
 1

The Identification of Registers in RTL Structures
for the Test Application

Abstract
A highly efficient test schedule can be created for a given digital circuit if a proper test-scheduling algorithm is selected and
if the circuit fulfils several criteria that affect the quality of a resulting test schedule significantly and independently on any
scheduling algorithm. If a design for testability techniques are applied to the circuit structure, the way in which they are
applied have a big impact on those circuit properties. Thus, it is feasible to deal with the relation between application of
selected design for testability techniques and the quality of a resulting test schedule in detail. This is a wide research area.
Our paper deals with the register selection technique through which a test will be applied. The paper presents a
methodology for selecting registers for the test application in such a way that the cardinality of a set of selected registers is
minimized and test resources allocated to functional units are shared in a maximum way. Proposed methodology is
mathematically described, definitions are clearly illustrated and experimental results together with the future research
perspectives are discussed.

1 Introduction

Today it is typical that modern complex designs are
described at higher levels of the abstraction (e.g. register-
transfer level - RTL). Although these designs help to
reduce design cycle time, they pose several difficult test
challenges. In most of cases, the test constraints are related
to minimum test resources, test data traffic, test application
time and power consumption. The goal is to prepare the
test when required constraints are satisfied. The best way
how to do it is to use a test-scheduling methodology.
To achieve short test time, it becomes important to study
potential parallelisms in the application of test patterns to
unit under test (UUT). As a UUT we can see different
structures, SOC (System On Chip) or RTL componets can
serve as an example. It can be stated generally that if more
elements in a UUT can be tested in parallel then shorter
test time can be gained. On the contrary, test resources
sharing will result in longer test application time.
The methodology presented in this paper selects registers
in the way allowing their sharing. It can be used for RTL
structures consisting of functional units (fui), registers
(reg) and multiplexers (mux).
The paper is organised as follows. First, the related works
from the area of the test scheduling and selecting registers
are described. Then, in Section 3, the proposed
methodology is explained and the possibilities how the
Hasse diagram could be used are described. Section 4
describes experimental results. The possible future work
and conclusions are mentioned in Section 5 and 6.

2 Related Work

2.1 Test Scheduling
In [6], a test scheduling problem is identified as an open-
shop scheduling problem, which is known to be NP-
complete and the use of heuristics are therefore justified.
Recently, numerous methodologies for the test scheduling
were developed, many of them for SOCs. In [15], an
integrated framework for the design of SOC test solutions
is presented. It deals with test scheduling, TAM design,

test sets selection and test resource placement, together
with minimization of test application time and TAM
considering constraints posed on test and power
consumption. In [7], a test resource partitioning (TRP)
technique that simultaneously reduces test data volume,
test application time, and scan power is presented. Another
method for solving the resource allocation and test
scheduling problems in order of achieving concurrent test
of core-based SOC designs is described in [10]. The main
objective is to reduce test application time under the
constraints of SOC pins and peak power consumption. A
TAM named CAS-BUS that solves some of the new
problems the test industry has to deal with is presented in
[2]. CAS-BUS is compatible with IEEE P1500 standard
proposal, is controlled by Boundary Scan features. The
upcoming IEEE P1500 (SECT) standard proposes DfT
solutions to alleviate it. The solutions based on this
approach can be found in [16], [17].

2.2 Identification of Registers for Test
Application in RTL Structures

Several approaches exist that suggest a modification of
original circuit structure in order to obtain a circuit with
the same functionality, but with improved selected
properties, e.g. better testability, lower power-
consumption, lower test-data volume etc. In the following
text, we will concentrate on a brief presentation of today’s
selected approaches that try to modify original circuit
structure in order to obtain a highly efficient test schedule
for the circuit.
It is evident that if more functional units (fui) can be tested
in parallel then shorter test time can be gained. Several
approaches are used to model this fact – e.g., in [l1] a
resource graph is used to model the system where an edge
between a test and a resource indicate that the resource is
required for the test. From the resource graph, a test
compatibility graph (TCG) is generated, where each test is
a node and an edge between two nodes indicates that the
tests can be scheduled concurrently, i.e. that tests are
compatible. Using TCG, the test-scheduling problem is
reduced to

 2

1. finding all the cliques of the TCG, and
2. solving the covering problem.

