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Abstract
Nondeterministic finite automata (NFA) are widely used across almost all fields of computer science,
such as for a representation of regular expressions, monitoring high-speed networks, in abstract
regular model checking, program verification, or in decision procedures of WS1S and WS2S
logics. NFAs are even used in bioinformatics for searching sequences of nucleotides in DNA. The
basic technique for reducing computational resources (memory, time, or the amount of hardware
components) when working with NFAs is minimization. The most well-known minimization methods
are state merging and transition pruning. Although combining these two methods can reduce the
size of an automaton by up to 50%, the resulting automaton can still contain duplicate (similar)
transition sequences. There are even automata that cannot be minimized by these methods.
This work presents a new way of automata minimization based on a transformation of a NFA into
a nondeterministic pushdown automaton (NPDA). The transformation identifies and represents the
most similar parts (procedures) of the automaton only once. This algorithm enables the reduction
of previously non-minimalizable automata and also improves the results of other minimizations.
The principle of transforming NFA into NPDA can be understood as a transformation of a purely
sequential program into a program with mutually communicating procedures.
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1. Introduction

Nondeterministic finite automata (NFA) were intro-
duced by Michael Rabin and Dana Scott in [13]. Un-
like their deterministic counterpart, NFAs have the
ability to make a transition to multiple states based on
the same input symbol. This allows NFAs to represent
the language more compactly. However, this feature
makes the minimization of NFAs difficult. Despite
the difficulty of minimization, NFAs are widely used
in almost all fields of computer science, such as rep-
resenting regular expressions, monitoring high-speed
networks [14], in abstract regular model checking [5],
in verifying programs that manipulate strings [2] or
in decision procedures in the WS1S and WS2S logic
[10, 9]. NFAs are even used in bioinformatics to search

for nucleotide sequences in DNA [3].
The basic technique for reducing computational

requirements when working with NFA is minimiza-
tion. The most well-known minimization technique is
a state merging [4, 6, 12], which searches for two lan-
guage equivalent states and then merges them into one.
Another approach is transition pruning [6, 8], which re-
moves transitions from the state with weaker language
based on language inclusion. The opposite of tran-
sition pruning is transition adding (saturation) [4, 8],
where newly added transitions may allow further state
merging or transition pruning.

The mentioned minimization methods reduce the
size of most automata by up to 50%, but duplicitous
transition sequences still exist in the resulting automata.
There are also types of automata that cannot be min-
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imized by current methods, such as automata with
a linear structure (without branching) or automata rep-
resenting words with a given infix, same prefix, and
suffix (e.g. abba, cbbc). In these cases, state merging,
transition pruning, and saturation cannot minimize the
automata, because these reduction methods are based
on language inclusions and these types of automata
do not contain any. In the structure of these automata,
only similar transition segments occur (e.g. bb from
the previous example).

This work describes a new minimization algorithm
that uses the similarity of transition sequences in order
to reduce the size of the automaton. The approach in-
volves the informed conversion of a nondeterministic
finite automaton (NFA) to a nondeterministic push-
down automaton (NPDA). In the NPDA, similar se-
quences can be replaced by one procedure that uses the
symbol stored on the stack to determine the branch of
the original automaton where the calculation is located.
The goal of a successful transformation is to replace
such sequences of transitions that the savings from
their reduction will exceed the overhead of the stack
operations. The reduction of automata representing
regular expressions can be improved on average by
32.1% using this minimization approach.

The transformation of NFA to NPDA can be under-
stood as the conversion of a purely sequential program
to a program using communicating procedures. Like
the NPDA, a call stack is used in the program to main-
tain information about the current branch and where
the calculation should return to after the procedure
ends.

2. Preliminaries
This section defines the fundamental terms utilized in
our reduction approach, such as nondeterministic finite
automaton, nondeterministic push down automaton.
Additionally, it introduces the simulation relation and
the product of a NPDA, which represents all possible
procedure candidates.

2.1 Nondeterministic Finite Automaton
A Nondeterministic Finite Automaton (NFA) is a 5-
tuple M = (Q,Σ,δ , I,F), where:

• Q is a finite set of states,
• Σ is an alphabet,
• δ : Q×Σ→ 2Q is a transition function,
• I ⊆ Q is a set of initial states, and
• F ⊆ Q is a set of final states.

The transition function δ can be generalized for
a set of symbols. Let q ∈Q and A⊆ Σ, then δ (q,A) =⋃

a∈A δ (q,a).

We also define the inverse function δ−1, where:
q ∈ δ−1(r,a) ⇐⇒ r ∈ δ (q,a), for a ∈ Σ and q,r ∈ Q.

Configuration
A configuration of a NFA is an ordered pair C∈Q×Σ∗.
(q,w)∈C indicates that the automaton is in state q and
that the unprocessed string w remains on the input.

Transition
A transition is a binary relation ⊢⊆C×C, defined as
follows: (q,w) ⊢ (r,w′) ⇐⇒ w = aw′ ∧ r ∈ δ (q,a),
for q,r ∈ Q, w,w′ ∈ Σ∗, a ∈ Σ.

Language

The forward language of state q ∈Q is the set
−→
L (q) =

{w ∈ Σ∗ |(q,w) ⊢ ( f ,ε), where f ∈ F}.
The backward language of state q ∈ Q is the set←−

L (q) = {w ∈ Σ∗ |(i,w) ⊢ (q,ε), where i ∈ I}.
The language of the automaton M is the set defined

as L(M) =
⋃

i∈I
−→
L (i).

