
Testability Improvements Based on the Combination of
Analytical and Evolutionary Approaches at RT Level

Josef Strnadel, Zdeněk Kotásek
Faculty of Information Technology, Brno University of Technology

Božetěchova 2, 612 66 Brno, Czech Republic
{strnadel, kotasek}@fit.vutbr.cz

Abstract
In the paper a new heuristic approach to the RTL
testability analysis is presented. It is shown how the
values of controllability/observability factors reflecting
the structure of the circuit and other factors can be
utilised to find solutions which are sub-optimal but still
acceptable for the designer. The goal of the methodology
is to enable the identification of such testability solutions
which satisfy concrete requirements in terms of the
number of registers included into the scan chain, the area
overhead and the test application time as a result of RTL
testability analysis. The approach is based on the
combination of analytical and evolutionary approaches
at the RT level.

1. Introduction

 In the past, numerous methodologies based on
enumerating controllability/observability factors were
published. These factors are utilised in different heuristic
approaches, the identification of registers through which
the test will be applied is the result of implementing these
methodologies. During the selection, the requirements of
a designer or a test expert must be taken into account and
satisfied, if possible. This process can be realised as a
strictly heuristic approach in which different
modifications are accepted and evaluated successively,
the solution which satisfies the requirements in the best
way is then selected to be implemented. We see that these
procedures might be quite time consuming in certain
situations and for certain RTL circuit structures, e. g.
those with numerous feedback loops. Moreover, we feel
that controllability/observability factors are not the only
factors which should be included into the “making
decision process” the result of which is the selection of
registers for scan.
 Many approaches to the RTL testability analysis were

demonstrated so far. Most of them are based on the UUA
(Unit Under Analysis) structural analysis. Recently, the
methodologies whose goal is to analyse VHDL design
description and insert scan at the behavioural level were
presented [1]. The methodology is based on locating
memory elements in the circuit. Then, all located memory
elements are inserted in the scan chain (see Figure 1) at
the behavioural level. The approach is supposed to be
generalised to cover multiple scan chains.
 Scan approaches fall into two main groups: full scan
and partial scan. In partial scan, flip-flops (FFs) are
selected in such a way that the remainder of the circuit has
certain desirable testability properties. Existing
approaches for selecting FFs for partial scan can be
classified as testability analysis based [2], test generation
based [3] and structural analysis based [4]. All of these
techniques suggest testability modifications after the
completion of the design and are incapable of suggesting
behavioural modifications by identifying testability
bottlenecks in the design behaviour during the design
process. Some methods exist which are based on inserting
test registers in order to obtain self-testable circuits [5],
[6]. The methodologies are implemented in the way which
guarantees minimum hardware overhead [7]. In [8] an
interesting method how to further utilise scan chains is
demonstrated - they are used for pattern decompression.
 Several algorithms were developed to select partial
scan FFs to break feedback cycles [9][10]. In [11] a
methodology is described, which is able to take into
account a number of technological constraints and
determines the optimal order of FFs into the scan chains.
 In our paper we describe the methodology which
utilises analytical and evolutionary approaches to identify
an acceptable solutions to the problem of selecting FFs
for the scan. The input to the methodology (see Figure 7)
is the circuit structure, the database which contains the
information of the impact of utilising certain decisions (in
terms of area overhead and test application time etc.).

Figure 1. Scan chain example and its simplified
schema

2. Definition of the Problem and Basic
Concepts

 In design for testability methodologies different aspects
(criteria) are taken into account which allow different
solutions of the problem to be gained. As a result of such
approaches, a subset of registers is identified through
which the test will be applied. It is supposed that the
registers will be converted either to scan registers or BIST
elements.
 One possibility how to identify the set of registers for
the test application process is by means of two steps: 1)
enumerating all combinations of registers which could
possibly form the scan chain(s) and 2) evaluating every
alternative. These approaches are usually denoted as
"rough methods" (although they lead to acceptable
solutions, they can be too much time consuming for the
problem complexity). These methods are based on
exhaustive search: they simply visit all points in the
search space in some order and retain the best solution
visited. Other methods only visit part of the search space,
albeit the number of points visited may grow
exponentially (or worse) with the problem size. To avoid
this problem, it is possible to use general-purpose
heuristics that do not guarantee an optimal solution.
 In this paper it is presented how the combination of
analytical and evolutionary approaches can be used for
the RTL testability analysis. In our methodology, the
evolutionary approach is represented by genetic algorithm
which performs a multidirectional search by maintaining a
population of potential solutions (set of registers for
scan). The population of registers for scan undergoes a
simulated evolution from one generation to another: at
each generation the relatively good solutions reproduce,
while the relatively bad solutions die. The goodness or
badness of the solutions is defined by a cost function.
Each solution is encoded as a chromosome which is
represented as a string of bits from a binary alphabet. To
generate new solutions, crossover operation is used. For
the crossover, two solutions S1 and S2 of the current
generation of registers are selected and the chromosome
to the new solution is produced. The new chromosome is
the result of mixing a part of the chromosome of S1 with a
part of that corresponding to S2. This means that the new