Another problem in the test scheduling is to find minimum
test resources, because not all RTL circuit elements can be
used for the test of each fui. The identification of minimum
test resources leads to maximum sharing. The paper [11]
presents a scheduling method for reducing the number of
scan registers for acyclic structures. To estimate a number
of scan registers during scheduling, provisional binding of
operational units is proposed and a force-directed
scheduling algorithm with the provisional binding is
presented. In [14], a technique integrating test scheduling,
scan chain partitioning and test access mechanism (TAM)
design minimizing the test time and the TAM routing cost
while considering test conflicts and power constraints is
presented. Main features of the technique are (1) the
flexibility in modelling the systems test behaviour and (2)
the support for interconnection test of unwrapped cores
and user-defined logic. [8] describes a technique for
reordering of scan cells to minimize power dissipation that
is also capable of reducing the area overhead of the circuit
compared to a random ordering of the scan cells. For a
given test set, proposed greedy algorithm finds the
(locally) optimal scan cell ordering for a given value of a
trade-off parameter(s). During our research activities, we
have developed a methodology for selecting registers into
partial scan in order to achieve a solution with a feasible
trade-off among area overhead, pin overhead and
testability constraints - our latest research results in this
area are presented in [18], [12].
It can be concluded that in RTL designs registers play the
major role during test application. In this paper, a new
methodology for selecting registers for the test application
is presented. The formal model - Hasse diagram and its
theory are used. It allows to identify minimum number of
circuit registers, through which test can be possibly
applied.

3 The Proposed Methodology

3.1 Introduction
A new methodology of selecting registers for test
schedulling in RTL circuit will be described in this
chapter. Test schedule is developed for functional units
(fui) and it determines which test resources will be utilised
to test every fui. It is assumed that along i paths (In [1] the
i path concept was introduced in the following way: a
structure S with an input port X and output port Y is said
to have an identity mode (i mode of operation), if S has a
mode of operation in which the data on port X is
transferred (possibly after clocking) to port Y. Similarly,
there is an identity transfer path (i path) from output port
X of structure S1 to input port Z of structure S2, if the data
at port X can be transferred unchanged to port Z) existing
in the circuit, test vectors can be transported from primary
inputs (or from scan register if there is no connection to
primary inputs) to the inputs of particular fui. Similarly,
test responses can be transported from the outputs of fui to
primary outputs (or output scan register). I paths existing

in the circuit can be utilised for these transports. It is
necessary to stress that the number of i paths leading
to/from fui can be different for each fui. In a circuit under
analysis, several i paths for particular fui can be identified.
When a test schedule for the circuit under analysis is being
developed, then the appropriate i path must be selected for
the transport of diagnostic data, which can be provided by
means of different criteria. The methodology presented in
this paper takes into account the criteria of minimal
number of registers which must be included into test
resource set through which the test patterns will be applied
and responses to them collected and observed. The number
of selected registers can affect cost/testability trade-off
significantly, as well as dynamic parameters can become
worse. So it becomes to be reasonable to develop
methodologies whose objective is to identify minimum
number of registers through which the test will be applied.
The drawback of such methodologies can be seen in the
fact that the selected registers must be shared during the
application of test to different fuis, thus increasing the test
application time (the number of test phases increases as
well [12]). Then, priorities must be defined – either
minimum number of test phases or minimum number of
registers used during test. Another possibility can be
found in utilising optimising procedures based on
reflecting both of these aspects.
In our research we concentrated on developing a
methodology for the identification of a minimum number
of registers (and primary connectors) through which the
test will be applied. For this purpose we used the theory of
Hasse diagrams. The algorithms, which are presented in
this paper, can be utilised to solve the problem of the
identification of registers for scan. The elements of an
RTL circuit in Fig. 2 are subdivided into sets according to
the function covered by the element. The circuit consists
of four fui elements, set FUI = {fui1, fui2, fui3, fui4} to
which test patterns will be applied. Primary inputs and
outputs belong to the sets PI = {pi1, pi2, pi3} and PO =
{po1, po2}. Also, there is a set of circuit registers R = {r1,
r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15,
r16}, multiplexers MUX = {mux1, mux2, mux3, mux4,
mux5}.