2.2 Nondeterministic Pushdown Automaton
A Nondeterministic Pushdown Automaton (NPDA) is
an 8-tuple M = (Q,Σε ,Γε ,δ , I,λ ,F,φ), where:

• Q is a finite set of states,
• Σε is an alphabet containing symbol ε ,
• Γε is a stack alphabet containing symbol ε ,
• δ : Q×Σε×Γε → 2Q×Γε is a transition function,
• I ⊆ Q is a set of initial states,
• λ : I → 2Γε \ { /0} is a function of initial stack

symbols,
• F ⊆ Q is a set of final states, and
• φ : F → 2Γε \ { /0} is a function of final stack

symbols.

The function λ specifies the initial stack symbol
for an initial state. Let i ∈ I. If λ (i) = {ε}, then the
automaton starts in state i with an empty stack. On
the other hand, if λ (i) = G ̸= {ε}, then the automaton
can start in state i with a nondeterministically chosen
symbol from set G.

The function φ specifies the acceptance combi-
nation of a state and a stack symbol. Let f ∈ F . If
φ( f ) = {ε}, then the automaton accepts in state f with
an empty stack. Conversely, if φ( f ) = G ̸= {ε}, then
the automaton accepts in state f if the symbol g on the
top of the stack belongs to set G.

Similarly to NFA, a transition function can also be
defined for a set of symbols A⊆ Σε or B⊆ Γε .

The inverse transition function δ−1 of NPDA, is de-
fined as: (q,β ) ∈ δ−1(r,a,γ) ⇐⇒ (r,γ) ∈ δ (q,a,β ),
where q,r ∈ Q, a ∈ Σε , β ,γ ∈ Γε . Note that in the
inverse transition function, the push and pop stack
symbols are swapped.



Configuration
A configuration of a NFA is an ordered triple C ∈ Q×
Σ∗×Γ∗, where (q,w,β ) ∈C means that the machine
is in the state q, the remaining unprocessed string is w,
and the stack contains the string β (the top of the stack
is on the left).

Transition
A transition is a binary relation ⊢⊆ C×C, where:
(q,w,β ) ⊢ (r,w′,β ′) ⇐⇒ w = aw′∧β = Xα ∧β ′ =
Y α ∧ (r,Y ) ∈ δ (q,a,X), for q,r ∈ Q, w,w′ ∈ Σ∗, a ∈
Σε , X ,Y ∈ Γε .

Language
A forward language of state q ∈Q with a stack α ∈ Γ∗

is a set
−→
L (q,α) = {w ∈ Σ∗ |(q,w,α) ⊢ ( f ,ε,β )∧β ∈

φ( f ), where β ∈ Γε , f ∈ F}.
A language of the automaton M is the set defined

as L(M) =
⋃

i∈I
⋃

α∈λ (i)
−→
L (i,α).

Transition Alphabet
Transition Alphabet of a transition between states q
and r from Q is a set σ(q,r) = {a ∈ Σ |∃α,β ∈ Γε :
(r,β ) ∈ δ (q,a,α)}. It is the set of symbols from Σ

that label the transitions from state q to state r.
Epsilon Transition Alphabet of a transition be-

tween states q and r from Q is a set σε(q,r) = {a ∈
Σ |(r,ε) ∈ δ (q,a,ε)}. For each symbol in this set,
there exists a transition that goes from state q to r
without access the stack.

Nonepsion Transition Alphabet of a transition be-
tween states q and r from Q is a set σε(q,r) = σ(q,r)\
σε(q,r). It is a complement of the Epsilon Transition
Alphabet.

Stack Alphabet of State
Stack Alphabet of State q ∈ Q is a set γ(q) = {α ∈ Γ\
{ε}|(i,w,β )⊢∗ (r,w′,αβ ′), where i∈ I,r∈Q,w,w′ ∈
Σ∗,β ∈ λ (i),β ′ ∈ Γ∗}. It is a set of stack symbols that
can appear on the top of the stack while the automaton
is in the state q.

2.3 Representation of NFA using NPDA
The conversion of a NFA to its language equivalent
NPDA is the initial step in our reduction approach that
employs procedure mapping, and it is carried out as
follows.

Fore every NFA MF = (QF ,ΣF ,δF , IF ,FF) there
exists its language equivalent ((MF)≡ L(MP)) NPDA
MP = (QP, ΣP,Γε ,δP, IP,λ ,FP,φ), where:

• QP = QF ,
• ΣP = ΣF ,
• Γε = {ε},
• δP(q,a,ε) = δF(q,a)×{ε} for q ∈ QP,a ∈ ΣP,

• IP = IF ,
• λ (i) = {ε} for i ∈ I,
• FP = FF , and
• φ( f ) = {ε} for f ∈ F .

In this work, only nondeterministic pushdown au-
tomata with a stack limited to maximum one sym-
bol (NPDA1) is used. For each NPDA1 holds, that
L(NPDA1)⊆L3.

Proof. Let M = (Q,Σ,Γε ,δ , I,λ ,F,φ) be the NPDA1.
For any finite input w ∈ Σ∗, the set of all possible con-
figurations is defined by cartesian product Q×{u′ ∈
Σ∗ |u′v′ = w, where v′ ∈ Σ∗}×Γε . As the sets (Q, the
set of suffixes of w, and Γε ) that create the configura-
tions are all finite, the number of configurations is also
finite. Hence, NPDA1 can be represented as a NFA,
which implies L(NPDA1)⊆L3.

2.4 Subproduct of a NPDA
The subproduct of a NPDA enables the identification
of states with a sequence of transitions that exhibit
a language intersection (i.e., they are similar). To
some extent, the longer the sequence, the greater the
reduction potential. These sequences serve as potential
candidates for procedure mapping. To evaluate the
reduction potential of a procedure, the gain function
will be introduced.

