithms for CPUs and GPUs.

GPUs consist of hundreds to thousands of lightweight processing cores with
a high-throughput memory subsystem organized into a high-performance single-
instruction multiple data (SIMD) programmable stream architecture. Hence, GPUs
are useful for the parallelization of matrix multiplication and other operations con-
ducted on FP data types during DNN training and inference. GPUs range from
small devices (e.g., NVIDIA Jetson Nano with 472 GFLOPS and 5-10 W) to high-
performance nodes of supercomputers (e.g., NVIDIA V100 with 100 TFLOPS and
300 W).

Compared to GPUs, standard CPUs equipped with a few cores offer limited op-
tions for DNN acceleration. However, the data-level parallelism provided by SIMD
instructions (SSE, AVX) are often exploited. A detailed survey of CPU-based DNN
acceleration techniques is provided by Mittal at al. [47]. Low-cost microcontrollers
(MCU) are typically employed to implement DNNs on low-power edge devices.
Their instruction set can be enhanced with specialized instructions to accelerate
MACs and, thus, convolutions. For example, RI5CY is an open MCU class RISC

6 Lukas Sekanina and Vojtech Mrazek and Michal Pinos

V Core for energy-efficient processing of Quantized NNs (QNN) utilizing special-
ized SIMD instructions, fast dot product unit, and multiple FX data formats such as
INT-2, INT-4, INT-8, INT-16, INT-32 [21]. To provide DNNs on low-power proces-
sors, GAP-8 programmable chip featuring an 8-core cluster composed of RISC-V
processors, cache, and other components was developed [20].

As programming of CPUs and GPUs does not require hardware design skills, the
DNN accelerators based on CPUs and GPUs are, in principle, more accessible to a
broader spectrum of designers than specialized ASICs.

2.3 DNN accelerators: Spatial architecture

The spatial architectures, typically implemented in application-specific integrated
circuits or in the field programmable gate arrays, employ an array of many locally
communicating processing elements (PE), see Fig. 3. Each of them implements a
MAC circuit, a small local memory (registers), and a controller. PEs are usually
organized as pipelined systolic arrays optimized for fast execution of DNN opera-
tions. Hence, a PE can directly send its output to other PE(s), which leads to faster
and energy-efficient computing of DNN operations, eliminating thus memory ac-
cesses. The used on-chip network determines connection options among the PEs.
The execution time and energy of a DNN accelerator are thus primarily determined
by the PE size, memory subsystem, on-chip network, and the so-called data flow
organization.

Data flow is a general term covering the computation order and parallelization
strategy applied in the accelerator. It defines the order of arithmetic operations and
memory accesses to maximize data reuse. The term mapping refers to the dataflow
strategy (i.e., computation order and parallelism strategy) coupled with the tiling
strategy (selecting the size of input data with respect to available hardware resources
such as buffers and PEs). A particular mapping of a given DNN on hardware re-
sources and executing this mapping is implemented by the accelerator controller.

ASIC accelerators for DNNs (as surveyed [69, 8]) share the implementation
ideas discussed in the previous paragraph. However, their various implementations
differ in many aspects, including the fabrication technology, maximum operation
frequency, bit precision, the size (of the PE array and on-chip memory), intercon-
nection network, dataflow algorithm, support for weight compression, etc.

These accelerators often utilize the principles of approximate computing to pro-
vide the best trade-offs between inference accuracy and other objectives (perfor-
mance, energy). Common approximation techniques are precision scaling, employ-
ing approximate arithmetic operations, network pruning, and approximate mem-
ory [45]. The most significant gains are obtained when the cross-layer approxima-
tion approach is adopted, involving software, architecture, and hardware, breaking
thus conventional methods focused on optimizing each layer of abstraction inde-
pendently [72]. Recent ASIC accelerators also employ the principles of in-memory
computing to alleviate the data communication bottleneck between PEs and memory

Hardware-Aware Evolutionary Approaches to Deep Neural Networks† 7

Off-chip

On-Chip

E

Input
Feature Maps

W

H

C

Filters Output
Feature Maps

F

M

M

S

R

C

S

R

C

* =

N

N

2NMUL
2N+M

2N+M

N
ADD ACC

Quantize
-To-

N-bits

Weight

Activation

Input
Feature Maps Filters Output

Feature Maps

* = NN

W

H

C

M

M
S

R

C

W

H

C

DECODE

SpatialMap(1,1) K;
TemporalMap(64,64) C;
TemporalMap(3,3) R;
TemporalMap(3,3) S;
TemporalMap(3,3) X';
TemporalMap(3,3) Y';
Cluster(64);
SpatialMap(1,1) C;
TemporalMap(1,1) K;
TemporalMap(3,3) Y';
TemporalMap(3,3) X';
TemporalMap(3,3) R;
TemporalMap(3,3) S;

Decoded
L2 mapping

Decoded
L1 mapping

Compute
order

Compute
order

N
et

w
or

k-
on

-C
hi

p
(N

oC
)

Sh
ar

ed
 B

uf
fe

r
(L

2
Sc

ra
tc

h
Pa

d)

PRIVATE
BUFFER

MAC

CONTROL

Processing
Element (PE)

DRAM

Configuration, Control

Compiler / Mapper

HW Architecture

Dimension

Tile Size

L1 Parallelizing
Dimension

L2 Parallelizing
Dimension

Compute order
L2-mapper L1-mapper

K K C R S X Y

- 1 64 3 3 3 3

Compute order

C C K Y X R S

64 1 1 3 3 3 3

PL1

GAMMA's Encoding Description

MAESTRO's Cost Model Description

W

H

C

S

R

C

S

R

C

F

E

M

F

E

M

S

R

C

F

E

M

M
S

R

C

W

H

C

S

R

C

F

E

M

DNN Architecture, Weights, Constraints

N

N

2NMUL

2N+M

N
ADD ACC

Quantize
-To-

N-bits

Weight

Activation

Off-chip

On-Chip

Sh
ar

ed
 B

uf
fe

r
(L

2
Sc

ra
tc

h
Pa

d)

PRIVATE
BUFFER

MAC

CONTROL

Processing
Element (PE)

DRAM

Configuration, Control

Compiler / Mapper

HW Architecture

DNN Architecture, Weights, Constraints

Fig. 3 Generic programmable hardware spatial accelerator for DNN inference. Processing ele-
ments form a two-dimensional systolic array enabling highly-efficient parallel computing and data
reuse. The weights are stored in the external DRAM memory; some can be cached on the chip.
Based on the DNN architecture description, hardware configuration, and other constraints, the
compiler (mapper) generates the mapping of the DNN on hardware resources and its execution
plan.

elements. In-memory computing aims to extend typical memory architecture with
the capability of performing some arithmetic operations to accelerate data process-
ing [66].

Google’s Tensor Processing Unit (TPU) family is an example of DNN accel-
erators implemented as ASICs [28]. TPUv1, introduced in 2016, provided a sys-
tolic array of 256 × 256 8-bit FX multipliers allowing significantly accelerated
matrix multiplications for CNN inference (with the peak performance 92 TOPS at
75 W). TPUv2 and TPUv3 offer increased performance and support FP operations
which make them usable for DNN training. EdgeTPU, with a peak performance of
4 TOPs and 2 TOPs/W was developed for edge computing and smartphones. It is
programmed using TensorFlow Lite models.

FPGAs have traditionally been seen as programmable arrays of logic blocks
whose function is defined by means of look-up tables (LUT) and whose intercon-
nection is based on programmable switches. However, modern FPGAs are heteroge-
nous systems containing not only programmable logic but also embedded memories
(BRAM), processors, programmable interfaces, and other specialized circuits (the
so-called hard blocks) such as configurable digital signal processing (DSP) blocks.
The DSP blocks are especially useful for accelerating the convolution operations
of DNNs. Designers can currently choose from various models ranging from small
Xilinx Zynq chips suitable for IoT nodes to complex systems on a chip such as Xil-

8 Lukas Sekanina and Vojtech Mrazek and Michal Pinos

inx Versal integrating programmable logic for flexible parallel compute-intensive
tasks, processors for sequential processing tasks, and vector processors for domain-
specific parallel data processing [61, 46].

Table 2 summarizes the key parameters of selected platforms when programmed
to accelerate the AlexNet inference. While ASIC provides the most energy-efficient
DNN processing (see the Efficeincy column), Titan X GPU shows the highest per-
formance (see the Performance column). The architecture of a given chip, fabrica-
tion technology, and operational frequency are primarily determining these proper-
ties.

Table 2 Performance and energy-efficiency of AlexNet on various platforms (composed using
[11, 79]).

Platform Chip Freq. Precision Perform. Power Efficiency
[MHz] [inference/s] [W] [inference/s/W]

ASIC Eyeriss 200 FX16 34.7 0.3 124.8
FPGA Kintex KU115 235 FX8 2252 22.9 98.3
FPGA Kintex KU115 235 FX16 1126 22.9 49.2
FPGA Zynq XC7Z045 200 FX8 340 7.2 47.2
FPGA Zynq XC7Z045 200 FX16 170 7.2 23.6
GPU Jetson TX2 1 300 FP16 250 10.7 23.3
GPU Titan X 1 417 FP32 5120 227.0 22.6
CPU Core-i7 3 500 FP32 162 73.0 2.2

2.4 Hardware simulators and performance predictors

Suppose we have a CNN model (i.e., a computation graph) and need to know the
hardware parameters (e.g., latency and energy) of its potential implementation on a
given accelerator. However, there are usually many options on how to configure a
given accelerator, map the CNN on the available resources, and schedule the CNN
processing.