solution inherits certain features of its two parent
solutions. The mutation operator, on the other side,
produces a small, random perturbation to a given solution
(chromosome).
 To determine the solutions which are considered as
parents for crossover operations, selection scheme is used.
An essential criterion at selection for crossover is the
fitness of the solution, defined by the cost function. Thus,
selection of fit solutions for crossover ensures the
propagation of high quality features into the next
generation. The selection is based on a probabilistic
scheme which favours candidates having a high fitness.
Producing several successive generations, the average
fitness of the solutions is increasing. The algorithm is
usually stopped after a certain number of iterations or
when no further improvements are produced. The best
solution that has been produced is one which is hopefully
close to the optimum. To apply genetic algorithm to a
problem, it is necessary to identify: (1) meaningful
representation for the candidate solutions; (2) a fitness
function to assess different solutions; and (3) a set of
useful genetic operators, that can efficiently recombine
and mutate candidate solutions.
 An optimisation problem is mapped into the problem of
finding the most-fit individual within a population during
an evolution process. Fitness is measured by a fitness
function which is related to the objective function of the
optimisation problem.
 We did the research in two stages – during the first one
we analysed the number of all unique solutions (i. e. the
size of a state-space) and during the second one we dealt
with a design and implementation of an effective
methodology based on evolutionary approach. The goal of
the methodology is the identification of sub-optimal or
near optimal solutions (i. e. those with an acceptable
trade-off between user requirements and circuit structure
properties), the search for these solutions is done in the
reduced state space without the need to explore the
complete state-space containing all possible solutions.
 The paper is organised as follows. First, the
methodology is described, then the methodology based on
genetic algorithm together with experimental results is
presented. Finally, the perspectives of future activities in
this research area are discussed.

3. The Description of the Methodology

 For the purposes of the methodology we denoted the set
of all registers in UUA as REGSUUA={R1, R2, … Rn}. The
basic idea of the first stage of our research is as follows: It
is true that numerous alternatives how to implement a
scan structure in a UUA exist if e. g. each of these
structures can consist of several parallel scan chains in

which the order of registers 1) is important for the result
(alternative (1)), 2) is not important for the result
(alternative (2)). It is naturally supposed that the goals of
the analysis in terms of area and pin overhead and
testability properties are defined before the analysis starts.
In this paper, we shall deal primarily with the alternative
according to 1) which is more general. The alternative 2)
can be solved after investigating the alternatives
according to 1).
 As the first step of our analysis, we calculate how big
the partial state space is, i. e. how many scan structures
exist, each of them consisting of k scan registers exactly,
{r1, r2,…, rk}⊆ REGSUUA, where 1 ≤ k ≤ n. First, we
present the partial state-space analysis (for given k), then
the complete state-space analysis (for general n) for both
alternatives (1) and (2) will be presented.

 For the methodology we introduced the following
notation in which:
 the ordered (1) or non-ordered (2) sequence of scan

registers will represent scan registers belonging to the
same scan chain within this structure regarding the
order (1) or regardless of the order (2),

 the period character (‘.’) will separate parallel chains
configured in the UUA,

 every r∈{r1, r2,…, rk}, will be involved exactly in one
scan chain within the resulting scan structure.