FUI2

R3

1 n R1

FUI1

1 n R2 1 n

R4

primary
inputs

primary
outputs

Fig. 1: Illustration of register roles in a circuit

R5

R6 1 n

tir

tdr

trv

tor

tdr

trv

i path

i path
i path

ipath

 3

A register may have one of the following roles [4][9]
during the test application process (the roles of registers
are illustrated in Fig. 1.):
§ Test driver register (tdr) is the register, which feeds

test vectors to the inputs of a functional unit (an i path
between the tir output and the functional unit input
exists). In the tir the test vectors are either generated
or serially scanned in or loaded along i paths from a
register or from a primary input,

§ Test receiver (trv) is the register to which the test
responses are loaded from the outputs of a functional
unit (an i path between the functional unit output and
the trv input exists). The test responses are either
serially scanned out or transferred along parallel i
paths to a primary output,

§ Test input register (tir) is the first register in the
parallel i path between a primary input and a
functional unit inputs. It may be either a register the
input port of which is interconnected with a primary
input in parallel or a register which is the last one in
the serial i path through which the test vectors for a
functional unit are scanned in,

§ Test output register (tor) is the last register in the
parallel i path between the output of a functional unit
and a primary output. It may be either a register the
output port of which is interconnected with a primary
output in parallel or a register which is the first one in
the serial i path through which the test responses of a
functional unit are scanned out.

According to their roles, registers depicted in Fig. 2 are
classified into the following sets: test input registers set
TIR = {r1, r2, r3, r4, r5}, test driver registers TDR = {r6,
r7, r8, r9}, test receivers TRV = {r10, r11, r12, r13} and
test output registers TOR = {r14, r15, r16}.

3.2 Order Relation
Definition 1: A relation ≤ is an (unsharp) order on a set M
iff ≤ it is reflexive, transitive and antisymetric. Set M with
the order ≤ on it is called an ordered set and it is denoted
as (M, ≤).
In definition 1, relation ≤ represents the data flow through
the circuit structure. M is a set of all circuit elements. In
(M, ≤), it is possible to determine whether a data flow is
possible between two arbitrary elements a, b∈ M. Namely,
if a ≤ b, then a data flow is possible (directly or by means
of inter-elements) from the output of element b to the input
of element a. Otherwise (if not (a ≤ b)), a data flow in the
direction from b to a is not possible.

Definition 2: Two elements a, b of (M, ≤) are called
comparable iff a ≤ b or b ≤ a. Otherwise they are called
uncomparable. Element a∈A ⊆ M is called the least
element of A iff ∀ b ∈ A: a ≤ b. Element a ∈ A ⊆ M is
called a greatest element of A iff ∀ b ∈ A: b ≤ a.

Comparability of two elements reflects the fact that a
connection exists between them. Thus, there is no way of
transferring a diagnostic data between elements that are
uncomparable. Supposing at least one data path exists
between primary inputs and primary outputs then 1) circuit
elements encountered in this path belong to set A, 2) the
least element of A is a primary input pi ∈ PI and 3) the
greatest element of A is primary output po ∈ PO.