Each procedure can consist of up to four types of
transitions: call transitions that initiate the procedure,
return transitions that conclude the procedure, proce-
dure transitions that embody the procedure itself, and
auxiliary transitions that occur within the procedure
but are not considered as procedure transitions.

Let M = (Q,Σ,Γε ,δ , I,λ ,F,φ) be a NPDA. The
Subproduct of a NPDA is a simple oriented graph G =
(V,E), where:

• V ⊆{(r,s)∈Q×Q |σ(r)∩σ(s)⊆{ε}}, is a set
of vertices and

• E ⊆ {(u,v) ∈V ×V |u ̸= v}, is a set of edges.

Edge Gain
Each edge in the subproduct of a NPDA has a gain
assigned by a function Ge : E→ Z, such that:

Ge((r,r′),(s,s′)) = |σε(r,s)∩σε(r′,s′)|−
|σε(r,s)\σε(r′,s′)| ·max(0, |γ(r)−1|)−
|σε(r′,s′)\σε(r,s)| ·max(0, |γ(r′)−1|)

The gain of an edge ((r,r′),(s,s′)) represents the
difference in the number of transitions before and after
the creation of the procedure based on the transitions
between the states r,s and r′,s′.



It is evident that the gain can be negative, due to
the increase in the number of transitions that tests stack
symbol, as shown in Figure 1.
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Figure 1. This figure illustrates that the creation of a
procedure from states s1,s2,s3, and s4 results in a neg-
ative gain of -1 due to the growing number of new
transitions.

Vertex Gain
Similar to the edges, each vertex is assigned a gain by
a function Gv : V →Z such that Gv(u) = Ge(u,u). The
vertex gain only reflects the similarity of self-loops in
the procedure.

Subproduct creation
Let M = (Q,Σ,Γε ,δ , I,λ ,F,φ) be a NPDA. The sub-
product of M is G = (V,E), where:

• V = {(r,s) ∈ Q×Q |σ(r)∩σ(s)⊆ {ε}} and
• E = {(u,v) ∈V ×V |u ̸= v∧Ge(u,v)> 0}.

Note that only edges with positive gain are considered
in this subproduct of the automaton.

The degree of a node v ∈ V is calculated as the
number of edges related to the node, given by a func-
tion d : V → N0 such that d(v) = |{(u,v) ∈ E |u ∈
V}|+ |{(v,u) ∈ E |u ∈ V}|. Since nodes with zero
degree are unnecessary in the subproduct of the au-
tomaton, the subproduct G = (V,E) can be simplified
to Gs = ({v ∈V |d(v)> 0},E).

Procedure Candidate
The subproduct of an automaton is an oriented graph
G = (V,E), which represents all possible procedure
candidates (with a positive gain). Only the most suit-
able procedure will be selected in each iteration of the
reduction algorithm and mapped to the automaton.

Let G = (V,E) be the subproduct of a NPDA.
A procedure candidate P = (VP,EP) is defined as an
acyclic linear subgraph of G that satisfies the following
conditions:

• ∀(r,r′),(s,s′) : {r,r′}∩{s,s′} ≠ /0 ⇐⇒ (r,r′) =
(s,s′) (each state can be used at most once),

• {v0,v1, . . . ,vn}=VP, where n ∈ N, and
• {(vi−1,vi) ∈ E |1≤ i≤ n}= EP.

The states of a procedure candidate P = (V,E) are
defined as the set of all u and v such that: states(P) =
{u |(u,v) ∈V}∪{v |(u,v) ∈V}.

The gain of a procedure candidate P = (VP,EP)
is calculated as the sum of the gains of its nodes and
edges: Gp(P) = ∑v∈VP Gv(v)+∑(u,v)∈EP Ge(u,v). The
goal is to map the procedure with the highest gain in
each iteration.
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Figure 2. This figure illustrates a NPDA and its sub-
product. The highest yield achieved through the proce-
dure mapping based on this subproduct is 2.

The following subsections provide definitions for
all four types of transitions. We consider an NPDA
M = (Q,Σ,Γε ,δ , I,λ ,F,φ) and a procedure P= (V,E)
derived from a subproduct of M.

Call Transition
A transition that enters a procedure is referred to as to
call transition. The set of call transitions for an automa-



ton M and a procedure candidate P is defined as fol-
lows: δcall(M,P)= {(q,a,α,β ,r) |(r,β )∈ δ (q,a,α),
where q ∈ Q \ states(P),r ∈ states(P),a ∈ Σ,α,β ∈
Γε}.

For example, for the automaton M in Figure 2 and
the maximum possible procedure candidate P, the set
of call transitions is δcall(M,P) = {(s,x,ε,ε,q1),(s,y,
ε,ε,q2)}.

Return Transition
A transition that exits a procedure is called a return
transition. The set of return transitions for an au-
tomaton M and a procedure candidate P is defined as:
δret(M,P)= {(q,a,α,β ,r) |(r,β )∈ δ (q,a,α), where
q ∈ states(P),r ∈ Q\ states(P),a ∈ Σ,α,β ∈ Γε}.

For instance, for the automaton M in Figure 2 and
the maximum possible procedure candidate P, the set
of return transitions is δret(M,P)= {(q5,x,ε,ε, f ),(q6,
y,ε,ε, f )}.

Procedure Transition
Procedure transitions are defined differently from the
others. A procedure transition uses vertices from a pro-
cedure candidate. The set of procedure transitions for
an automaton M and procedure candidate P = (V,E) is
δproc(M,P)= {((r,r′),a,α,β ,(s,s′)) |((s,β )∈ δ (r,a,
α)∨ (s′,β ) ∈ δ (r′,a,α))∧σε(r,s)∩σε(r′,s′) ̸= /0}.