To choose the most suitable implementation, a search has to be conducted in
the space of possible mappings and hardware configurations. The objective is to
minimize the inference time (latency), energy, or other parameters. From Table 3,
presenting the cost of typical operations conducted on a chip (when a 45 nm tech-
nology is considered), one can conclude that (1) minimizing the access to external
memory has to be optimized with the highest priority, and (2) optimizing the bit
width saves some energy not only when arithmetic operations are conducted but
also when data are moved to/from memory; moreover, shorter weights will reduce
the memory size.

Hardware parameters of a given CNN implementation are usually obtained using
the following methods:

Hardware-Aware Evolutionary Approaches to Deep Neural Networks† 9

Table 3 Energy needed to perform selected operations on a chip fabricated in 45 nm technol-
ogy [69].

Operation Type Width Energy

[-] [-] [bits] [pJ]

Add
Integer

8 0.003
16 0.005
32 0.1

Float 16 0.4
32 0.9

Multiply
Integer 8 0.2

32 3.1

Float 16 1.1
32 3.7

Read SRAM 32 5

DRAM 32 640

• Measuring a real hardware implementation provides exact values; however, it is
time-consuming to build and measure real hardware.

• Simulation using precise hardware simulators can provide accurate results, but it
is still time-consuming when conducted at the gate level.

• Analytical estimation consists of analyzing the CNN’s computational graph and
applying precomputed knowledge about the cost of particular operations on given
hardware [6].

• Building a surrogate model capable of predicting a given hardware parameter.
It requires selecting suitable features for the predictor and collecting annotated
data. Various machine learning models have been utilized for this purpose, e.g.,
linear regression [71], neural network [80], Gaussian process [37], and Bayesian
Ridge Regression [78].

Predicting the resulting latency using easy-to-obtain properties of DNNs, such
as the number of weights or MACs, is highly unreliable [69]. However, a recent
paper shows that one carefully constructed proxy model (predictor) is enough for
hardware-aware NAS [37]. This is also documented by detailed benchmarking [31],
disclosing that the inference latency and energy of CNN architecture on hardware
are strongly correlated. It concludes that an energy constraint can be implicitly
mapped to a corresponding latency constraint in NAS methods.

To illustrate the complexity of the mapping optimization, we consider ResNet-50
CNN [23], which should be implemented on Eyeriss and Simba accelerators. Tools
such as Accelergy and Timeloop help in determining the most suitable mapping.
Accelergy [75] is an early-stage energy and execution time estimation tool. It esti-
mates hardware parameters of a CNN implementation on a given accelerator whose
organization is described at the architecture level in the YAML language, i.e., using
characteristics such as the number of PEs, memory size, on-chip network, and data

10 Lukas Sekanina and Vojtech Mrazek and Michal Pinos

flow organization. Plug-ins for different fabrication technologies can be integrated.
Timeloop [53] is a tool searching for the most suitable mapping of CNN to hard-
ware accelerator (several search methods are available in the tool). It performs CNN
layer-wise data tiling reflecting the memory hierarchy of the accelerator.

As an example, Fig. 4 shows a distribution of the energy efficiency of half
a million randomly generated mappings for the first convolutional layer of the
ResNet-50 network. Timeloop conducted this estimation for two accelerator mod-
els: Eyeriss, featuring 168 PEs, and Simba, equipped with 16 PEs. Both models
were simulated using 45 nm fabrication technology and utilized external weight
memory (LPDDR4). Note that the considered layer performs convolution over the
224×224×3 input feature map, with 7×7 filters, stride 2, and 64 output channels.
The energy efficiency of mappings exhibits substantial variations. These variations
stem from the diverse options for tiling and scheduling, which are represented by
different mappings. The more efficient mappings excel in utilizing buffer capacity,
network subsystems, and loop ordering to maximize data reuse. Nevertheless, the
optimal mapping is subject to change based on the workload. What may be an op-
timal mapping for one architecture could prove to be suboptimal or even invalid for
another architecture.

0 20 40 60 80 100 120 140 160
pJ/MAC

0

10000

20000

30000

40000

50000

60000

Nu
m

be
r o

f m
ap

pi
ng

s

0 20 40 60 80 100 120
pJ/MAC

0

10000

20000

30000

40000

50000

60000

Nu
m

be
r o

f m
ap

pi
ng

s

Fig. 4 The distribution of mappings showcasing energy efficiency (pJ/MAC) for the first layer of
ResNet-50. The mappings were generated by Timeloop for the Eyeriss accelerator (left) and the
Simba accelerator (right).

3 Evolutionary optimization in DNN hardware accelerators

Surveys [61, 44] document the gradually increasing interest in optimizing hardware
implementations of fully trained CNNs (i.e., the inference accelerators), especially
in the context of edge computing. In this chapter, we present approaches utilizing
EAs for this purpose. Our primary focus will be on elucidating the rationale behind
employing EAs in each design or optimization problem and discussing the method-
ologies employed.

Hardware-Aware Evolutionary Approaches to Deep Neural Networks† 11

3.1 Evolutionary design of components of hardware accelerators

Elementary components of CNN accelerators such as various arithmetic operations
can be evolved and optimized to improve hardware parameters of these accelerators,
and in some cases, the accuracy, too. Genetic programming (GP) is almost exclu-
sively used as the evolutionary method. The fitness function reflecting the function-
ality of candidate designs is based on either (1) applying a candidate solution in a
CNN, training the CNN, and interpreting the CNN’s error as the fitness value, or (2)
comparing the functionality of a candidate solution with a reference implementa-
tion of a given component on some data and determining the fitness as, e.g., a mean
squared error. While approach (1), in principle, leads to more reliable solutions (the
entire CNN is evaluated), approach (2) is computationally less expensive. In this
context, typical targets for the evolutionary approach are multipliers, MACs, and
activation functions.

3.1.1 Approximate multipliers

The inexact (approximate) multipliers provide inexact products; however, this in-
exactness can be tolerated because CNNs are often highly error-resilient [60]. In
addition to reducing the bit width of multipliers used in MAC units, the approxi-
mation can be achieved by simplifying the logic equations specifying the product.
The task is to design approximate multipliers showing good trade-offs between the
accuracy and hardware parameters (such as energy and latency). In addition to many
manual approximation methods, a fully automated circuit approximation methodol-
ogy based on Cartesian genetic programming (CGP) has been developed [70, 50].
A common strategy is to optimize the multiplier with respect to an exact multi-
plier. In the fitness function, the error is expressed using error metrics such as the
worst-case error or the mean absolute error. If a multiplier showing a good trade-off
between the error and hardware parameters is discovered by CGP, it is used instead
of the exact multipliers in one or several layers of a CNN. The CNN’s accuracy is
then determined, typically after a short fine-tuning. Based on the final accuracy, the
evolved multiplier is accepted or rejected. This two-step design process is adopted
because many candidate multipliers have to be generated, and evaluating each of
them directly in the final CNN is very time-consuming.

Every candidate approximate multiplier M̃, which is generated by a gate-level
CGP, has two inputs (n and m bits) and produces a n+m bit output [70]. The ob-
jective is to minimize the cost of the circuit (which highly correlates with power
consumption) assuming that M̃ shows the worst-case error (WCE) at most ε (Eq. 1):

F(M̃,ε) =

cost(M̃) if WCE(M̃)≤ ε ∧

WCEzr(M̃) = 0
∞ otherwise

(1)

12 Lukas Sekanina and Vojtech Mrazek and Michal Pinos

The cost is estimated as the sum of the weighted areas of the gates used in the circuit.
As the approximate multipliers are supposed to be used in neural networks, the
requirement for accurate multiplying by zero (WCEzr(M̃) = 0) is integrated together
with the WCE constraint in the fitness function. The validity of both conditions is
checked using a single pass of exhaustive simulation of each candidate multiplier.
At the end of evolution, the best-scored circuit is synthesized to get all its hardware
parameters. The resulting approximate multiplier is also used in a given CNN to
obtain classification accuracy, which is typically worsened in comparison with the
CNN utilizing exact multipliers. However, the accuracy has usually recovered after
retraining for a few epochs.

The case study reported in [50] deals with a situation in which all 8-bit multipli-
cations of all convolutional layers of ResNet CNNs are replaced with one particular
approximate implementation of the multiplier. Various evolved approximate 8xN-
bit multipliers that are available in the EvoApproxLib [48] are tested. One operand
(the activation) is always at 8 bits and the second operand (the weight) is on N bits,
where N = {4,5,6,7,8}. Optimizing the bit width leads not only to smaller circuits
but also to the reduced size of weight memory. Fig. 5 shows trade-offs between
accuracy and energy of multiplication when ResNet-26 uses various approximate
multipliers in its convolutional layers. For a small drop in accuracy, a 50% energy
reduction of multipliers is obtained if a suitable approximate multiplier is used. Re-
sults are given for the 45 nm process and power supply voltage Vdd =1 V. The same
approach was taken to design approximate MAC circuits in authors’ work [9].

Fig. 5 The energy-accuracy trade-offs when all exact 8-bit multiplications of all convolutional lay-
ers of ResNet-26 CNN are replaced with an approximate multiplier taken from the EvoApproxLib
library of 8xN-bit approximate multipliers (35 different multiplier implementations tested).