Definition 3: The element a ∈ M is called a low limit of A
⊆ M iff ∀ b ∈ A: a ≤ b. Element a ∈ M is called a high
limit of A ∈ M iff ∀ b ∈ A: b ≤ a.

mux1

r1

r2

r3

r4

r6 fui1

mux2 r7 fui2

mux3 r8 fui3

r9 fui4

r5

r10

r11

r12

r13

mux4

mux5

po1

po2

pi1

pi2

pi3

pi ... primary input port
po ... primary output port
r ... register
mux ... multiplexor
fui ... functional unit

r14

r15

r16

Fig. 2: Example of an RTL circuit

 4

As the least and greatest elements of A represent the start
(first) element and the end (last) element of a certain i
path, so by means of low limit and high limit elements, it
is possible to construct a set of elements that can be
utilized for expansion (further information) of the
corresponding i path – low limit element informs about the
data-flow successor of the last element in an i path and
high limit element informs about the data-flow predecessor
of the first element in i path.

Definition 4: Element b ∈ M directly covers element a ∈
M iff a ≤ b, a ≠ b and for a ≤ c ≤ b: a = c or b = c .

If the circuit element a is directly covered by circuit
element b, then data inputs of a (covering) circuit element
b are directly connected to data outputs of (covered
element) a.

Definition 5: Element b ∈ M indirectly covers element a
∈ M iff a ≤ b, a ≠ b and ∃ c ∈ M: a ≤ c ≤ b, where c ≠ a
and c ≠ b.

If circuit element a is indirectly covered by circuit element
b, then data inputs of a (covering) circuit element b are not
directly connected to data outputs of (covered element) a –
a data path consisting of at least one circuit element exist
between the output of a and input of b. In the following
text, situation “a is directly covered by b” is denoted as
a<= b and situation “a is indirectly covered by b” is
denoted as a<<= b. Alike, situation “a is not directly
covered by b” is denoted as a<≠ b and situation “a is not
indirectly covered by b” is denoted as a<<≠ b.

3.3 Hasse Diagram
A visual representation of an ordered set (M, ≤) via the
cover relation is called a Hasse diagram (a and b are

connected by an edge in such a way that b is placed at
higher position than a iff a is covered by b, i.e. a
connection between output of b to input of a exists, i.e.
data flow between them is possible). If 1) M is a set of
circuit elements, 2) those elements are connected
according to definitions 1–7 where 3) a data-flow is
represented by a cover relation then a data-flow among
primary inputs/outputs, tested functional units and selected
registers can be graphically represented by a Hasse
diagram of a data-flow. The diagram is defined as a
2-tuple GH = (M, E), where

• M … is a set of circuit elements, M = PI ∪ PO ∪ TIR

∪ TDR ∪ FUI ∪ TRV ∪ TOR
• E … is a set of edges (a subset of a direct coverage

relation, see definitions 5 and 6). An edge can exist
only between the following pairs of elements of M (in
the following list, an element on the left (right) is a
covering (covered) element):

o pi ∈ PI ∧ tir ∈ TIR
o tir ∈ TIR ∧ tdr ∈ TDR
o tdr ∈ TDR ∧ fui ∈ FUI
o fui ∈ FUI ∧ trv ∈ TRV
o trv ∈ TRV ∧ tor ∈ TOR
o tor ∈ TOR ∧ po ∈ PO

An edge between any other elements is not allowed.

As an example, Hasse diagram GH = (M,E) for the circuit
from Fig. 2 is depicted in Fig. 3. In GH, each circuit
element is displayed as a vertex of GH – here registers,
primary inputs/outputs and functional units are displayed
as circles. Generally, other elements can exist in data-paths
between tir and tdr or between trv and tor. Because such
elements are not important for selecting registers into scan,
they are excluded from GH (which is an abstraction of
circuit data-path for the purposes of selecting registers into
scan) structure. Thus, if there is an edge between two
vertices a, b of GH, it does not imply a circuit element c
does not exists in the data-flow between a and b. In GH, a
data-flow of each i path starts at circuit primary inputs and
ends at circuit primary outputs. Because GH is a Hasse
diagram, a covering element (data-flow source) is
displayed higher than a covered element (data-flow target)
in GH.
 If an element a is covered by only one element b, then
element b is called an indispensable element (of an
element a, see following definition) in given Hasse
diagram GH. Because by removing of indispensable
elements the assumption will become invalid,
indispensable elements have to remain in (therefore they
cannot be removed from) GH structure. Next the
definitions of various indispensable elements of Hasse
diagram will be presented.