The set of procedure transitions for the automaton
M in Figure 2 and the maximum procedure candidate P
is δproc(M,P) = {((q1,q2),a,ε,ε,(q3,q4)),((q1,q2),
d,ε,ε,(q3,q4)),((q3,q4),b,ε,ε,(q5,q6))}.

Auxiliary Transition
A transition that goes between two procedure states
but is not procedure transition is called an auxiliary
transition. The set of auxiliary transitions for the au-
tomaton M and procedure candidate P is defined as
δaux(M,P)= {(q,a,α,β ,r) |(r,β )∈ δ (q,a,α), where
q,r ∈ states(P),a ∈ Σ,α,β ∈ Γε}\T , where the T =
{(r,a,α,β ,s) |((r,r′),a,α,β ,(s,s′)) ∈ δproc(M,P)}∪
{(r′,a,α,β ,s′) |((r,r′),a,α,β ,(s,s′)) ∈ δproc(M,P)}.

The set of auxiliary transitions for the automaton
M shown in Figure 2 and the maximum possible pro-
cedure candidate P is δaux(M,P) = {(q3,c,ε,ε,q4)}.

2.5 Simulation
Simulation[11, 1] on a NFA M is a preorder ⪯⊆ Q×
Q. Let a ∈ Σ. The relation p ⪯ q only exists if r ∈
F =⇒ q ∈ F and for every r′ ∈ δ (r,a), there exists
q′ ∈ δ (q,a), which must further satisfy r′ ⪯ q′.

The simulation relation is commonly used as an
approximation of the language relation. If state r is
simulated by state q (r

−→⪯q), then the language of state

r is included in the language of state q (
−→
L (r)⊆−→L (q)),

but not vice versa.

3. Minimization Techniques

This section lists the most commonly used minimiza-
tion methods, namely: State Merging, Transition Prun-
ing, and Saturation.

3.1 Strate Merging
Two states p and q can be merged into one if at least
one of the following conditions is met:

•
←−
L (p)⊆←−L (q)∧←−L (q)⊆←−L (p),

•
−→
L (p)⊆−→L (q)∧−→L (q)⊆−→L (p), or

•
←−
L (p)⊆←−L (q)∧−→L (p)⊆−→L (q).

3.2 Transition Pruning
The transition pa→ q1 can be removed if one of the
following conditions is met:

• ∃ra→ q∧−→L (p)⊆−→L (q),
• ∃qa→ p∧←−L (r)⊆←−L (q), or
• ∃r′a→ p′∧←−L (r)⊆←−L (r′)∧−→L (p)⊆−→L (p′).

3.3 Saturation
The basic idea of saturation (or transition adding) is an
analogy to transition pruning. The transition pa→ q
can be added to the automaton if one of the following
conditions is met:

• ∃qa→ r∧←−L (p)⊆←−L (q), or
• ∃ pa→ q∧−→L (r)⊆−→L (q).

3.4 The Limitation
It can be seen that all minimization techniques are
based on language inclusions (can be determined based
on simulation). Then in the case of linear automata
(without branching), or automata with the same prefix
and suffix, these methods cannot be fully utilized, be-
cause in these automata, there is a minimum of states
in language inclusion.

The illustration in Figure 3 shows that in the au-
tomaton, no minimization based on language inclu-
sions can be performed. However, it can be observed
that the infix part of the word (unnecessarily) repeats.
The main motivation for the work is the fact that in
automata of this and similar types, long repeating se-
quences of transitions occur, which can only be repre-
sented once.

1Instead of q ∈ δ (p,a) we can write pa→ q.
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Figure 3. An example of an automaton accepting
a word with the infix ab where both the prefix and
suffix must be x or y.

4. Conversion of NFA to NPDA
This section describes the algorithm for the optimal
conversion of a NFA into NPDA through the creation
of procedures for similar transition sequences. In each
iteration, the algorithm selects the best procedure can-
didate (with the highest gain) from the automaton sub-
product and maps its edges to a procedure. The con-
version process ends when the automaton subproduct
is empty and the final automaton is reached.

It is important to clarify what is meant by opti-
mal conversion and how the size of the automaton is
measured before discussing the algorithm in detail.

4.1 Conversion Efficiency
It is evident that each NFA can be transformed into
a NPDA by utilizing a single state and a stack limited
to a maximum of one symbol. However, this method
of transformation is not considered to be the optimal
solution.

Proof. Let M = (QM,ΣM,δM, IM,FM) be a NFA. For
the automaton M exists NPDA N =(QN ,ΣN ,Γε ,δN , IN ,
λ ,FN ,φ), such that:

• QN = {q},
• ΣN = ΣM,
• Γε = QM ∪{ε},
• δN(q,a,α) = (q,β ) ⇐⇒ β ∈ δM(α,a),
• IN = QN = {q},
• λ (q) = IM,
• FN = QN = {q},
• φ(q) = FM.

The prior proof highlights the ease with which the
number of automaton states can be reduced by using
the stack to retain information of the current state of
computation. Hence, the number of states holds lim-
ited significance in evaluating the optimization of the
conversion. The crucial measurement for the optimal
transformation of a NFA into a NPDA is the num-
ber of transitions. If the reduction does not decrease
the number of transitions, then it can be said that the

conversion has not effectively reduced the size of the
automaton.

In order to attain an efficient conversion with max-
imal reduction in the size of the automaton, the algo-
rithm maps only those transitions that have a positive
gain.
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The NPDA, consisting of a single state, created from the
NFA in Figure 3 representing a suboptimal conversion.