Hardware-Aware Evolutionary Approaches to Deep Neural Networks† 13

3.1.2 Activation functions

There are some frequently used activation functions such as ReLU or Sigmoid.
However, better activation functions can be obtained for particular data sets and
CNN architectures. EAs are thus employed to either deliver new functions (without
considering their hardware implementation) [4, 65, 52] or optimize existing func-
tions (with respect to resources) [58]. A common approach to evolve a new activa-
tion function is to employ a tree-based genetic programming (GP) which typically
utilizes the function set consisting of hardware unfriendly functions (atan, tanh etc.).
The fitness is based on evaluating the entire CNN in which a candidate activation
function is embedded [4, 52].

For example, Lapid and Sipper [30] employs co-evolution to evolve activation
functions for image-classification tasks using CGP. The function set comprises ten
commonly used activation functions (ReLU, tanh, ELU, etc.) and 5 arithmetic op-
erations (+,−,×, minimum, and maximum). A cooperative coevolution algorithm
evolves input-layer, hidden-layer, and output-layer activation functions (each hav-
ing a separate population). An individual’s fitness is determined by the activation
function’s ability to cooperate with members of the other populations (the fitness
procedure is elaborated in [30]). On four classification datasets (MNIST, Fashion-
MNIST, KMNIST, USPS) and two neural networks (a 7-layer MLP and an 8-layer
CNN), the method was capable of improving the classification accuracy compared
to the reference solution.

A hardware-aware evolutionary design of activation functions is conducted by
Prashanth and Madhav [58]. Ordinary activation functions (sigmoid, tanh, Gaussian,
ReLU, GeLU, Softplus) are considered as golden solutions, and their gate-level im-
plementations are evolved for a given bit width using CGP. In the fitness function, a
fully functional solution specified by a truth table is sought in the first step. Once it
is obtained, its size is minimized in the second step.

3.1.3 Component selection and precision scaling

Suppose that an 8-bit CNN that has to be accelerated consists of more layers (neu-
rons) than processing units available in the accelerator. Furthermore, approximate
multipliers can be utilized in configurable processing units. Two tasks have to be
solved together: (1) the assignment of the approximate multipliers to MACs of the
processing units and (2) the assignment of the convolutional layers to the processing
units. ALWANN is an optimization tool capable of selecting a suitable approximate
multiplier for each processing unit in such a way that one approximate multiplier
serves several layers, and the overall classification error and energy consumption
are minimized [49]. The optimizations, including the multiplier selection problem,
are solved by means of the NSGA-II algorithm in which the overall CNN accuracy
and the energy consumed by the approximate layers are considered. Each candidate
solution is uniquely defined by a pair of mappings (map1, map2), where map1 is a
list of k integers in which each integer represents an approximate multiplier (taken

14 Lukas Sekanina and Vojtech Mrazek and Michal Pinos

from EvoApproxLib) assigned to processing units 1 . . .k, and map2 is another list
of l integers in which each integer determines the index of a processing unit that
will be used to compute the output of the layer 1 . . . l. Additional restrictions may be
applied depending on the chosen HW accelerator’s structure. In order to altogether
avoid the computationally expensive retraining of CNN, which is usually employed
to improve the classification accuracy, a simple weight updating scheme is proposed
that compensates for the inaccuracy introduced by employing approximate multipli-
ers. ALWANN is evaluated for two architectures of CNN accelerators with approxi-
mate multipliers from the open-source EvoApproxLib library while executing three
versions of ResNet on CIFAR-10. ALWANN saves 30% of energy needed for mul-
tiplication in convolutional layers of ResNet-50 while the accuracy is degraded by
only 0.6% (0.9% for the ResNet-14).

Barone et al. [1] propose E-IDEA, an automatic application-driven approxima-
tion tool targeting different implementations (hardware and software). E-IDEA uses
Clang-Chimera tool to analyze the Abstract Syntax Tree (AST) of the application’s
source code. Through the so-called mutators, approximations can be introduced
at the source code level. The set of mutators includes loop-perforation mutators,
precision-scaling mutators for floating-point arithmetic, a precision-scaling muta-
tor for integer arithmetic, and a mutator supporting approximate arithmetic operator
models of circuits being part of the EvoApproxLib library. An evolutionary approx-
imation method based on NSGA-II tries to find the best approximation version of
a given C/C++ code according to user-defined optimization objectives. A candidate
solution is represented as a vector of integers; each of them corresponds to one
parameter that can be modified. A set of matching rules specifies the positions in
the source code at which a mutation can be applied. E-IDEA was used to approx-
imate weighted sums computed within neurons to reduce hardware requirements
and power consumption. Clang-Chimera was configured to truncate input operands
and results of multiplications in the three convolutional and the two fully connected
layers of the considered network (LeNet). Thus, the tool generates an approximate
version of the considered CNN in which it is possible to configure the number of ap-
proximate bits to tune the introduced approximation degree for each multiplication
involved in the weighted sum. Moreover, Clang-Chimera could select a suitable
approximate multiplier from a library of approximate multipliers in these layers.
NSGA-II optimized the CNN error on MNIST, aiming at reducing the circuit area.
This allowed finding solutions to achieve more than 30% savings, with a negligible
accuracy loss (0.48%) compared to the reference solution.

3.1.4 The CNN-to-hardware mapping optimization

In the GAMMA (Genetic Algorithm-based Mapper for ML Accelerators) frame-
work, configurable hardware accelerators are considered, i.e., computation order,
parallelizing dimensions, and tile sizes can be configured at compile-time [29]. For
given constraints (the maximum number of parallelism levels and maximum tile
sizes), GAMMA is searching for the most suitable mapping of a CNN layer (see

Hardware-Aware Evolutionary Approaches to Deep Neural Networks† 15

Alg. 1) on the hardware resources modeled in MAESTRO [42]. For a given CNN
layer, hardware configuration (the number of PEs, local buffer size, global buffer
size, latency, and bandwidth), and a mapping strategy, MAESTRO estimates the
statistics such as latency, energy, runtime, power, and area.

The mapping is composed of several levels. Each level represents parallelism
across a spatial dimension of the accelerator. Fig. 6 shows how a two-level mapping
is encoded in the chromosome. The convolutional layer is specified using C input
channels, K output channels, input activations of size X ×Y , output activations of
size X ′×Y ′, and filers of size R×S. Each dimension is encoded using seven pairs of
values. A pair of genes contains a CNN layer tensor notation (e.g., K, C) and its tile
size. The ordering of pairs specifies the computation order. The first pair defines the
parallelizing dimension. The L1-mapper describes the inner loop. The L2-mapper
describes the outer loop, while containing PL1 number of instances of L1-mapper.
The chromosome is used to create a candidate mapping which is then evaluated in
MAESTRO.

Off-chip

On-Chip

E

Input
Feature Maps

W

H

C

Filters Output
Feature Maps

F

M

M

S

R

C

S

R

C

* =

N

N

2NMUL
2N+M

2N+M

N
ADD ACC

Quantize
-To-

N-bits

Weight

Activation

Input
Feature Maps Filters Output

Feature Maps

* = MN

W

H

C

W

H

C

M

S

R

C

S

R

C

F

E

M

F

E

M

E

F

M

M

S

R

C

W

H

C

E

F

M

M

S

R

C

S

R

C

W

H

C

S

R

C

DECODE

SpatialMap(1,1) K;
TemporalMap(64,64) C;
TemporalMap(3,3) R;
TemporalMap(3,3) S;
TemporalMap(3,3) X';
TemporalMap(3,3) Y';
Cluster(64);
SpatialMap(1,1) C;
TemporalMap(1,1) K;
TemporalMap(3,3) Y';
TemporalMap(3,3) X';
TemporalMap(3,3) R;
TemporalMap(3,3) S;

Decoded
L2 mapping

Decoded
L1 mapping

Compute
order

Compute
order

N
et

w
or

k-
on

-C
hi

p
(N

oC
)

Sh
ar

ed
 B

uf
fe

r
(L

2
Sc

ra
tc

h
Pa

d)

PRIVATE
BUFFER

MAC

CONTROL

Processing
Element (PE)

DRAM

Configuration,Control

Compiler / Mapper

HW Architecture

Dimension

Tile Size

L1 Parallelizing
Dimension

L2 Parallelizing
Dimension

Compute order
L2-mapper L1-mapper

K K C R S X Y

- 1 64 3 3 3 3

Compute order

C C K Y X R S

64 1 1 3 3 3 3

PL1

GAMMA's Encoding Description

MAESTRO's Cost Model Description

Fig. 6 GAMMA’s encoding of a two-level mapper (top) and its decoded description for cost model
(MAESTRO) of an NVDLA-like two-level mapper (bottom). Adopted from [29].

16 Lukas Sekanina and Vojtech Mrazek and Michal Pinos

GAMMA supports several optimization algorithms, including a genetic algo-
rithm with application-specific operators for mutation and crossover [29]. The fit-
ness is defined as a reward value (e.g., latency, energy, or power) if a constraint on
hardware resources is met. Otherwise (i.e., when evolved mapping requires more
resources than the accelerator provides), a large penalty is assigned. GAMMA is
evaluated on five CNN models with different complexity (VGG16, MobileNet-V2,
ResNet-50, ResNet-18, MnasNet) and two platforms (TPU and Eyeriss) with a dif-
ferent number of hardware resources. Across CNN models and various hardware
platforms considered, GAMMA finds solutions costing 5× to (1.2E+5)× less la-
tency and 2× to (1.6E+4)× less energy.