 R1R2.R3 R2R1.R3 R1.R2R3R4.R5.R6
 (k=3, n=6) (k=3, n=6) (k=6, n=6)

Figure 2. Example of the relation between the
notation and the structure

 An example for n=6: let k=3, the scan structure
consists of R1R2.R3 registers (see Figure 2 a)) configured
into two parallel ordered scan chains with R1, R2 (one
scan chain), and R3 (the other scan chain) registers; R4,
R5 and R6 registers are not modified into scan registers
and thus not included into scan chains. Similarly,
R2R1.R3 notation (see Figure 2 b)) represents the
structure containing two parallel ordered scan chains R2,
R1 (one scan chain) and R3 (the other scan chain)
registers; R4, R5 and R6 registers are not modified into
scan registers and not included into scan chains. Let for
k=6 the scan structure be R1.R2R3R4.R5.R6 (see Figure 2

c)), then the structure of four parallel scan chains is as
follows: first scan chain - R1, second scan chain - R2, R3,
R4, third scan chain – R5, fourth scan chain – R6. It is
evident that if the order of registers is not taken into
account (in case of alternative (2)), then R1R2.R3 and
R2R1.R3 solutions are identical.
 It is seen that by means of the above described notation
any scan structure containing any combination of registers
in scan chains (including their order in (1) case) can be
identified uniquely.
 From the mathematical point of view, the notation
represents {r1, r2,…, rk} set partition into j partition
classes (called also blocks), where 1 ≤ j ≤ k (j is the
number of concatenation characters in the notation
increased by 1), and (in (1) case) the ordering of elements
within each block is required, rather than the ordering of
blocks. Let it be noted that a set partition of the set {r1,
r2,…, rk} is a collection B0,B1,...,Bj of disjoint subsets of
{r1, r2,…, rk,}, their union is defined as {r1, r2,…, rk} and
each Bi is called a block.
 Our partial task is defined as "how many different
solutions of scan configuration based on including just k
registers into the scan structure exist, {r1, r2,…, rk}⊆
REGSUUA, where 1 ≤ k ≤ n ?"; it means that we must
reveal the number of partitions of the {r1, r2,…, rk} set,
when the order of the elements in the blocks is taken into
account. Let the number of partitions for given k be
denoted as npartsk which represents the partial state-
space size. Note: if the order of registers in the scan chain
is not taken into account (alternative (2)) then the order of
registers according to the notation introduced will not be
seen as ordered and then npartsk = bk, where bk is a “Bell
number” [12] (see Figure 3) determining the number of
partitions of a set containing k elements.

1where
11

0

=

×

 −
= ∑

−

=
0

k

i
ik b ,b

i
k

b

Figure 3. Bell number recurrence relation

 If we are able to determine the value of npartsk for
given k, i. e. we are able to say how many unique scan
structures exist in which every r∈{r1, r2,…, rk} will be
included into scan just once, then we are also able to
determine the complete state-space size, i. e. how many
different scan structures can be configured for general n if
we create step by step all scan structures containing just 1,
2, up to exactly n registers from REGSUUA set (all 1, 2,
….n element subsets of REGSUUA set are formed and such
scan structures are selected for each subset which contains
every element from the subset just once).
 For general n the number of scan structures will be
equal to nstructsn, for which we developed a formula:

∑
=

×

=

n

k
kn nparts

k
n

nstructs
1

Figure 4. Formula for nstructsn evaluation

where the value of knparts
k
n

×

represents the product of

two values: the number of k-element subsets (in this case
{r1, r2,…, rk}) of an n-element set (here REGSUUA) and
the number of different structures which can be formed
from k registers r1, r2,…, rk, every r ∈{r1, r2,…, rk} will be
involved in each scan structure just once.
 While the problem of nstructsn evaluation for
alternative denoted as (2) is solved because npartsk value
for given k is known (npartsk = bk, see Figure 3), the
problem of nstructsn evaluation for alternative denoted as
(1) is more complicated because the order of the elements
in the blocks must be taken into account, which means
that the formula for npartsk (see Figure 5) evaluation is
more complicated for the (1) alternative than for that one
denoted as (2). For every block we must now take into
account all possible permutations, which were not
considered in the alternative (2) case. For this purpose it
is necessary to determine npartsk evaluation formula for
alternative (1) as well. The procedure of deriving the
formula is quite complicated, therefore just the resulting
formula is given here as:

∑
=

−
−

×=
k

i
k i

k
!i
!knparts

1 1
1

Figure 5. Formula for npartsk evaluation
(for alternative (1))

 Let it be noted that the value

−
−

×
1
1

i
k

!i
!k represents

the number of ways in which a k-element set can be
partitioned into i blocks, the order of elements in the
blocks is taken into account. This value is often denoted
as „Lah number“ – for more detail information see [13]
or [14].
 For better understanding the size of the complete state-
space consisting of nstructsn unique structures (solutions),
the formula (Figure 4) for evaluating nstructsn for given n
is completed for both alternative (1) and alternative (2)
with tables (see Table 1 and Table 2) and a diagram (see
Figure 6). The headings of the tables are described later in
this paper.