Figure 4. The Figure illustrates the contrast between
an optimal and suboptimal conversion of the NFA into
a NPDA. The optimal NPDA has 5 states, 6 transitions,
and utilizes 2 stack symbols, whereas the suboptimal
NPDA, despite having only 1 state, has 8 transitions
and requires 6 stack symbols.

4.2 Automaton Conversion
The conversion of the NFA M starts with transforming
it into the equivalent NPDA N, as has been described
in Section 2.3. The subproduct of automaton N rep-
resents all potential procedures, where only the best
candidate (with the highest gain) is selected for the
mapping. The subproduct of the automaton is recalcu-
lated each time a procedure is formed. The algorithm
terminates when there are no more procedure candi-
dates (the subproduct of the automaton is empty), and
the resulting automaton N is returned.

Algorithm 1: Conversion of NFA to NPDA
Input: NFA M = (QM ,ΣM ,δM , IM ,FM)
Output: NPDA N = (Q,Σ,Γε ,δ , I,λ ,F,φ), such that

L(N)≡ L(M)
1 N← equivalentNPDA(M) // see 2.3
2 Prod← subproduct(N)
3 while Prod ̸= /0 do

/* Find a procedure with the
maximal gain. */

4 P← argmaxP⊆Prod(Gp(P))
5 N← createProcedure(N,Prod,P)
6 N.removeStates(states(P))
7 Prod← subproduct(N)

8 return N



4.3 Procedure Creation
Let the algorithm 1 selects the procedure candidate P=
(VP,EP) for mapping in automaton M. The following
algorithm creates a new state for each pair (r,r′) ∈VP

and assigns a stack symbol for the branches that pass
through states r and state r′ if the symbol hasn’t been
assigned yet in previous runs of the mapping algorithm.
The function procS : QM→Q maps the original states
r and r′ to their respective newly created procedure
states. The function stack : Q→ 2Γε maps each state
from states(P) to all possible stack symbols that can
be used within a procedure state in the future. After
this initiation, the procedure is constructed from all
related transitions, initial states, and final states. The
algorithm returns the newly created NPDA automaton
N, where L(M)≡ L(N).

Algorithm 2: createProcedure
Input: NPDA M = (QM ,Σ,ΓM

ε ,δ M , IM ,λ M ,FM ,φ M),
subproduct Prod = (V,E) of M, and a procedure
P = (VP,EP)⊆ Prod

Output: NPDA N = (Q,Σ,Γε ,δ , I,λ ,F,φ), such that
L(N)≡ L(M)

1 N←M
// Determine stack symbols

2 (u,v)← root(P)
3 stackU ←{u}
4 stackV ←{v}
5 if γ(u) ̸= {ε} then
6 stackU ← γ(u)
7 else
8 Γε ← Γε ∪{u}
9 if γ(v) ̸= {ε} then

10 stackV ← γ(v)
11 else
12 Γε ← Γε ∪{v}

13 procS : Q→ Q
14 stack : Q→ 2Γε

// Create procedure states
15 forall (u,v) ∈VP do
16 uv← N.createNewState()
17 Q← Q∪{uv}
18 procS(u)← uv
19 procS(v)← uv
20 stack(u)← stackU
21 stack(v)← stackV
22 stack(uv)← stack(u)∪ stack(v)

// Map procedure
23 N← mapCallT(N,δcall(Prod,P),stack, procS)
24 N← mapRetT(N,δret(Prod,P),stack, procS)
25 N← mapProcT(N,δproc(Prod,P),stack, procS)
26 N← mapAuxT(N,δaux(Prod,P),stack, procS)
27 N← mapInitS(N,P,stackU,stackV )
28 N← mapFinS(N,P,stackU,stackV )
29 return N

Call Transitions
The algorithm mapCallT maps all transitions that en-
ter procedure P. These transitions are passed to the
algorithm as a set T . Only transitions from T with
a push symbol equal to ε can be necessary to modify.
Let (q,a, pop, push,r) be a transition from T where
push = ε , the push symbol can be replaced with a call
symbol from stack(r) if and only if |stack(r)| = 1,
meaning that state r has not been part of any procedure
before. In other cases, the substitution is unnecessary
as the transition (q,a, pop, push,r) is already part of
a larger procedure.

Algorithm 3: mapCallT
Input: NPDA M = (QM ,Σ,Γε ,δ

M , IM ,λ M ,FM ,φ M),
transitions T ⊆ (QM×Σ×ΓM

ε ×Γε ×QM),
stack : QM → 2ΓM

ε and procS : QM → QM

Output: NPDA N = (Q,Σ,Γε ,δ , I,λ ,F,φ), such that
L(N)≡ L(M)

1 N←M
2 forall (q,a,α,β ,r) ∈ T do
3 if α = ε ∧β = ε ∧|stack(q)|= 1 then
4 β ← unpack(stack(r))
5 else if α ̸= ε ∧β = ε then
6 β ← unpack(stack(r)) // |stack(r)|= 1

7 δ (q,a,α)← δ (q,a,α)∪{(procS(r),β )}
8 return N

Return Transitions

Algorithm 4: mapRetT
Input: NPDA M = (QM ,Σ,ΓM

ε ,δ M , IM ,λ M ,FM ,φ M),
transitions T ⊆ (QM×Σ×ΓM

ε ×ΓM
ε ×QM),

stack : QM → 2ΓM
ε and procS : QM → QM

Output: NPDA N = (Q,Σ,Γε ,δ , I,λ ,F,φ), such that
L(N)≡ L(M)

1 N←M
2 forall (q,a,α,β ,r) ∈ T do
3 if α = ε ∧β = ε ∧|stack(q)| ̸= 1 then
4 forall α ∈ stack(q) do

5
δ (procS(q),a,ε)←δ (procS(q),a,α)

∪{(r,α)}
6 continue

7 if α = ε ∧β = ε ∧|stack(q)|= 1 then
8 α ← unpack(stack(q))
9 else if α = ε ∧β ̸= ε then

10 α ← unpack(stack(q)) // |stack(q)|= 1

11 δ (procS(q),a,α)← δ (procS(q),a,α)∪{(r,β )}
12 return N

The mapping of return transitions that exit a proce-
dure P is analogous to the mapping of call transitions.
The transitions are passed to the algorithm as a set T .
Only transitions from T with a pop symbol equal to ε



may require modification. The modification is similar
to that described in Algorithm 3. However, if the tran-
sition (q,a,ε, push,r) occurs and |stack(q)|> 1, then
the transition (q,a,α, push,r) must be mapped to the
procedure for each α ∈ stack(q).