In another method, AnaCoNGA, the quantization problem and hardware op-
timization problem are solved concurrently for a given (trained) CNN [19]. The
hardware architecture search (HAS) is embedded into quantization strategy search
(QSS), in a nested genetic algorithm formulation. For each potential quantization
strategy proposed by QSS, the HAS loop efficiently optimizes the accelerator’s pa-
rameters. In QSS, a multi-objective GA is used to tackle the multi-criteria opti-
mization problem of maximizing accuracy and minimizing hardware-related costs.
No hardware design takes place in this search. The quantization search space for
a CNN has a size of Q2L, where Q is the set of possible quantization levels for
weights and activations, and L is the number of layers in the neural network. In the
second GA (HAS), each individual’s genome captures hardware parameters such
as the PE size, the number of binary dot-products each PE can perform in parallel,
and buffer sizes. The fitness criteria of this GA are the hardware design’s execution
performance (compute cycles and DRAM accesses) of a predetermined quantized
CNN, as well as the number of FPGA resources (BRAMs and LUTs) it requires for
its allocation. Note that an alternative approach to the nested formulation could be
to combine HAS genomes with QSS genomes into one GA. However, this would
result in a prohibitively complex and large search space which is difficult for GA.

In order to quickly evaluate candidate hardware designs, an analytical hardware
model for the execution of CNN on a state-of-the-art accelerator (such as the Xilinx
Z7020 SoC on the PYNQ-Z1 board) is created. AnaCoNGA is evaluated on ResNet-
20 (using CIFAR-10 data set), ResNet56 (CIFAR-100), and ResNet18 (ImageNet).
With AnaCoNGA, the accuracy of ResNet20 (on CIFAR-10) is improved by 2.88%
compared to a uniform 2-bit CNN, and achieved a 35% and 37% improvement in
latency and DRAM accesses, while reducing LUT and BRAM resources by 9% and
59% respectively, when compared to an edge variant of the accelerator [19].

3.1.5 Weight sharing and compression

Weight sharing enables to replace a group of similar weights by a single value. In-
stead of storing all the CNN weights, only a limited number of shared values and a
codebook, where original weights are replaced by their corresponding indexes, are
stored in the CNN memory. This approach is also known as weight compression. For
example, if the original weights are encoded on 32 bits and there are 256 different

Hardware-Aware Evolutionary Approaches to Deep Neural Networks† 17

shared values, only the shared values and 8-bit indexes must be stored, reducing thus
the memory footprint almost four times compared to the original weight set. Shared
weight values are typically obtained with a clustering algorithm like K-means. The
weight sharing idea can be applied at the level of the entire CNN or for each layer
separately. The objective is to automatically select the optimal number of shared
values per layer for the input CNN assuming that a range of possible numbers of
shared values is provided. Introducing the shared values typically leads to a loss in
accuracy. Hence, a suitable trade-off between the accuracy drop and compression
rate is sought. Dupuis et al. [17] adopted a two-step approach to compute the shared
weights. In the first step, the number of shared values is determined locally and sep-
arately for each layer by an exhaustive search The second step, based on the values
obtained in the first step, tries to determine the most suitable combinations of shared
weights across the entire CNN. As the number of combinations grows exponentially
with the number of layers, the problem is solved by NSGA-II. The bottleneck is the
accuracy evaluation because it requires evaluating CNN for each set of candidate
(shared) weights. A proxy regression model was created using data obtained in the
first step to accelerate the evaluation. The results carried out on recent CNN mod-
els, trained with the ImageNet dataset, show over 5× memory compression at an
acceptable accuracy loss without any retraining step.

4 NAS considering the target hardware

NAS methods utilizing evolutionary algorithms to deliver a CNN architecture with
a minimum error on test data were introduced in previous chapters of this book.
Hardware-aware NAS methods extend this approach by considering other objectives
such as latency, energy efficiency, and memory footprint with respect to a hardware
platform implementing the neural network [63, 3]. Hardware-aware NAS methods
can be seen as multi-objective optimization methods. Hence, in certain steps of the
NAS algorithm, all relevant objectives must be evaluated, either by direct measure-
ment on real hardware or estimated using software models (Section 2.4). A common
approach to solve the multi-objective NAS problem adopted by the NAS community
is either (i) to transform it into a single-objective one (using suitable constraints, pri-
oritization, or aggregation techniques) and solve it with a common single-objective
method or (ii) to employ a truly multi-objective approach (such as NSGA-II) [15].

A common practice is to model a candidate CNN using a directed acyclic graph
encoded as a variable-length string. If only some hyperparameters are optimized
then the chromosome is a fixed-length list of integers. All possible strings describ-
ing valid CNNs constitute the search space. To reduce the NAS time, the so-called
supernet is often constructed first [55]. A supernet is an over-parameterized neu-
ral network built over a certain backbone CNN model, in which many options are
supported for selected hyperparameters. The supernet is trained to solve a given
problem. Its training is usually very costly as the supernet is more complex than
any individual CNN. However, this cost can be amortized as many suitable subnet-

18 Lukas Sekanina and Vojtech Mrazek and Michal Pinos

works, including their weights, can be extracted from the resulting supernet for a
given specification (e.g., latency, accuracy, or energy constraint on given hardware)
and used without repeating the expensive training process. The search for a suitable
subnetwork, which can be conducted using an EA, is less expensive because it does
not involve any training. A general limitation of this approach is that the supernet
restricts the search space to its subnetworks.

Two major directions can be identified in the area of NAS methods explicitly
targeting hardware implementations:

• Hardware-aware NAS, whose goal is to find the most suitable CNN model con-
cerning a target hardware platform and the objectives to be optimized. Note that
there is no additional search space to the neural architecture search space.

• NAS with hardware co-optimization, whose goal is to co-optimize CNN model
and hardware configuration (such as amount and type of resources, dataflow
strategies, buffer sizes, and compiler options). These methods work in three
search spaces (weights, neural architectures, and hardware configurations) and
must innovatively orchestrate several search algorithms to produce the best trade-
offs between the accuracy and various hardware-relevant metrics.

These two directions will be discussed in the rest of this section.

4.1 HW-aware evolutionary NAS

An evident approach to optimizing the CNN architecture for given hardware is em-
ploying only hardware-friendly hyperparameters and operations, i.e., suitable con-
volution types, arithmetic operator implementations, quantization schemes, or mem-
ory access mechanisms with respect to the optimization objectives. For example,
based on benchmarking 32 different operators, Hurricane [78] uses different sub-
sets of operator choices for three hardware platforms. This way, the search space is
narrowed toward CNN architectures suitable for a given hardware platform.

4.1.1 Classification of evolutionary HW-aware NAS methods

Table 4 showcases the key properties of selected evolutionary hardware-aware NAS
methods. The search is conducted either at the macro level (i.e., the entire CNN is
encoded in the chromosome) or the subnetwork level (also known as a block or a
cell), in which only a subnetwork is optimized by an EA. The resulting subnetwork
can be used multiple times in the final CNN. These NAS methods are often called
a micro-level NAS. The search space can also be reduced to a few hyperparameters
of a given pre-designed CNN architecture (see hyperp in the Search Space column
in Table 4). Column SuperNet informs whether a supernet is used. The design ob-
jectives are listed in the Objectives column; the accuracy is not mentioned as it is
always involved. The Estimation Method column tells us if at all and how particular

Hardware-Aware Evolutionary Approaches to Deep Neural Networks† 19

hardware parameters are estimated. We observe that latency (Lat) and Energy are
often estimated rather than measured. If the accuracy (Acc) is estimated, then an
NN-based predictor (surrogate) is almost always utilized for this purpose [73, 39].
The Target device informs about the target hardware platform(s). Finally, column
Data Set lists the problems/data set(s) used for evaluation. It has to be noticed that,
in addition to image classification, some other tasks are approached.

Some multi-objective NAS methods (e.g., [10, 18, 39, 38]) only optimize the
number of FLOPs of weights, which are not highly correlated with the real hard-
ware parameters such as latency and energy. We included these methods in Ta-
ble 4 to cover the whole scope of methods in this area. The following paragraphs
briefly present some recent hardware-aware NAS methods utilizing evolutionary al-
gorithms.

4.1.2 Selected evolutionary NAS methods

The first evolutionary NAS methods such as [59] did not consider any hardware
parameters during the evolution. Later, the NAS has become a truly multi-objective
method.

The Lamarckian Evolutionary algorithm for Multi-Objective Neural Architec-
ture DEsign (LEMONADE) [18] is a multi-objective NAS. It first selects a sub-
set of architectures, assigning a higher probability to architectures that would fill
gaps on the Pareto front for the objectives that can easily be evaluated (e.g., the
number of parameters); then, it trains and evaluates only this subset to save com-
putational resources during the architecture search. It proposes a Lamarckian in-
heritance mechanism that generates child networks that are warm-started with the
predictive performance of their trained parents. This is accomplished by using (ap-
proximate) network morphism operators for generating children. Within 5 days on
16 GPUs, LEMONADE discovers architectures that are competitive in terms of pre-
dictive performance and resource consumption with hand-designed networks, such
as MobileNetV2.