Let it be noted that each of nstructsn solutions
represents a structure which has various quality level in

general. We have already solved the partial and complete
state-space size problem presenting formula for nstructsn
(Figure 4). The most important problem to be solved is
still the problem of selecting the most appropriate solution
of the scan organisation (i. e. selecting the best alternative
from the state space) whereby the test application quality
and price are taken into account.
The symbols in the rows of the Table 1 have the
following meanings: 1) n - the number of registers in
UUA, 2) nstructsn - the total number of unique scan
structures which can be formed from n registers
(alternative (1) case), 3) tall - time needed to identify the
best solution searching complete state-space, 4) tgen -
time needed to identify the best solution by means of our
methodology based on genetic algorithm.

Table 1. State space size for alternative (1)
n 1 2 3 4 5 6

nstructsn 1 5 25 147 1031 8463
tall 1s 5s 25s 2min 17min 2,3h
tgen 5s 10s 25s 90s 3min 7min

 Similarly, in the Table 2 the symbols have following
meanings: 1) n - the number of registers in UUA, 2)
nstructsn - the total number of unique scan structures
which can be formed from n registers (alternative (2)), 3)
tall - time needed to identify the best solution by
searching through the complete state-space, 4) tgen - time
needed to identify the best solution by means of our
methodology utilising a genetic algorithm.

Table 2. State space size for alternative (2)
n 1 2 3 4 5 6

nstructsn 1 4 14 51 202 876
tall 1s 4s 14s 51s 3min 15min
tgen 5s 9s 17s 35s 110s 160s

 The times written in rows 3) and 4) of the Table 1 and
Table 2 are valid for PC with PentiumII/333MHz
processor and 64MB RAM.

Figure 6. Comparative graph of nstructsn values
for both alternatives

Graph of nstructs n values

25 1471 842831 1281624635 1031 8463 79591
9914335

1804852127

4 14 51 202 876 4139
4213596211461 115974 678569

1 2 3 4 5 6 7 8 9 10 11

n = number of registers in UUA

ns
tr

uc
ts

n

alternative (1) alternative (2)

4. Testability Improvement Methodology
Based on Evolutionary Approach

 Main goals of the first stage of our research activities
were presented in the previous section. During the second
stage of our research we dealt with a design and
implementation of an effective method based on
evolutionary approach. The method is used to find sub-
optimal or near optimal solutions (i. e. those with the best
trade-off between user requirements) in the state space
without the need to explore the complete state space. The
main principles of this method are briefly presented in this
section.
 It can be seen (in row tall of both tables Table 1 and
Table 2) that a “rough method” used to find a solution (i.
e. that with a best trade-off) from all nstructsn possible
solutions (each representing a set of mutually parallel scan
chains to be configured in UUA) is absolutely
unacceptable for n>>1, because of the time complexity.
In general, the time complexity can be decreased either by
means of heuristics or by means of optimising techniques.
For this purpose we decided to utilise an optimising
genetic algorithm which allows to describe the problem
by means of a binary string. Here, the optimisation can be
seen in decreasing of a time needed for optimal solution
finding significantly. The advantage of the approach can
be primarily seen in the fast convergence of genetic
algorithms to the searched solution.
 To be able to utilise a genetic algorithm for our
purpose, it was necessary to represent the problem by
means of a binary string, denoted as chromosome. Let it
be reminded that for UUA with n registers, nstructsn
solution alternatives exist how to create various scan
chain(s) configurations (i. e. possible unique solutions).
Besides, it is required any alternative to be addressable by
means of the chromosome. The chromosome ch∈{0,1}L is
defined as a bit string with the length

 nnstructslogL 2= . Then a chromosome can be seen

as a unique address of a possible solution; there are
nstructsn possible addresses, the address can acquire a
value from <0; nstructsn-1> interval. It means that
concrete chromosome represents concrete solution from
the complete state-space. A chromosome can be also seen
as unique identification of 1) mutually parallel scan chains
that will be inserted into a UUA, 2) a set of UUA registers
that will be modified into scan registers and included into
scan chains and 3) an order of scan registers in scan chain
(in the alternative (1) case).
 There are nstructsn distinct chromosomes and a state-
space consisting of nstructsn unique solutions (each
solution represents the set of scan chains which possibly
configured in UUA), so it can be proved that a bijection
from the chromosome set to state-space exists.