Procedure Transitions
The procedure transitions are passed to the algorithm
as T ⊆ ((QM ×QM)× Σ× ΓM

ε × ΓM
ε × (QM ×QM)).

This set is transformed into T ′⊆ (QM×Σ×ΓM
ε ×ΓM

ε ×
QM) through the following process: the transition
((r,r′),a,ε,ε,(s,s′)) is transformed to (r,a,ε,ε,s) if
a transition (s,ε) ∈ δ M(r,a,ε) and an equivalent tran-
sition (s′,ε)∈ δ M(r′,a,ε) exist. If the transition is spe-
cific to states r and s, it is transformed to (r,a,α,α,s),
for every α ∈ stack(r). Similarly, if the transition is
specific to states r′ and s′.

Algorithm 5: mapProcT
Input: NPDA M = (QM ,Σ,ΓM

ε ,δ M , IM ,λ M ,FM ,φ M),
transitions
T ⊆ ((QM×QM)×Σ×ΓM

ε ×ΓM
ε ×(QM×QM)),

stack : QM → 2ΓM
ε and procS : QM → QM

Output: NPDA N = (Q,Σ,Γε ,δ , I,λ ,F,φ), such that
L(N)≡ L(M)

/* Transform T to (QM×Σ×ΓM
ε ×ΓM

ε ×QM)
format */

1 T ′← /0
2 forall ((r,r′),a,α,β ,(s,s′)) ∈ T do
3 if α = ε ∧β = ε then
4 if a ∈ σε (r,s)∩σε (r′,s′) then
5 T ′← T ′∪{(r,a,α,β ,s)}
6 else if a ∈ σε (r,s)\σε (r′,s′) then
7 forall η ∈ stack(r) do
8 T ′← T ′∪{(r,a,η ,η ,s)}

9 else
10 forall η ∈ stack(r′) do
11 T ′← T ′∪{(r,a,η ,η ,s)}

12 else
13 T ′← T ′∪{(r,a,α,β ,s)}

14 N←M
15 forall (q,a,α,β ,r) ∈ T ′ do

16
δ (procS(q),a,α)←δ (procS(q),a,α)

∪{(procS(r),β )}
17 return N

Auxiliary Transitions
All auxiliary transitions between two states of the pro-
cedure P that are not classified as procedure transitions
are passed to the algorithm as a set T . Each transition
in T is modified by substituting ε symbols with the
corresponding stack symbols. Consider a transition
(q,a,α,β ,r). If α = ε , it is substituted with a symbol
from stack(q). Similarly, if β = ε , it is substituted
with a symbol from stack(r).

Algorithm 6: mapAuxT
Input: NPDA M = (QM ,Σ,ΓM

ε ,δ M , IM ,λ M ,FM ,φ M),
transitions T ⊆ (QM×Σ×ΓM

ε ×ΓM
ε ×QM),

stack : QM → 2ΓM
ε and procS : QM → QM

Output: NPDA N = (Q,Σ,Γε ,δ , I,λ ,F,φ), such that
L(N)≡ L(M)

1 N←M
2 forall (q,a,α,β ,r) ∈ T do
3 if α = ε ∧β = ε then
4 α ← unpack(stack(q)) // |stack(q)|= 1
5 β ← unpack(stack(r)) // |stack(r)|= 1

6 else if α = ε ∧β ̸= ε then
7 α ← unpack(stack(q)) // |stack(q)|= 1
8 else if α ̸= ε ∧β = ε then
9 β ← unpack(stack(r)) // |stack(r)|= 1

10
δ (procS(q),a,α)←δ (procS(q),a,α)

∪{(procS(r),β )}
11 return N

Initial States
The mapping of initial states into a procedure P is
crucial as it determines how the resulting NPDA non-
deterministically puts the initial symbols from Γε onto
the stack according to the function λ : I → 2Γε . If
the original initial state p is mapped into the proce-
dure state s, then the s will become an initial state and
will nondeterministically put the symbol from stack(p)
onto the stack.

Algorithm 7: mapInitS
Input: NPDA M = (QM ,Σ,ΓM

ε ,δ M , IM ,λ M ,FM ,φ M),
procedure P = (VP,EP), and two stack symbols
stackU,stackV ∈ ΓM

ε

Output: NPDA N = (Q,Σ,Γε ,δ , I,λ ,F,φ), such that
L(N)≡ L(M)

1 N←M
2 forall (u,v) ∈VP do
3 initStackU ← /0
4 initStackV ← /0
5 if u ∈ I then
6 initStackU ← φ(u) if φ(u) ̸= {ε} else stackU

7 if v ∈ I then
8 initStackV ← φ(v) if φ(v) ̸= {ε} else stackV

9 if initStackU ∪ initStackV ̸= /0 then
10 I← I∪{uv} /* procedure state */
11 λ (uv)← initStackU ∪ initStackV

12 return N

Final States
The mapping of final states into a procedure P is im-
portant as it determines when the NPDA accepts the
input (i.e., which symbol must be at the top of the
stack) according to the function φ : F → 2Γε . If the
original final state p is mapped into the procedure state



s, then the s becomes a final state that accepts input if
the symbol from stack(p) is at the top of the stack.