Schorn et al. [62] also employ a set of objective functions for the prediction
of energy consumption, latency, and required bandwidth of DNNs on hardware,
solely based on the topology of neural architecture to avoid the need for expensive
simulations or training of candidate CNNs. Furthermore, they also consider error
resilience as one of the objectives. Error resilience is seen as the robustness of the
neural network classifier against perturbations in its neuron activation values. Such
perturbations can be the result of random hardware faults, such as radiation-induced
bit-flips. Hence, random bit-flip error simulations are used to evaluate the actual
resilience of the obtained set of neural networks. Evolved CNNs achieve about a
6× to 7× lower data corruption rate at 0.5% bit error rate in the feature maps of the
network in comparison with MobileNetV2.

GoldenNAS [41] introduces a novel dynamic channel scaling scheme to enable
the channel-level search, a progressive space shrinking method to progressively
shrink the search space toward target hardware, and an adaptive batch normaliza-

20 Lukas Sekanina and Vojtech Mrazek and Michal Pinos

tion technique to enable the depthwise adaptiveness of CNNs under dynamic en-
vironments. GoldenNAS adopts the weight-sharing technique based on the super-
net paradigm, where the supernet is derived from ShuffleNetV2. Multiobjective EA
samples the supernet to obtain CNNs showing suitable trade-offs between accuracy
and latency for various hardware platforms – GPU (Nvidia Quadro GV100), CPU
(Intel Xeon Gold 6136), and edge device (Nvidia Jetson Xavier). Latency is mod-
eled analytically. Note that supernet training for 100 epochs takes about 70 GPU
hours, and each stage of the progressive space shrinking takes about 22 GPU hours.
The evolutionary search process requires about 6 GPU hours to finish.

Lu et al. [37] utilizes latency monotonicity (i.e., the observation that the architec-
ture latency rankings on different devices are often correlated on other devices) to
reuse models from one proxy device on several target devices (several mobile and
non-mobile devices tested in this paper). It avoids building a latency predictor for
each target device. Hence, only one latency predictor based on an MLP with four
layers is used. The search space is built up on MobileNet-V2 with multiplier 1.3,
with the channel number in each block fixed. The search space consists of the depth
of each stage, the kernel size of convolutional layers, and the expansion ratio of each
block. The depth can be chosen from {2,3,4}, kernel size can be {3,5,7}, and can-
didate expansion ratios are {3,4,6}. There are five stages whose configurations can
be searched. The one-shot NAS utilizes Once-For-All network [7] as a supernet. EA
is searching for optimal architectures using one proxy device with 1000 individuals
in the population and 50 generations for each latency constraint. The evolutionary
search takes less than 30 seconds for each run.

APQ [73] also exploits the supernet. It utilizes a joint model architecture-
pruning-quantization search. A mixed quantization is applied after extracting pruned
sub-networks from the supernet. An energy/latency look-up table is used to provide
the hardware feedback during the search.

4.2 NAS with hardware co-design

As emphasized by Lin et al. [35], NAS with hardware co-design opens a new search
space – hardware configurations – to deeply co-optimize the CNN architecture and
its hardware implementation with the aim of delivering the most suitable trade-offs
between the accuracy and hardware parameters. In addition to the CNN architecture
and weights, the hardware configuration is optimized, which can involve optimiz-
ing the bit widths, quantization levels, PE array size, buffer size, MAC circuit con-
figuration (e.g. by utilizing approximate multipliers), data flow organization, tiling
strategy, loop order, memory subsystem parameters, preferences for the high-level
synthesis tools, etc.

Hardware-Aware Evolutionary Approaches to Deep Neural Networks† 21

Table 4 Hardware-aware evolutionary NAS methods. Titles of some data sets are abbreviated,
e.g., C-10 for Cifar-10, C-100 for Cifar-100, ImgNet for ImageNet; the + symbol denotes that
some additional data sets were omitted because of space limitations.

Search Super Data
Method Ref. Year Space Net Objectives Estimation Method Target device Set
Large-Scale [59] 2017 macro None None GPU C-10, C-100
JASQNet [10] 2018 cell params None GPU ImgNet, C-10
ECAD [13] 2019 hyperp Lat, Energy simulator FPGA MNIST
ChamNet [14] 2019 hyperp Lat, Energy Acc, Energy: GP predictor GPU, DSP, Mobile ImgNet
LEMONADE [18] 2019 macro, cell Params None GPU ImgNet, C-10
NSGANetV1 [38] 2019 block FLOPS None GPU C-10, C-100
APQ [73] 2020 block Y Lat, Energy Acc: NN; Lat: LUT ASIC ImgNet
DeepMaker [36] 2020 hyperp Size None CPU, GPU, FPGA MNIST, C-10, C-100
HNAS [76] 2020 macro Lat Lat: LUT GPU, Mobile ImgNet
Hurricane [78] 2020 macro Y Lat Lat: Bayes. Regression DSP, CPU, ASIC ImgNet
MCUNet [33] 2020 macro Y Lat, Mem, Flash None MCU ImgNet, WWV, KWS
NasCaps [43] 2020 hyperp Lat, Mem, Energy Lat: cycles; Energy: model ASIC C-10, MNIST, FMNIST+
NSGANetV2 [39] 2020 block Y Lat, MAC, Params Acc: ML-surrogate GPU ImgNet, C-10, C-100+
OFA [7] 2020 block Y Lat Acc, Lat: NN GPU, FPGA, Mobile ImgNet
PONAS [24] 2020 macro Y Params, FLOPS LUT GPU ImgNet
Schorn et al. [62] 2020 hyperp Lat, Energy, FT formula GPU C-10, GTSRB
SPOS [22] 2020 blocks Y Lat, FLOPS None GPU ImgNet
µNAS [32] 2021 macro Lat, Mem, MAC Lat: MAC MCU C-10, MNIST, Chars74K+
HSCoNAS [40] 2021 block Y Lat Lat: formula GPU, CPU ImgNet
Prabakaran et al. [57] 2021 macro Mem None GPU, CPU anomaly in ECG signals
Wang et al. [74] 2021 block FLOPS None GPU IDS2012, ISCX VPN
NAS4RRAM [77] 2021 cells Energy simulator RRAM chip C-10, C-100
NEMOKD [67] 2021 hyperp Lat None Movidius C-10, C-100
GoldenNAS [41] 2022 layer Y Lat Analytical Edge GPU, GPU, CPU ImgNet
Lu et al. [37] 2022 macro Y Lat MLP mobile, GPU, CPU ImgNet

4.2.1 A single search algorithm

A straightforward approach is to add the hardware parameters to the chromosome
which describes the CNN architecture, and extend thus the search space of the orig-
inal NAS algorithm.

For example, Pinos et al. [56] evolved CNN architecture together with the selec-
tion of suitable approximate multipliers for particular CNN layers to reduce power
consumption. The method, EvoApproxNAS, is based on CGP in which each node
represents a network layer and a layer can use one of 35 multipliers. Fig. 7 shows
resulting Pareto fronts from four independent experiments in which EvoApprox-
NAS utilized four different sets of multipliers in convolutional layers: 8×8-bit ac-
curate (blue), 8×N-bit accurate (orange), 8×8-bit approximate (red), and 8×N-bit
approximate (green). By combining all these Pareto fronts, one can observe those
approximate multipliers allow EvoApproxNAS to reach the best trade-offs between
accuracy and energy of multiplication for almost all investigated regions of param-
eters.

4.2.2 Two Search Algorithms

The approach presented in the previous section leads to a time-consuming search
process due to the prohibitively huge joint space composed of the coupled yet dif-
ferent CNN architecture and hardware configuration spaces with extremely sparse
optima.

22 Lukas Sekanina and Vojtech Mrazek and Michal Pinos

10 1 100 101 102 103

Energy [J]

60%

65%

70%

75%

80%

85%

90%

95%

To
p-

1
Ac

cu
ra

cy

EvoApproxNAS+8x8+Ax
ALWANN AxResNet-8

EvoApproxNAS+8xN+Acc
ALWANN AxResNet-14

EvoApproxNAS+8xN+Ax
ALWANN AxResNet-50

EvoApproxNAS+8x8+Acc

Fig. 7 The energy-accuracy trade-offs obtained by EvoApproxNAS on CIFAR-10 for four sets of
multipliers that can be used by convolutional layers. Results are compared with various ResNet
networks optimized with the ALWANN method [49].

To reduce the search cost, the problem is often decoupled. Two search algorithms
are now employed. Algorithm A1 is a common NAS and works in the space of CNN
architectures. Algorithm A2 then performs the search in the space of hardware con-
figurations. It can again be based on an EA; however, other search techniques have
been utilized in the literature [63]. The search algorithms can interact in different
ways, for example:

1. A1 samples a CNN model α . No training of α is performed.
2. A2 is executed to find the most suitable hardware configuration chw (satisfying all

hardware constraints imposed by the specification) for α .
3. If no suitable hardware configuration is obtained, α is discarded, and step (1) is

taken again.
4. If chw satisfies all constraints, then α is trained and then tested on the test data to

get its accuracy Acc(α).
5. Steps (1) to (4) are repeated until a suitable solution (α,chw,Acc(α)) is not

reached.