Chromosome can be also seen as a prescription how to
modify UUA to fulfil user requirements maximally (here
using a scan technique) – with a certain trade-off penalty.
The prescription determines the registers, which will be
modified into scan registers, which scan chains will be
configured in UUA and which scan registers will be
involved into particular scan chains.
 It is also necessary to evaluate which chromosome
represents such UUA transformation offering the best
diagnostic properties (i. e. the scan configuration with the
best trade-off according to user requirements). For these
purpose, the fitness function was developed which
assigns a value from <0; 1> interval (called fitness value)
to the particular chromosome. The fitness value is
proportional to the quality of the UUA transformation
(testability factors, chip area overhead and number of I/O
pins are evaluated in the fitness function). For
better/worse diagnostic properties represented by the
chromosome the fitness function is assigned fitness
values approximating to 1/0 values. Thus, quality
(according to user requirements) of two unique
chromosomes (representing unique UUA
transformations, i. e. solution of the problem) can be
compared numerically on the basis of their fitness values.

Figure 7. I/O overview of proposed method

 Thus, the solution (i. e. scan configuration) we are
searching for is represented by a chromosome with a
maximal fitness value, i. e. the chromosome with the
highest possible fitness value in <0; 1> interval. A genetic
algorithm can be used to find such chromosome for given
UUA.
 After the decision on chromosome encoding is done,
the crossover comes into play. Crossover selects bits from
parent chromosomes and creates a new offspring(s). The
simplest way how to do this is to choose randomly some
crossover point (chromosome bit-position) and everything
before this point copy from the first parent to the
offspring and then everything after this point copy from
the second parent to the offspring.

After the crossover is performed, mutation takes
place. This is to prevent solutions to fall into a local
optimum of solved problem. Mutation is rarely applied on
a new offspring and modifies it randomly. For binary
encoded chromosome, mutation can switch a few
randomly selected chromosome bits (i. e. from 0 to 1 or
from 1 to 0).
 The fact that we have a prescription how to describe the
UUA modification unambiguously by a chromosome,
having crossover and mutation functions and having a
prescription for assigning a fitness value reflecting the
quality of the modification to chromosome, allows us to
apply the genetic algorithm to our problem. The genetic
algorithm (see bellow for its description) can be
understood as a "competition of chromosomes
representing various UUA modifications" in which the
chromosome with the highest fitness value wins.

4.1. Description of the Genetic Algorithm

 Let N be the chromosome population size and let P, Q
be chromosome sets. The set P will be denoted as the
parent population and Q set offspring population. Then
the genetic algorithm consist of the following steps:
1) P := Ø, Q := Ø.
2) Generate N chromosomes with random content and

store these chromosomes in P set.
3) Assign fitness value to each chromosome ch∈P. If

any chromosome with a new highest fitness value did
not appear in P during the last N iterations or a
chromosome ch∈P was generated which satisfies the
minimal diagnostic requirements given by a designer
or user, then terminate genetic algorithm and return
the chromosome ch∈P with a highest fitness value in
P as the result of the algorithm (i. e. the solution of
the problem), otherwise continue with step 4).

4) From P set select two parent chromosomes p1, p2 ∈
P (the probability of selecting p1, p2 chromosomes is
proportional to p1, p2 fitness values).

5) With the probability of 0,8-0,95 perform crossover.
6) With the probability of 0,005-0,01 perform mutation.

Note: the steps 5) and 6) belong to so called
reproduction process the output of which are q1, q2
offsprings.

7) Store q1, q2 into Q set.
8) If |P| = |Q| then perform: P := Q, Q := Ø.
9) Go to step 3).

 As a distinctive advantage of utilising genetic algorithm
to investigate the search space of chromosomes
(compared with other methods used for these purposes)
we see the fact that it enables the problem to be defined as
a bit string - chromosome and that the algorithm based on

genetic algorithm converges rapidly to an optimal (or
user-acceptable) solution. The solution is a chromosome
identifying UUA modification based on an user-
acceptable trade-off and implementing selected scan
configuration. Let it be noted that in some cases it is not
necessary to identify the best chromosome but as an
acceptable solution we can see the UUA modification
which satisfies the user or designer requirements.