Algorithm 8: mapFinS
Input: NPDA M = (QM ,Σ,ΓM

ε ,δ M , IM ,λ M ,FM ,φ M),
procedure P = (VP,EP), and two stack symbols
stackU,stackV ∈ ΓM

ε

Output: NPDA N = (Q,Σ,Γε ,δ , I,λ ,F,φ), such that
L(N)≡ L(M)

1 N←M
2 forall (u,v) ∈VP do
3 f inStackU ← /0
4 f inStackV ← /0
5 if u ∈ I then
6 f inStackU ← φ(u) if φ(u) ̸= {ε} else stackU

7 if v ∈ I then
8 f inStackV ← φ(v) if φ(v) ̸= {ε} else stackV

9 if f inStackU ∪ f inStackV ̸= /0 then
10 F ← F ∪{uv} /* procedure state */
11 φ(uv)← f inStackU ∪ f inStackV

12 return N

5. Experimental Results
The reduction algorithm that transforms NFA into the
equivalent NPDA was evaluated on automata from the
abstract regular model checking study [5], small reg-
ular expressions from the Snort database of network
intrusion detection system2, and large regular expres-
sions describing protocols and attacks obtained from
the L7 classifier for the Linux Netfilter framework3

and Snort.
Prior to using the reduction approach, the input au-

tomata were simplified using the RABIT tool4, which
uses state merging and transition pruning based on
language inclusions. For large regular expressions de-
scribing protocols and attacks containing up to millions
of transitions, the approximation reduction method [7]
was applied before using RABIT.

Our approach significantly reduced the results of
the RABIT tool, with a reduction of 46% in the number
of states and 13.6% in the number of transitions for
automata from regular model checking, 24.5% in states
and 16.3% in transitions for small regular expressions,
and 43.9% in states and 36.4% in transitions for large
regular expressions.

5.1 Regular Model Checking
The effectiveness of the algorithm was evaluated on
208 automata obtained from regular model checking,

2Available at: http://snort.org
3Available at: http://netfilter.org
4Available at: http://languageinclusion.org

with up to 6800 transitions and 1600 states. The reduce
tool RABIT was first used on the automata to merge
language equivalent states and eliminate redundant
transitions, after which our reduction algorithm was
applied. The improvement in reduction was analyzed
by comparing the results with the outputs of RABIT.
The following graphs demonstrate the difference in
the reduction of the number of states and transitions
(which is the most significant measurement as noted
in Subsection 4.1) in the automata.
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Figure 5. The graph presents a comparison of the num-
ber of states in the automata when the reduction tool
RABIT is used alone or in the combination with the
procedure mapping algorithm. The use of the proce-
dure mapping algorithm resulted in a 58% decrease in
the number of states compared to the results obtained
from RABIT alone.
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Figure 6. The graph demonstrates a comparison of the
number of transitions in the automata when the reduc-
tion tool RABIT is used individually or in conjunction
with the procedure mapping algorithm. The use of
the procedure mapping algorithm resulted in a 14.6%
reduction in the number of transitions compared to the
results obtained from the standalone use of RABIT.
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5.2 Regular Expressions
The procedure mapping reduction is found to be more
effective compared to state merging and transition
pruning when applied to automata representing regular
expressions. These automata often have a tree-like or
even linear structure, resulting in a limited number of
language equivalent states.

The reduction was tested on 656 nearly linear
automata obtained from Snort, with a maximum of
410 states and 410 transitions. The following graphs
demonstrate the comparison between the reduction
achieved by the RABIT tool and the reduction achieved
by the procedure mapping algorithm. It is evident that
the RABIT tool was unable to produce a meaningful
reduction.
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Figure 7. The reduction tool RABIT failed to achieve
meaningful reduction on the input automata. In con-
trast, the procedure mapping reduction resulted in an
average reduction of 25.9% in the number of states of
the input automata.
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Figure 8. The reduction tool RABIT was unsuccessful
in reduction on the input automata. On the other hand,
the procedure mapping reduction was able to achieve
an average reduction of 16.3% in the number of transi-
tions of the input automata.

5.3 Protocols and Attacks
Last but certainly not least, the procedure mapping re-
duction was tested on large automata representing regu-
lar expressions for protocols and attacks obtained from
the L7 classifier for the Linux Netfilter framework
and the Snort tool. The tested automata, backdoor,
pop3, and spyware, were obtained from the Snort
tool and provide a description of attacks on selected
protocols. The l7-all automaton was obtained from
the L7 classifier and describes attacks on a selected set
of protocols.

Automaton States Transitions
backdoor 3,898 100,301
pop3 923 209,467
spyware 12,809 279,334
l7-all 7,280 2,647,620

Table 1. The sizes of the original automata represent-
ing regular expressions for protocols and attacks.

As the automata contain hundreds of thousands,
or even millions, of transitions, reducing their size is
crucial before applying the RABIT tool or procedure
mapping reduction. To achieve this, the approximation
reduction (as described in [7]) is used. This reduction
method involves a reduction in the size of the automa-
ton at the cost of a loss in language precision. The
greater the reduction ratio achieved through approxi-
mation reduction, the lower the precision.