This approach is especially useful if finding a suitable hardware configuration for
α takes significantly less time than the training of α . On the other hand, if a super net
is employed, it is not necessary to train candidate CNN architectures (subnets), and a
search in the hardware configuration space can be conducted for architectures show-
ing acceptable accuracy. From the NAS-hardware codesign methods, surveyed by
Sekanina [63], Table 5 lists those utilizing an evolutionary approach for A1 (the NAS
Method column) or A2 (the HW opt. method). Selected hardware parameters that are
optimized are listed in the Design parameters column. The remaining columns have
the same meaning as in Table 4. Note that the use of EAs is relatively unexplored in
this new area as documented by only three items in Table 5.

Hardware-Aware Evolutionary Approaches to Deep Neural Networks† 23

QNAS [34] focuses on optimizing the parameters of a mixed-precision systolic-
array-like architecture (the array size, buffer input/weight/output size) while search-
ing the quantized neural architecture. It includes an EA-based hardware architecture
search and a one-shot supernet-based quantized neural architecture search. First, a
suite of neural architectures is sampled as a benchmark to find the hardware archi-
tecture that achieves the best performance on the benchmark. The hardware architec-
ture is fixed, and the quantized neural architecture search (QNAS) is then performed
to determine the neural architecture and quantization policy. The quantized neural
network is composed of multiple ResNet blocks.

NAAS [35] holistically searches the neural network architecture and accelerator
architecture, and unlike other methods (e.g., [26]), compiler mapping. The accel-
erator search space is defined by the number of processing elements, local memory
size, global buffer size, memory bandwidth, and connectivity parameters. NAAS
employs EA to optimize these parameters as well as the compiler mapping (the exe-
cution order and the tiling size). It introduces a special encoding, called importance-
based encoding, for the accelerator space and the compiler mapping strategies to
avoid enumerating all possible situations and representing them by indexes. First,
NAAS generates a pool of accelerator candidates. For each accelerator candidate,
a network architecture is sampled from a pre-trained network [7] that satisfies the
pre-defined accuracy requirement. Since each subnet is well-trained, the accuracy
evaluation is fast. Finally, the compiler mapping strategy is sought for the network
candidate on the corresponding accelerator candidate.

Table 5 Evolutionary NAS methods with hardware co-design
Method Ref. NAS Method Objective HW opt. method Design parameters Target device Data set
QNAS [34] EA, supernet EDP EA #PE, mem. params ASIC ImgNet, C-10
NAAS [35] gradient, supernet EDP EA #PE, mem. params., compiler mapping TPU, ASIC ImgNet, C-10
Pinos et al. [56] EA Energy in NAS approximate multiplier type ASIC C-10, SVHN

Fig. 8 shows the impact of various approaches in optimizing the accuracy and
Energy-Delay-Product (EDP) of ImageNet classifiers based on ResNet-50 and im-
plemented on an Eyeriss-like chip. The original implementation (black point) of
ResNet-50 (no NAS employed) is improved by a hardware search algorithm from
QNAS [34] (green point). Additional improvement is provided by NAAS perform-
ing the hardware and compiler mapping co-search (orange point). The best trade-
offs are reported for NAAS utilizing the hardware, compiler mapping, and CNN
architecture co-search (blue points). These results (adopted from [35]) demonstrate
that exploiting more design spaces can lead to better CNN implementations.

5 Conclusions and open challenges

We surveyed evolutionary approaches developed to optimize hardware implemen-
tations of CNNs and the NAS methods utilizing EAs. The optimization of vari-

24 Lukas Sekanina and Vojtech Mrazek and Michal Pinos

Fig. 8 Normalized EDP and top-1 accuracy (on ImageNet) obtained by NAS methods for CNNs
running on an ASIC [35]: NAAS co-optimizing HW, compiler mapping and NN architecture
(blue); NAAS co-optimizing HW and compiler mapping (orange); hardware search from QNAS
(green); No NAS conducted (black). Adopted from [35].

ous components and implementation principles of hardware accelerators with EAs
seems to be a useful strategy because the relationships among all internal variables
in complex systems such as hardware accelerators are highly nonlinear and corre-
sponding search spaces are hard to explore.

Introducing the hardware search space in NAS algorithms has led to more effi-
cient implementations of CNNs on particular hardware platforms. However, several
search algorithms working in the space of weights, neural architectures, and hard-
ware configurations have to be coordinated, making the entire method complicated.
Successful adoption of EAs in these applications requires utilizing not only modern
multi-objective evolutionary design and optimization methods but also state-of-the-
art (surrogate) modeling and simulation techniques to get reliable information about
the underlying hardware quickly.

In the following sub-sections, we outline the challenges that are critical for the
successful development in this area.

5.1 Benchmarking and reproducibility

As hardware-aware NAS methods are multi-objective, their fair assessment consists
of evaluating multiple parameters of resulting implementations of CNNs and the
design cost (time). It thus leads to an expensive construction and comparison of
Pareto fronts in multidimensional spaces, which is often hard to perform because of
incomplete information about some NAS methods. To support a fair benchmarking

Hardware-Aware Evolutionary Approaches to Deep Neural Networks† 25

methodology and accelerate the development of new NAS methods, the open-source
data sets containing many pre-trained and evaluated CNNs from well-defined search
spaces were introduced in the literature, e.g., NAS-Bench-201 [16]. In addition to
the accuracy for each design point in the search space, hardware parameters (such
as latency and power) are also precomputed for some hardware accelerators [31].
Hence, new NAS algorithms can quickly be developed and evaluated for predefined
search spaces. We see a lot of space for further opening the whole field to a broader
community of researchers and practitioners by sharing NAS implementation source
codes, data generated by NAS methods, data measured on real accelerators, and data
obtained from simulations of various configurations of hardware accelerators. This
effort should also improve the reproducibility of results in this area.

5.2 Security and Reliability

In addition to optimizing the quality of service, performance, and power consump-
tion, other objectives must be considered when hardware-accelerated DNNs are de-
ployed in real-world systems. DNN systems are highly vulnerable to security and
reliability threats at both the cloud and the edge. Security attacks include insert-
ing random or crafted noise into the data, inserting malicious components into the
system hardware, polluting inputs with imperceptible noise during inference, and
monitoring system-side channels to deduce the underlying model [64]. Reliability
issues include process variation during hardware fabrication, memory errors, and
specific environmental conditions around the system that compromise reliability
during training and inference. Shafique et al. [64] surveyed the threats and their re-
spective countermeasures. One example of reliability-aware EA-based NAS – paper
[62] – was discussed in Section 4. We expect a lot of research that could poten-
tially utilize evolutionary algorithms in the areas of security and reliability of CNN
accelerators.

5.3 Unconventional Hardware Platforms

Emerging technologies such as memristive crossbars or in-memory computing are
investigated for CNN accelerators to reduce power consumption and other critical
parameters [66, 2]. A very specialized simulator is usually developed to analyze the
properties of these unconventional circuits and systems. The simulator can be con-
nected with a NAS algorithm to find best-performing CNN-accelerator pairs. For
example, PABO [54] uses NAS connected with a memristive crossbar-based CNN
accelerator, where the CNN is mapped across the on-chip crossbar storage spatially.
NAS4RRAM is a NAS method for optimizing CNNs and Resistive Random Access
Memory (RRAM)-based accelerators [77]. NACIM [27] jointly explores device, cir-
cuit, and architecture design space and also takes device variation into account to

26 Lukas Sekanina and Vojtech Mrazek and Michal Pinos

find the most robust neural architectures, coupled with the most efficient hardware
design for an in-memory computing ASIC. In the future, more exotic hardware plat-
forms for CNNs could be introduced (e.g., similar to the nanoparticle networks con-
figured using evolutionary algorithms for solving simple problems [5]) to provide
richer and deeper interaction of machine learning and configurable physical mate-
rio.

5.4 Design Cost

The evolutionary NAS method is a computationally expensive approach requiring
many core hours producing considerable CO2 emissions. We expect many new ap-
proaches to reduce the computation cost in all directions, including efficient search
algorithms, network training algorithms, hardware simulation, and benchmarking
strategies.

Acknowledgements This work was supported by the Czech science foundation project Automated
design of hardware accelerators for resource-aware machine learning under number 21-13001S.