5. Experimental Results

 We have analysed the state-space size and suggested
and implemented a method for optimal solution finding.
The state-space analysis goals and principles of our
method are presented in previous chapters of this paper.
 Because the problem of searching the optimal solution
by exploring complete state-space was identified as a
combinatorial problem with high time complexity (see tall
row in Table 1), there was a need to optimise this problem
to reduce the time complexity (see tgen row in Table 1).
For optimisation, a method based on genetic algorithm
was proposed.
 Our method was verified on DIFFEQ benchmark
circuit and alternative (1) was required (i. e. an order of
scan registers in a scan chain). User requirements were:
minimal pin and area overheads, maximal testability
properties and minimal test application time – it is evident
that a trade-off was needed. Experimental results for
DIFFEQ benchmark circuit are shown in the following
two tables (Table 3, Table 4). There are 6 registers in
original DIFFEQ structure, so n = 6. According to Table
1, nstructsn =8463 and the time tall to gain results fulfilling
given criteria by means of exhaustive search is 2,3 hour.
The purpose of our genetic algorithm is to find the same
solution in a shorter time tgen.
 In Table 3, a relation among N (population size),
number of generations (iterations) of genetic algorithm
and tgen (genetic algorithm CPU time valid for PC with
PentiumII/333 processor and 64MB RAM) is shown. It
can be seen, that all tgen values gained by the proposed
genetic algorithm for n=6 are much lower than tall
(=2,3h) in Table 1. The higher n the bigger difference
between tgen and tall can be seen, but still tgen << tall for
n>>1. For DIFFEQ circuit case (n=6), it can be seen that
the number of generations needed to find a solution for
different N does not differ substantially, so it can be
stated that the number of generations will not decrease
considerably with N increasing. Based on experiments
with our genetic algorithm, we recommend to use N from
20 to 40 interval, but still such situations can appear in
which also other values of N are better than the
recommended one. As a solution, two DIFFEQ registers
(R1 and R6) were suggested by genetic algorithm for

modification to scan registers and included into the scan
chain configuration denoted by our notation as R6R1.

Table 3. Time requirements of proposed genetic
algorithm applied on DIFFEQ circuit (n=6)

 In Table 4, columns “Original DIFFEQ structure”,
“Modified DIFFEQ structure1”, “Modified DIFFEQ
structure2” and “DIFFEQ structure with full scan” belong
to original DIFFEQ structure, modified DIFFEQ
structure based on the solution by means of the proposed
genetic algorithm, modified DIFFEQ structure based on
the solution by means of [15] and DIFFEQ structure with
built-in full scan (e.g. all 6 DIFFEQ registers are
modified to scan registers. The resulting scan structure is
by our notation denoted R6R5R3R1R4R2.

Table 4. Experimental results gained with
different methodologies

Original
DIFFEQ
structure

Modified
DIFFEQ
structure1

Modified
DIFFEQ
structure2

DIFFEQ
structure
with full

scan
Total number of PI/PO 11/1 13/2 13/2 13/2
Number PI/PO for test purposes 0/0 2/1 2/1 2/1
Total number of nodes 71 77 83 89
Number/% of controllable nodes 49/69,0% 77/100% 83/100% 89/100%
Number/% of observable nodes 16/22,5% 62/80,5% 66/79,5% 70/78,7%
Average controllability of nodes 0,651 0,978 0,983 0,990
Average observability of nodes 0.197 0.956 0,974 0,983
Average testability of nodes 0.424 0.967 0.979 0.987
Depth (cyclic paths ignored) 12 6 2 2
Structure/max. cycle length Cyclic/8 Cycle-free/0 Cycle-free/0 Cycle-free/0
Number of combinational gates 599 599 599 599
Number of nonscan FF/gates 48/480 32/320 16/160 0/0
Number of scan FF/gates 0/0 16/224 32/448 48/672
Total number of FF/gates 48/1079 48/1143 48/1207 481271
Gate overhead 0% 5,9% 11,9% 17,8%
1 modification of DIFFEQ structure proposed by genetic

algorithm (R1,R6 in scan chain)
2 modification of DIFFEQ structure according to [15] (R4,

R6, R1, R5 in scan chain)