Definition 6: Element b ∈ M of GH is called an
indispensable element iff ∃ a ∈ M: ∀ c ∈ M (c ≠ b a c ≠
a): a is not directly covered by c. The following types of
indispensable elements elements are distinguished:

Fig. 3: Hasse diagram of a data-flow for Fig. 2

 5

i. Register r∈TDR is called an indispensable tdr register
if it directly covers fui∈FUI, which is not directly
covered by another tdr register, i.e., ∀q∈TDR (q≠r):
fui <≠ q.

ii. Register r∈TRV is called an indispensable trv register
if it is directly covered by fui ∈ FUI, which does not
directly cover another trv register, i.e. ∀ q∈TRV (q ≠
r): q <≠ fui.

iii. Register r ∈ TIR is called an indispensable tir register
if 1) it directly covers register q∈TDR, 2) q is an
indispensable tdr register and 3) ∀ p∈TIR (p ≠ r): q
<≠ p.

iv. Register r ∈ TOR is called an indispensable tor
register if it is directly covered by a register q∈TRV, q
is an indispensable trv register and ∀p∈TOR (p ≠ r):
p <≠ q.

v. Primary input pi∈PI is called an indispensable
primary input if it directly covers register r∈TIR, r is
an indispensable tir register and ∀ pi’∈PI (pi’≠ pi): r
<≠ pi’.

vi. Primary input po∈PO is called an indispensable
primary output if it is directly covered by register
r∈TOR, r is an indispensable tor register and ∀ po’ ∈
PO (po’ ≠ po): po’ <≠ r.

The main goal of proposed methodology is to detect
minimal (i.e. the most shared) set of indispensable
elements that can be used for testing all functional units by
means of the data-flow through circuit i paths. To apply
test to each functional unit, exactly one i path (with a data
flow from primary inputs to primary outputs) will be
detected. All such i paths are characterized by sharing
their sub-paths in the greatest way (i.e. characterized by
maximal number of shared registers, that is by minimum
number of registers in total). Registers included in those i
paths will be used in the test application.

3.4 Proposed Algorithms

The search algorithm based on the analysis of Hasse
diagram whose objective is the identification minimal
number of registers to be included into scan chain consists
of six partial tasks. For this purpose, GH_Minimisation
procedure was developed whose input is the non-
minimised Hasse diagram reflecting the data flow through
the circuit under analysis. It is assumed that the elements
of the circuit were subdivided into subsets of M set. Every
partial task is performed by means of the
Coverage_Minimisation(GH, List_A, List_B) general
algorithm for minimising the coverage between two sets of
Hasse diagram. One subset (List_A parameter) contains
covering elements while the other one consists of
elements, which are supposed to be covered (List_B
parameter). As a result of applying the procedure, we gain
Data Flow Hasse Diagram, which contains functional
units fuis, primary inputs/outputs and registers which will
be included into the fui test application process.

Algorithm 1:
The input data structures are Hasse diagram (GH) and lists
of covering (List_A) and covered (List_B) vertexes of GH.

Coverage_Minimisation(GH, List_A, List_B)
1. Do the identification of indispensable elements in
List_A (the list of covering elements).

2. Create a new List_B‘ containing elements of List_B (the
list of covered elements) which will contain only the
elements with the edge(s) leading to the indispensable
elements of the List_A (identified in the preceding step).

3. Delete from GH all the edges leading from elements
incorporated in List_B‘ to List_ A elements which are not
marked as indispensable in the List_A.

4. Delete from List_A all the elements which do not cover
any element from List_B (thus, there is no edge between a
∈ List_A and b ∈ List_B elements).