References

[1] Barone S, Traiola M, Barbareschi M, Bosio A (2021) Multi-objective
application-driven approximate design method. IEEE Access 9:86,975–86,993

[2] Bavikadi S, Dhavlle A, Ganguly A, Haridass A, Hendy H, Merkel C, Reddi
VJ, Sutradhar PR, Joseph A, Pudukotai Dinakarrao SM (2022) A survey on
machine learning accelerators and evolutionary hardware platforms. IEEE De-
sign & Test 39(3):91–116

[3] Benmeziane H, El Maghraoui K, Ouarnoughi H, Niar S, Wistuba M, Wang N
(2021) Hardware-aware neural architecture search: Survey and taxonomy. In:
Proceedings of the Thirtieth International Joint Conference on Artificial In-
telligence, IJCAI-21, International Joint Conferences on Artificial Intelligence
Organization, pp 4322–4329, survey Track

[4] Bingham G, Macke W, Miikkulainen R (2020) Evolutionary optimization of
deep learning activation functions. In: Proceedings of the 2020 Genetic and
Evolutionary Computation Conference, ACM, GECCO ’20, p 289–296

[5] Bose SK, Lawrence CP, Liu Z, Makarenko KS, van Damme RMJ, Broersma
HJ, van der Wiel WG (2015) Evolution of a designless nanoparticle network
into reconfigurable boolean logic. Nature Nanotechnology 10:1048 – 1052

[6] Cai H, Zhu L, Han S (2019) Proxylessnas: Direct neural architecture search on
target task and hardware. In: 7th International Conference on Learning Repre-
sentations, ICLR, OpenReview.net

Hardware-Aware Evolutionary Approaches to Deep Neural Networks† 27

[7] Cai H, Gan C, Wang T, Zhang Z, Han S (2020) Once-for-all: Train one network
and specialize it for efficient deployment. In: 8th International Conference on
Learning Representations, ICLR, OpenReview.net

[8] Capra M, Bussolino B, Marchisio A, Shafique M, Masera G, Martina M (2020)
An updated survey of efficient hardware architectures for accelerating deep
convolutional neural networks. Future Internet 12(7):113

[9] Ceska M, Matyas J, Mrazek V, Sekanina L, Vasicesk Z, Vojnar T (2022)
Sagtree: Towards efficient mutation in evolutionary circuit approximation.
Swarm Evol Comput 69:100,986

[10] Chen Y, Meng G, Zhang Q, Zhang X, Song L, Xiang S, Pan
C (2018) Joint neural architecture search and quantization, URL
https://arxiv.org/abs/1811.09426, 1811.09426

[11] Chen YH, Krishna T, Emer JS, Sze V (2017) Eyeriss: An energy-efficient re-
configurable accelerator for deep convolutional neural networks. IEEE Journal
of Solid-State Circuits 52(1):127–138, DOI 10.1109/JSSC.2016.2616357

[12] Chetlur S, Woolley C, Vandermersch P, Cohen J, Tran J, Catanzaro B,
Shelhamer E (2014) cuDNN: Efficient primitives for deep learning, URL
http://arxiv.org/abs/1410.0759

[13] Colangelo P, Segal O, Speicher A, Margala M (2019) Artificial neural net-
work and accelerator co-design using evolutionary algorithms. In: 2019 IEEE
High Performance Extreme Computing Conference (HPEC), pp 1–8, DOI
10.1109/HPEC.2019.8916533

[14] Dai X, Zhang P, Wu B, Yin H, Sun F, Wang Y, Dukhan M, Hu Y, Wu Y,
Jia Y, Vajda P, Uyttendaele M, Jha NK (2019) ChamNet: Towards efficient
network design through platform-aware model adaptation. In: 2019 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pp 11,390–
11,399, DOI 10.1109/CVPR.2019.01166

[15] Deb K (2009) Multi-Objective Optimization Using Evolutionary Algorithms,
Wiley

[16] Dong X, Yang Y (2020) NAS-Bench-201: Extending the scope of reproducible
neural architecture search. In: International Conference on Learning Represen-
tations

[17] Dupuis E, Novo D, O’Connor I, Bosio A (2022) A heuristic exploration of
retraining-free weight-sharing for CNN compression. In: 27th Asia and South
Pacific Design Automation Conference, ASP-DAC, IEEE, pp 134–139

[18] Elsken T, Metzen JH, Hutter F (2019) Efficient multi-objective neural archi-
tecture search via Lamarckian evolution. In: 7th Int. Conference on Learning
Representations, ICLR 2019, OpenReview.net

[19] Fasfous N, Vemparala MR, Frickenstein A, Valpreda E, Salihu D, Höfer
J, Singh A, Nagaraja NS, Voegel HJ, Vu Doan NA, Martina M, Becker J,
Stechele W (2022) AnaCoNGA: Analytical HW-CNN co-design using nested
genetic algorithms. In: 2022 Design, Automation & Test in Europe Conference
& Exhibition (DATE), pp 238–243

[20] Garofalo A, Rusci M, Conti F, Rossi D, Benini L (2019) PULP-NN: A com-
puting library for quantized neural network inference at the edge on RISC-V

28 Lukas Sekanina and Vojtech Mrazek and Michal Pinos

based parallel ultra low power clusters. In: 2019 26th IEEE International Con-
ference on Electronics, Circuits and Systems (ICECS), pp 33–36

[21] Garofalo A, Tagliavini G, Conti F, Rossi D, Benini L (2020) XpulpNN: Ac-
celerating quantized neural networks on RISC-V processors through ISA ex-
tensions. In: 2020 Design, Automation Test in Europe Conference Exhibition
(DATE), pp 186–191, DOI 10.23919/DATE48585.2020.9116529

[22] Guo Z, Zhang X, Mu H, Heng W, Liu Z, Wei Y, Sun J (2019) Single path one-
shot neural architecture search with uniform sampling. CoRR abs/1904.00420,
URL http://arxiv.org/abs/1904.00420

[23] He K, Zhang X, Ren S, Sun J (2015) Deep residual learning for image recog-
nition, URL http://arxiv.org/abs/1512.03385, 1512.03385

[24] Huang S, Chu W (2020) PONAS: progressive one-shot neural architec-
ture search for very efficient deployment. CoRR abs/2003.05112, URL
https://arxiv.org/abs/2003.05112, 2003.05112

[25] Intel (2021) Intel-optimized math library for numerical computing. URL
https://software.intel.com/en-us/mkl

[26] Jiang W, Yang L, Sha EHM, Zhuge Q, Gu S, Dasgupta S, Shi Y, Hu J (2020)
Hardware/software co-exploration of neural architectures. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems 39(12):4805–
4815, DOI 10.1109/TCAD.2020.2986127

[27] Jiang W, Lou Q, Yan Z, Yang L, Hu J, Hu XS, Shi Y (2021)
Device-circuit-architecture co-exploration for computing-in-memory neu-
ral accelerators. IEEE Transactions on Computers 70(4):595–605, DOI
10.1109/TC.2020.2991575

[28] Jouppi NP, Young C, Patil N, Patterson D (2018) A domain-specific architec-
ture for deep neural networks. Commun ACM 61(9):50–59

[29] Kao SC, Krishna T (2020) Gamma: Automating the hw mapping of dnn mod-
els on accelerators via genetic algorithm. In: Proceedings of the 39th Interna-
tional Conference on Computer-Aided Design, ACM, ICCAD ’20

[30] Lapid R, Sipper M (2022) Evolution of activation functions for deep learning-
based image classification. In: Proceedings of the Genetic and Evolutionary
Computation Conference Companion, ACM, GECCO ’22, p 2113–2121

[31] Li C, Yu Z, Fu Y, Zhang Y, Zhao Y, You H, Yu Q, Wang Y, Hao C, Lin Y (2021)
HW-NAS-Bench: Hardware-aware neural architecture search benchmark. In:
9th International Conference on Learning Representations, ICLR 2021, Open-
Review.net

[32] Liberis E, Dudziak u, Lane ND (2021) µNAS: Constrained neural architecture
search for microcontrollers. ACM, EuroMLSys ’21, p 70–79

[33] Lin J, Chen WM, Lin Y, Cohn J, Gan C, Han S (2020) MCUNet: Tiny deep
learning on iot devices. In: 34th Conference on Neural Information Processing
Systems (NeurIPS 2020), pp 1–12

[34] Lin Y, Hafdi D, Wang K, Liu Z, Han S (2019) Neural-hardware architec-
ture search. In: 33rd Conference on Neural Information Processing Systems
(NeurIPS 2019)

Hardware-Aware Evolutionary Approaches to Deep Neural Networks† 29

[35] Lin Y, Yang M, Han S (2021) NAAS: Neural accelerator architecture search.
In: 2021 58th ACM/ESDA/IEEE Design Automation Conference (DAC)

[36] Loni M, Sinaei S, Zoljodi A, Daneshtalab M, Sjödin M (2020) Deep-
Maker: A multi-objective optimization framework for deep neural networks
in embedded systems. Microprocessors and Microsystems 73:102,989, DOI
https://doi.org/10.1016/j.micpro.2020.102989

[37] Lu B, Yang J, Jiang W, Shi Y, Ren S (2021) One proxy device is enough
for hardware-aware neural architecture search. Proc ACM Meas Anal Comput
Syst 5(3)

[38] Lu Z, Whalen I, Boddeti V, Dhebar Y, Deb K, Goodman E, Banzhaf W
(2019) NSGA-Net: Neural architecture search using multi-objective genetic
algorithm. In: Proc. of the Genetic and Evolutionary Computation Conference,
ACM, GECCO ’19, p 419–427

[39] Lu Z, Deb K, Goodman E, Banzhaf W, Boddeti VN (2020) NSGANetV2:
Evolutionary multi-objective surrogate-assisted neural architecture search. In:
Computer Vision – ECCV 2020, Springer, Cham, pp 35–51

[40] Luo X, Liu D, Huai S, Liu W (2021) HSCoNAS: Hardware-software co-design
of efficient DNNs via neural architecture search. In: DATE 2021, 2103.08325

[41] Luo X, Liu D, Huai S, Kong H, Chen H, Liu W (2022) Designing effi-
cient DNNs via hardware-aware neural architecture search and beyond. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems
41(6):1799–1812

[42] MAESTRO (2021) An open-source infrastructure for modeling dataflows
within deep learning accelerators. URL http://maestro.ece.gatech.edu/

[43] Marchisio A, Massa A, Mrazek V, Bussolino B, Martina M, Shafique M (2020)
NASCaps: A framework for neural architecture search to optimize the ac-
curacy and hardware efficiency of convolutional capsule networks. In: 2020
IEEE/ACM International Conference On Computer Aided Design (ICCAD),
pp 1–9