 It can be seen (see the column No. 1 in Table 4), that
unmodified DIFFEQ structure needs only 11 primary
inputs and 1 primary output, total number of all nodes in
this DIFFEQ structure is 71 and there is only 599
combinational gates from total amount of 1079 gates. But
only 69% of all DIFFEQ nodes are controllable and only
22,5% of all DIFFEQ nodes are observable. The modified
DIFFEQ structure is cyclic with maximum cycle length 8
and the depth of this DIFFEQ structure is 12.
 In the column No. 3, results for DIFFEQ structure
modified according to [15] are presented. In [15], it is
recommended to modify registers R4, R6, R1 and R5 to

scan registers. The resulting scan structure is by our
notation denoted R4R6R1R5. It can be seen that two
additional primary inputs and one additional primary
output are needed for this modification recommended in
[15]. The total number of all nodes is 83. The number of
combinational gates is still 599, but the total number of
gates is 1207 including 448 additional gates for scan
registers R4, R6, R1 and R5. It represents (compared with
the column No. 1) gate overhead of 11,9%. But, all nodes
in current DIFFEQ structure are controllable and about
79,5% of nodes are observable. The modified DIFFEQ
structure is cycle-free and the depth is only 2.
 In the column No. 4, results for DIFFEQ with built-in
full-scan are presented. It is evident that two additional
primary inputs and one additional primary output are
needed for full-scan chain. The total number of nodes is
89 which is a higher number than the values in columns
No. 1 and 3. The number of combinational gates is still
599, but the total amount of gates is 1271 including 672
additional gates for all 6 scan registers. This fact means
(compared with the column No. 1) gate overhead of
17,8%. But, all nodes in current DIFFEQ structure are
controllable and about 78,7% of nodes are observable.
Although there are more registers modified to scan
registers than according to column No. 3, the
observability is lower than in structures according to the
column No. 3 because of higher number of unobservable
nodes. The modified DIFFEQ structure is cycle-free and
its depth is only 2. The resulting scan structure is by our
notation denoted R6R5R3R1R4R2.
 The column No. 2 presents results gained by our
method, where only R1 and R6 are modified into scan
registers. The resulting scan structure is by our notation
denoted R6R1. The pin overhead is the same as in the case
of columns No. 3 and 4, but there are only 77 nodes (6
nodes more than in column No. 1). The number of
combinational gates is still 599 and there are 320 non-
scan FF gates and only 224 scan FF gates which in total
means 1143 gates. The gate overhead in this case is only
5,9% (it is almost 12% lower than in the full-scan case
and 6% lower than in [15] case). As in the columns No. 3
and 4, the controllability of all nodes is gained and when
compared with columns No. 3 and 4 it can be revealed
that there are 80,5% of observable nodes in this structure.
The modified DIFFEQ structure is cycle-free but there is
a trade-off penalty represented by depth=6
 It can be seen that except full-scan solution presented
in the column No. 4, other methods of selecting registers
into scan chains exists. Comparing results from the
column No. 2 (proposed by our genetic algorithm) with
the results presented by similar methods presented e.g. in
[15] (see the column No. 3 of Table 4), [16] or in other
one existing approaches it can be said that our method
based on genetic algorithm has at least the same

N=20 N=40 N=60 N=80
Number of generations 20 19 18 19
tgen (CPU time for genetic alg.) 7min 9min 11min 14min

properties of selecting the best solution of this problem.
As an advantages of our method we see: 1) much lower
time complexity for increasing n (compare tall and tgen
values in Table 1) and 2) the ability to identify solutions
fulfilling demanded or max available criteria. It can be
stated that the methodology presented in this paper can
be seen as a completely new approach to the testability
improvement process at RT level.

6. Conclusions and Perspectives of Future
Research

 Not very much attention was devoted so far to the use
of evolution algorithms to solve diagnostic problems. This
paper is an attempt to show that genetic algorithms can be
seen as a tool appropriate for these purposes. The goal of
the paper is to show a completely new approach to the
partial scan problem. It was presented what types of
problems need to be solved when approach is used.
 The optimising solution based on genetic algorithm
was developed and presented in this paper. In
“Experimental results” part of this paper, the CPU time
needed to find solutions by means of our method was
shown to present the difference between the time
complexity of a non-optimised solution and our
optimising solution based on genetic algorithm. Also,
some of the testability properties of different circuit
structures were presented to show a difference between
testability properties of a circuit structure based on our
genetic approach and the circuit structures based on
some other approaches. For the future research, there is a
plan for 1) an extension of our optimising method to
more test techniques than only the scan technique, 2)
experimental results with more benchmark circuits and 3)
an improvement of a fitness function. It is also planned to
experiment with different approaches to crossover and
mutation algorithms.