5. Are all the elements remaining in List_A marked as
indispensable? If yes, the algorithm ends – go to step 8,
else continue by step 6.

6. Identify in List_A all the ele ments which are not
indispensable and insert them into a new auxiliary List_A‘.

7. By means of the the auxiliary procedure Decision(…)
select a’∈ List_A‘ as the output of the auxiliary procedure
(according to the predefined criteria) which will be marked
as indispensable in List_A. Then go to step 2.

8. End of procedure.

End of Algorithm 1.

Algorithm 2:
The input data structure is List_A’: List_A’ ⊆ List_A, ∀ a’
∈ List_A’ : a’ ∉ Indispensable_A

Decision(List_A’):

1. Is there any element a' ∈ List A' marked as
„indispensable“ in another part of Gh_minimisation(…)?
If not, then go to step 2 else delete all elements from
List_A’ without this mark.

2. Are there all elements a' ∈ List A' marked as „candidate
for scan“? If yes, go to step 3 else delete all elements from
List_A’ without this mark.

3. Search for a' ∈ List_A' which has the maximum number
of edges leading to elements from List_B. If there is only
one a‘ go to step 7 else delete from List_A' such elements
which have maximum number of edges leading to List_B
elements lower than the maximum number

4. Search for a' ∈ List_A' which has the lowest node
degree. If there is only one a‘ go to step 7 else delete from

 6

List_A' all elements with „the node degree“ value higher
than the lowest.

5. Search for a' ∈ List_A' which has the lowest number of
i-paths leading to primary inputs/outputs? If there is only
one a‘ go to step 7 else delete from List_A' all elements
with the „number of i-paths“ value higher than the lowest.

6. Is there just one element a' ∈ List_A' from which an i
path with the highest sum of edge value leads to PI/PO? If
there is only one a‘ go to step 7 else choose the first
element from List_A' and mark it as a'.

7. Mark the a' element as a candidate for indispensability
in the List_A.

End of Algorithm 2.

Algorithm 3:
The assumption:
M = PI ∪ PO ∪ TIR ∪ TDR ∪ FUI ∪ TRV ∪ TOR
GH = (M,E) …Hasse diagram of diagnostic data flow for
M set

The GH_minimisation (GH)

1. Coverage_Minimisation (GH, TDR, FUI)
2. Coverage_Minimisation (GH, TIR, TDR)
3. Coverage_Minimisation (GH, PI, TIR)
4. Coverage_Minimisation (GH, TRV, FUI)
5. Coverage_Minimisation (GH, TOR, TRV)
6. Coverage_Minimisation (GH, PO, TOR)

End of Algorithm 3.

4 Experimental Results

In Fig. 5, the Hasse diagram of Diffeq benchmark circuit
data-flow is shown. The corresponding minimised Hasse
diagram of a data-flow is depicted in Fig. 6; registers R1,
R4, R5, and R6 are selected to be included into scan chain.
Fig. 4 illustrates minimised diagram of a demo exa mple
that was depicted in Fig. 2 and Fig. 3. According to Fig. 4,
following registers are to be included into scan chain: R3,
R5, R6, R7, R8, R9, R10, R11, R13, R15, R16.

R4 R5 R6 R1 result

R6 result

result

dx 2

dx

dx

R1 R6 2 R5

R1 R2 R3 2 R4 R6
R5

TIR:

TDR:

TRV:

TOR:

FUI:

Primary outputs:

MUL
1 MUL

2
ADD SUB1 SUB2

Fig. 5: Hasse diagram of Diffeq data-flow

Other methodologies for selecting registers into scan chain
exist. Generally stated, such methodologies are based on
different criteria for inserting registers into scan, thus a set
of selected registers can differ according to the criteria.
Methodologies published in [5], [13], [18] dealt with a
selection of registers in the scan chain for Diffeq
benchmark circuit too, so we can compare results gained
by those methodologies and by the proposed one in short.
All following results are related to Diffeq circuit. In [5],
registers R4, R6, R1 and R5 were selected to scan chain in
order to achieve an optimal trade-off among selected
design constraints and Diffeq testability parameters.
Selected registers were supposed to be included into one
scan chain in the presented order. The criteria were to
achieve the highest possible controllability and
observability during a random-pattern test generation and
to fulfil given design constraints simultaneously. The
quality of a selection was evaluated using special-purpose
testability measures and a cost/quality trade-off function.
In [13], which is based on formal approach for selecting
registers into scan, registers R1, R4 and R6 or registers R1,
R3 and R4 are supposed to be included into scan. The
criteria were to select minimal set of registers in such a
way that the number of parallel paths within the Diffeq
structure would be maximized (i.e. hopefully: test
application time minimized). In [18], criteria for including
registers into the scan chain were as follows: 1) to make all
global feedback loops winthin Diffeq structure easily
controllable (observable) by means of Diffeq primary
inputs (primary outputs) and 2) to include registers into the

Fig. 4: Minimised Hasse diagram

 7

scan chain at the cost of minimal area and primary
input/output overheads. The method was bas ed on a
utilization of a genetic algorithm. As the result, only
registers R1 and R6 were included into scan chain.

R4 R5 R6 R1 result

R6 result

result

dx 2

R1
2

R1 R6R5

Primary inputs:

TIR:

TDR:

TRV:

TOR:

FUI:

Primary outputs:

MUL1 MUL2 ADD SUB1 SUB2

Fig. 6: Minimized Hasse diagram for Diffeq

5 Future Research Perspectives

In our previous research we developed a methodology,
which allows to schedule test application of an RTL circuit
[3]. It was taking into account the possibility of sharing
test resources (i.e. registers, multiplexers and connections)
for the test of separate fuis. The result of applying the
methodology to an RTL structure is the list of test phases
with the identification of fuis, which can be tested in
parallel. We also developed a methodology, which was
based on the classification of elements (especially
registers) and on their role during test application, which
allows develop new types of test application
methodologies [9]. We see now that the merging of the
methodologies can be further utilised for synchronised test
application to an RTL circuit. As the synchronised test
application we denote the methodology of selecting
registers through which the test will be applied to fuis such
that the transports of test pattern to inputs of fuis will
require the same number of system clock pulses as the
transport of test responses from outputs of fuis. We intend
to utilise Hasse diagrams to develop, implement and verify
the methodology.

6 Conclusions

In this paper new methodology was presented for selection
of circuit register through which test will be applied. The
theory of Hasse diagram is a suitable tool for the proposed
methodology. The Hasse diagram of a data flow was

defined as formal tool, which can depict the flow of
diagnostic data trough the circuit under test. The procedure
for the minimisation of Hasse diagram of a data-flow was
developed and implemented. The proposed procedure can
find a minimal number of tir, tdr, tor and trv registers and
primary ports inside the circuit under test, which are
required to implement test controller. The selection of
registers is influenced by the predefined criteria. The
criteria reflect maximum number of registers shared during
the test of functional units. The shared register belongs to i
paths through which diagnostic data are transported. The
selection of registers could be possibly done by another
criteria. The methodology was verified on many practical
RTL circuits, e.g. Diffeq, Tseng (both from HLSynth92
[19] benchmark suite) or Bert benchmark circuits.

References

[1] ABADIR, M. S. – BREUER, M.: A knowledge based

system for designing testable VLSI chips, IEEE
Design&Test, August 1985, pp. 56–68

[2] BENABDENBI, M. – MAROUFI, W. – MARZOUKI,
M.: CAS-BUS: A Scalable and Reconfigurable Test
Access Mechanism for Systems on a Chip, In:
Proceedings of Design, Automation and Test in Europe,
IEEE Press, 2000, pp. 141–145

[3] BLATNÝ J. – HLAVICKA, J. – KOTÁSEK, Z.: RT level
test scheduling, IEEE European Test Conference,
Rotterdam, 1993, pp. 499–500

[4] BLATNÝ, J. – KOTÁSEK, Z. RT Level Test Scheduling,
In: Computers and Artificial Intelligence, Vol. 16, No. 1,
1997, p. 13–29.