Automaton Red. Ratio Precision Algorithm States

backdoor 30% 100%
Approx. Red. 1,169
RABIT 690
RABIT + Proc. 375

l7-all 30% 35%
Approx. Red. 2,184
RABIT 210
RABIT + Proc. 133

pop3 30% N/A
Approx. Red. 277
RABIT 77
RABIT + Proc. 36

spyware

30% 100%
Approx. Red. 3,843
RABIT 650
RABIT + Proc. 345

15% 35%
Approx. Red. 1,921
RABIT 244
RABIT + Proc. 154

Table 2. The table presents the results of the reduction
for automata that have been pre-processed using the
approximation reduction method. It displays the differ-
ence in the number of states in the resulting automata
when the RABIT reduction tool is used alone or in the
combination with the procedure mapping algorithm.

After the approximation reduction, the RABIT tool
was used to merge language equivalent states and re-
move redundant transitions, followed by the applica-
tion of the procedure mapping reduction. The im-
provement in reduction was evaluated by comparing



the results with the output of RABIT. The results ob-
tained for different approximation reduction ratios are
shown in the tables 2 and 3.

Automaton Red. Ratio Precision Algorithm Transitions

backdoor 30% 100%
Approx. Red. 31,080
RABIT 10,900
RABIT + Proc. 7,600

l7-all 30% 35%
Approx. Red. 1,230,859
RABIT 9,828
RABIT + Proc. 6,997

pop3 30% N/A
Approx. Red. 46,523
RABIT 8,578
RABIT + Proc. 4,226

spyware

30% 100%
Approx. Red. 177,302
RABIT 14,576
RABIT + Proc. 9,276

15% 35%
Approx. Red. 107,970
RABIT 8,408
RABIT + Proc. 6,395

Table 3. The table presents the reduction outcomes
for automata that have been pre-processed with the
approximation reduction method. It displays the dif-
ferences in the number of transitions in the resulting
automata when using the RABIT reduction tool solely
or in conjunction with the procedure mapping algo-
rithm.

The results from the tables show that the proce-
dure mapping reduction further reduces the number of
states and transitions in the resulting RABIT automa-
ton. On average, the procedure mapping algorithm
outputs 43.9% fewer states and 36.4% fewer transi-
tions. The greatest reduction in states was 53.2% for
the pop3 automaton, and the greatest reduction in
transitions was 50.7% for the same automaton.

This experiment concluded that the procedure map-
ping reduction is the most efficient for the automata
representing regular expressions.

6. Conclusion
In this paper, a new reduction approach for NFAs is
presented. Traditional minimization techniques, such
as state merging and transition pruning, often result in
NFAs that still contain redundant transition sequences.
Our reduction algorithm replaces those redundant tran-
sition sequences in the NFA with a single procedure by
transforming the input NFA into an equivalent NPDA.
The information about the original branch of the au-
tomaton, entry points, and return locations is stored
on the stack. This transformation results in a more
efficient representation of the input NFA. Additionally,
the language generated by the resulting NPDA is regu-
lar due to the limited size of the stack, which is at most
one symbol.

Our reduction algorithm was evaluated on a diverse
set of automata, including 208 automata obtained from

regular model checking, 656 nearly linear automata
representing regular expressions obtained from Snort,
and automata representing large regular expressions
describing protocols and attacks obtained from the L7
classifier for the Linux Netfilter framework and the
Snort tool.

The results of our approach showed a significant
reduction compared to the RABIT tool, with reduc-
tions of 46% in the number of states and 13.6% in
the number of transitions for automata from regular
model checking, 24.5% in states and 16.3% in tran-
sitions for small regular expressions, and 43.9% in
states and 36.4% in transitions for large regular expres-
sions. The greatest reduction in states was 53.2% for
the pop3 automaton representing regular expressions
for protocols and attacks, and the greatest reduction in
transitions was 50.7% for the same automaton.

The experiments show that the minimization tech-
nique using procedure mapping is the most suitable
for automata representing regular expressions due to
their tree-like or almost linear structure.

7. Future Work
In future research, we aim to optimize the reduction
algorithm by defining a heuristic function to select
the best procedure candidate based on the number of
possible return transitions. The next optimization step
is to substitute stack symbols to increase the number
of transitions with identical pop and push symbols.
A final improvement to the algorithm is adjusting the
start and end points of the procedure to reduce the
number of return and call transitions.
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H., PĂUN, G. and ROZENBERG, G., ed. Theory
Is Forever: Essays Dedicated to Arto Salomaa
on the Occasion of His 70th Birthday. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2004,
p. 112–124. Available at: https://doi.org/

10.1007/978-3-540-27812-2_11. ISBN
978-3-540-27812-2.

[13] RABIN, M. and SCOTT, D. Finite Automata
and Their Decision Problems. IBM Journal of
Research and Development. april 1959, vol. 3,
p. 114–125.

[14] SOURDIS, I. and PNEVMATIKATOS, D. Fast,
Large-Scale String Match for a 10Gbps FPGA-
Based Network Intrusion Detection System. In:
Y. K. CHEUNG, P. and CONSTANTINIDES, G. A.,
ed. Field Programmable Logic and Application.
Berlin, Heidelberg: Springer Berlin Heidelberg,
2003, p. 880–889. ISBN 978-3-540-45234-8.

https://doi.org/10.1007/s10009-011-0205-y
https://doi.org/10.1007/s10009-011-0205-y
http://arxiv.org/abs/1711.09946
http://arxiv.org/abs/1711.09946
https://doi.org/10.1007/s00236-018-0331-z
https://doi.org/10.1007/s00236-018-0331-z
https://doi.org/10.1007/978-3-540-27812-2_11
https://doi.org/10.1007/978-3-540-27812-2_11

	Introduction
	Preliminaries
	Minimization Techniques
	Conversion of NFA to NPDA
	Experimental Results
	Conclusion
	Future Work
	Acknowledgment
	References