7. Acknowledgements

This work has been financially supported by the Czech
Ministry of Education – grant FRVŠ No. 1754/2002/G1
“Application of Evolution Approaches for Digital Circuit
Testability Enhancement”, the Grant Agency of Czech
Republic grant No. 102/01/1531 “Formal Approaches in
Digital Circuit Diagnostics – Testable Design
Verification” and the Research Intent of FEI, Brno
University of Technology, Czech Republic, grant No.
CEZ: J22/98:262200012 “Research of the Information
and Control Systems”.

8. References

[1] Aktouf, Ch. - Fleury, H. - Robach, Ch.: Inserting Scan at
the Behavioural Level, IEEE Design & Test of
Computers, vol. 7, No. 3, July - Sept. 2000, pp. 34 - 42

[2] Agrawal, V. D.- Cheng, K. - Johnson, D. D. - Lin, T..: A
Complete Solution to the Partial Scan Problem, Proc. of
the 1987 International Test Conference, September 1--3,
1987, Washington, pp. 44—51

[3] Higami, Y. - Kajihara, S. - Kinoshita, K.: Partial Scan
Design and Test Sequence Generation Based on Reduced
Scan Shift Method, Journal of Electronic Testing:
Theory and Applications, 7, Kluwer Academic
Publishers, 1995, pp. 115--123

[4] Flottes, M. L. - Pires, R. - Rouzeyre, B. - Volpe, L.: A
Fast and Effective Technique for Partial Scan Selection
at RT Level, Proc. of IEEE ETW 1997, May 28--30,
1997, Cagliary, Italy, pp. 36—42

[5] Abadir, M.S. - Breuer, M.A.: A Knowledge-Based
System for Designing Testable VLSI Chips, IEEE
Design & Test of C., vol. 2, No. 3, 1985, pp. 56 – 68

[6] Stroele, A. P. - Wunderlich, H. J.: Hardware-Optimal
Test Register Insertion, IEEE Trans. On Computer-Aided
Design of Integrated Circuits and Systems, vol. 17, No.
6, 1998, pp. 531 - 539

[7] Stroele, A. P. - Wunderlich, H. J.: Test Register Insertion
with Minimum Hardware Cost, Proc. ICCAD 95, San
Jose, California, USA, pp. 95 -101

[8] Dorsch, R. - Wunderlich, H. J.: Reusing Scan Chains for
Test Pattern Decompression, Proc. ETW 2001,
Stockholm, May 2001, pp.307 – 315

[9] Chakradhar, S. T. - Balakrishnan, A. - Agrawal, V.: An
Exact Algorithm for Selecting Partial Scan Flip-Flops,
Journal of Electronic Testing: Theory and Applications,
7, 1995, pp. 83 - 93

[10] Orenstein, T. - Kohavi, Z. - Pomeranz, I.: An Optimal
Algorithm for Cycle Breaking in Directed Graphs,
Journal of Electronic Testing: Theory and Applications,
7, 1995, pp. 71 - 81

[11] Barbagallo, S. - Bodoni, M. L. - Medina, D. - Corno, F. -
Prinetto, P. - Reorda, M. S.: Scan Insertion Criteria for
Low Design Impact, IEEE VLSI Test Symposiun,
Princeton, April 1996, pp. 26 - 31

[12] Conway, J. H., Guy, R. K.: The Book of Numbers,
Springer-Verlag, New York, 1996, 310 pp.

[13] Comtet, L.: Advanced Combinatorics: The Art of Finite
and Infinite Expansions, Reidel Publishing Company,
Dordrecht, 1974, ISBN 90-277-0380-9, 156 pp.

[14] Sloane, N. J. A., Plouffe, S.: The Encyclopedia of Integer
Sequences, Academic Press , Orlando, 1995, 588 pp.

[15] Bukovjan, P.: Allocation en vue de la testabilité dans le
cadre de la synthèse de haut niveau, PhD thesis, Institut
National Polytechnique de Grenoble, 2000, 138 pp.

[16] Xinli Gu: RT Level Testability Improvement by
Testability Analysis and Improvements, PhD thesis,
Department of Computer and Information Science,
Linköping University, Sweden, 1996, 149 pp.