[44] Mazumder AN, Meng J, Rashid HA, Kallakuri U, Zhang X, Seo JS, Mohs-
enin T (2021) A survey on the optimization of neural network accelerators for
micro-ai on-device inference. IEEE Journal on Emerging and Selected Topics
in Circuits and Systems 11(4):532–547, DOI 10.1109/JETCAS.2021.3129415

[45] Mittal S (2016) A survey of techniques for approximate computing. ACM
Comput Surv 48(4):1–33, DOI 10.1145/2893356

[46] Mittal S (2020) A survey of FPGA-based accelerators for convolutional neural
networks. Neural Computing and Applications 32(32):1109–1139

[47] Mittal S, Rajput P, Subramoney S (2022) A survey of deep learning on cpus:
Opportunities and co-optimizations. IEEE Transactions on Neural Networks
and Learning Systems 33(10):5095–5115

[48] Mrazek V, Hrbacek R, et al (2017) Evoapprox8b: Library of approximate
adders and multipliers for circuit design and benchmarking of approximation
methods. In: Proc. of DATE’17, pp 258–261

[49] Mrazek V, Vasicek Z, Sekanina L, Hanif AM, Shafique M (2019) ALWANN:
Automatic layer-wise approximation of deep neural network accelerators

30 Lukas Sekanina and Vojtech Mrazek and Michal Pinos

without retraining. In: Proc. of the IEEE/ACM International Conference on
Computer-Aided Design, IEEE, pp 1–8

[50] Mrazek V, Sekanina L, Vasicek Z (2020) Libraries of approximate circuits:
Automated design and application in CNN accelerators. IEEE Journal on
Emerging and Selected Topics in Circuits and Systems 10(4):406–418, DOI
10.1109/JETCAS.2020.3032495

[51] Murshed MGS, Murphy C, Hou D, Khan N, Ananthanarayanan G, Hussain F
(2021) Machine learning at the network edge: A survey. ACM Comput Surv
54(8), DOI 10.1145/3469029, URL https://doi.org/10.1145/3469029

[52] Nader A, Azar D (2021) Evolution of activation functions: An empirical in-
vestigation. ACM Trans Evol Learn Optim 1(2)

[53] Parashar A, Raina P, Shao YS, Chen YH, Ying VA, Mukkara A, Venkatesan
R, Khailany B, Keckler SW, Emer J (2019) Timeloop: A systematic approach
to dnn accelerator evaluation. In: 2019 IEEE International Symposium on Per-
formance Analysis of Systems and Software (ISPASS), pp 304–315

[54] Parsa M, Ankit A, Ziabari A, Roy K (2019) PABO: Pseudo agent-based multi-
objective bayesian hyperparameter optimization for efficient neural accelera-
tor design. In: 2019 IEEE/ACM International Conference on Computer-Aided
Design (ICCAD), pp 1–8, DOI 10.1109/ICCAD45719.2019.8942046

[55] Pham H, Guan MY, Zoph B, Le QV, Dean J (2018) Efficient neural architecture
search via parameter sharing. In: Proc. of the 35th International Conference on
Machine Learning, ICML 2018, PMLR, vol 80, pp 4092–4101

[56] Pinos M, Mrazek V, Sekanina L (2022) Evolutionary approximation and
neural architecture search. Genetic Programming and Evolvable Machines
23(3):351–374

[57] Prabakaran BS, Akhtar A, Rehman S, Hasan O, Shafique M (2021) BioNe-
tExplorer: Architecture-space exploration of bio-signal processing deep neu-
ral networks for wearables. IEEE Internet of Things Journal pp 1–10, DOI
10.1109/JIOT.2021.3065815

[58] Prashanth HC, Madhav R (2022) Evolutionary standard cell synthesis of un-
conventional designs. In: Proceedings of the Great Lakes Symposium on VLSI
2022, ACM, GLSVLSI ’22, p 189–192

[59] Real E, Moore S, Selle A, Saxena S, Suematsu YL, Tan J, Le QV, Kurakin
A (2017) Large-scale evolution of image classifiers. In: Proceedings of the
34th International Conference on Machine Learning - Volume 70, JMLR.org,
ICML’17, p 2902–2911

[60] Sarwar SS, Venkataramani S, Ankit A, Raghunathan A, Roy K (2018) Energy-
efficient neural computing with approximate multipliers. J Emerg Technol
Comput Syst 14(2):16:1–16:23

[61] Sateesan A, Sinha S, G SK, Vinod AP (2021) A survey of algorithmic and
hardware optimization techniques for vision convolutional neural networks on
FPGAs. Neural Process Lett 53(3):2331–2377

[62] Schorn C, Elsken T, Vogel S, Runge A, Guntoro A, Ascheid G (2020) Auto-
mated design of error-resilient and hardware-efficient deep neural networks.
Neural Comput Appl 32(24):18,327–18,345

Hardware-Aware Evolutionary Approaches to Deep Neural Networks† 31

[63] Sekanina L (2021) Neural architecture search and hardware accel-
erator co-search: A survey. IEEE Access 9:151,337–151,362, DOI
10.1109/ACCESS.2021.3126685

[64] Shafique M, Naseer M, Theocharides T, Kyrkou C, Mutlu O, Orosa L,
Choi J (2020) Robust machine learning systems: Challenges, current trends,
perspectives, and the road ahead. IEEE Design & Test 37(2):30–57, DOI
10.1109/MDAT.2020.2971217

[65] Sipper M (2021) Neural networks with à la carte selection of activation
functions. SN Comput Sci 2(6):470, DOI 10.1007/s42979-021-00885-1, URL
https://doi.org/10.1007/s42979-021-00885-1

[66] Staudigl F, Merchant F, Leupers R (2022) A survey of neuromorphic
computing-in-memory: Architectures, simulators, and security. IEEE Design
& Test 39(2):90–99

[67] Stewart R, Nowlan A, Bacchus P, Ducasse Q, Komendantskaya E (2021) Op-
timising hardware accelerated neural networks with quantisation and a knowl-
edge distillation evolutionary algorithm. Electronics 10(4)

[68] Sze V, Chen Y, Yang T, Emer JS (2017) Efficient processing of deep neural
networks: A tutorial and survey. Proceedings of the IEEE 105(12):2295–2329

[69] Sze V, Chen Y, Yang T, Emer JS (2020) Efficient Processing of Deep Neural
Networks. Synthesis Lectures on Computer Architecture, Morgan & Claypool
Publishers

[70] Vasicek Z, Sekanina L (2015) Evolutionary approach to approximate digital
circuits design. IEEE Transactions on Evolutionary Computation 19(3):432–
444

[71] Velasco-Montero D, Fernandez-Berni J, Carmona-Galan R, Rodriguez-
Vazquez A (2020) Previous: A methodology for prediction of visual inference
performance on IoT devices. IEEE Internet of Things Journal 7(10):9227–
9240

[72] Venkataramani S, et al (2020) Efficient AI system design with cross-layer
approximate computing. Proceedings of the IEEE 108(12):2232–2250, DOI
10.1109/JPROC.2020.3029453

[73] Wang T, Wang K, Cai H, Lin J, Liu Z, Wang H, Lin Y, Han S (2020) APQ:
Joint search for network architecture, pruning and quantization policy. In: 2020
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
pp 2075–2084, DOI 10.1109/CVPR42600.2020.00215

[74] Wang X, Wang X, Jin L, Lv R, Dai B, He M, Lv T (2021) Evo-
lutionary algorithm-based and network architecture search-enabled mul-
tiobjective traffic classification. IEEE Access 9:52,310–52,325, DOI
10.1109/ACCESS.2021.3068267

[75] Wu YN, Emer JS, Sze V (2019) Accelergy: An architecture-level energy es-
timation methodology for accelerator designs. In: 2019 IEEE/ACM Interna-
tional Conference on Computer-Aided Design (ICCAD), pp 1–8

[76] Xia X, Ding W (2020) HNAS: Hierarchical neural architecture search on mo-
bile devices, URL https://arxiv.org/abs/2005.07564, 2005.07564

32 Lukas Sekanina and Vojtech Mrazek and Michal Pinos

[77] Yuan Z, Liu J, Li X, Yan L, Chen H, Wu B, Yang Y, Sun G (2021)
NAS4RRAM: Neural network architecture search for inference on rram-based
accelerators. Science China Information Sciences 64:160,407

[78] Zhang LL, Yang Y, Jiang Y, Zhu W, Liu Y (2020) Fast hardware-aware neu-
ral architecture search. In: 2020 IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition Workshops (CVPRW), pp 2959–2967, DOI
10.1109/CVPRW50498.2020.00354

[79] Zhang X, Wang J, Zhu C, Lin Y, Xiong J, Hwu Wm, Chen D (2018)
DNNBuilder: An automated tool for building high-performance DNN hard-
ware accelerators for FPGAs. In: 2018 IEEE/ACM International Conference
on Computer-Aided Design (ICCAD), pp 1–8

[80] Zhou Y, Dong X, Akin B, Tan M, Peng D, Meng T, Yazdanbakhsh A, Huang
D, Narayanaswami R, Laudon J (2021) Rethinking co-design of neural ar-
chitectures and hardware accelerators, URL https://arxiv.org/abs/2102.08619,
2102.08619