[5] BUKOVJAN, P.: Allocation for Testability in High-Level
Synthesis. PhD thesis, Institute National Polytechnique de
Grenoble, 2000

[6] CHAKRABARTY, K.: Test Scheduling for Core-Based
Systems Using Mixed-Integer Linear Programming,
Trans. CAD of IC and Syst, Vol. 19, No. 10, Oct. 2000,
pp. 1163–1174

[7] CHANDRA, A. – CHAKRABARTY, K.: A Unified
Approach to Reduce SOC Test Data Volume, Scan Power
and Testing Time, IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, Vol. 22, No. 3,
March 2003, pp. 352–362

[8] GHOSH S. – BASU S. – TOUBA N. A.: Joint
Minimization of Power and Area in Scan Testing by Scan
Cell Reordering, In: Proceedings of the IEEE Computer
Society Annual Symposium on VLSI, IEEE Computer
Society, 2003, pp. 246–249

[9] HLAVICKA, J. – KOTÁSEK, Z. – ZBORIL, F.: Partial
Scan Methodology for RTL Designs, In: Compendium of
Papers European Test Workshop, Constance, 1999, p. 2

[10] HUANG, Y. – CHENG, W. T. – TSAI, C. C. –
MUKHERJEE, N., SAMMAN, O., ZAIDAN, Y. –
REDDY, S. M.: On Concurrent Test of Core-Based SOC
Design, Journal of Electronic Testing-Theory and
Applications, Vol. 18, No. 4-5, August-October, 2002, pp.
401–414

[11] INOUE T. – MIURA T. – TAMURA A. – FUJIWARA
H.: A Scheduling Method in High-Level Synthesis for
Acyclic Partial Scan Design, In: Proceedings of 11th
Asian Test Symposium, IEEE Computer Society, 2002,
pp. 128–133

[12] KOTÁSEK, Z. – MIKA, D. – STRNADEL, J.: Test
scheduling for embedded systems, In: Proc.

 8

EUROMICRO Symposium on DSD–Architectures,
Methods and Tools, ICSP, 2003, pp. 463–467

[13] KOTASEK, Z. – RUZICKA, R. – HLAVICKA, J.:
Formal Approach to the RTL Testability Analysis. In:
Proceedings of 1st IEEE Latin America Test Workshop,
2000, pp. 256–261

[14] LARSSON, E. – ARVIDSSON, K. – FUJIWARA, H. –
PENG, Z.: Integrated Test Scheduling, Test
Parallelization and TAMDesign, In: Proceedings of 11th
Asian Test Symposium, IEEE Computer Society, 2002,
pp. 397–404

[15] LARSSON, E. – PENG, Z. B.: An Integrated Framework
for the Design and Optimization of SOC Test Solutions,
Journal of Electronic Testing-Theory and Applications,
Vol. 18, No. 4-5, August-October, 2002, pp. 385–400

[16] MARINISSEN, E. J. – KAPUR, R. – LOUSBERG, M. –
MCLAURIN, T. – RICCHETTI M. – ZORIAN, Y.: On
IEEE P1500’s Standard for Embedded Core Test, Journal
of Electronic Testing-Theory and Applications, Vol. 18,
No. 4-5, August-October, 2002, pp. 365–383

[17] POUGET, J. – LARSSON, E. – PENG, Z. – FLOTTES,
M. – ROUZEYRE, B.: An Efficient Approach to SoC
Wrapper Design, TAM Configuration and Test
Scheduling, In: Proceedings of 8th IEEE European Test
Workshop, IEEE Computer Society, 2003, pp. 51–56

[18] STRNADEL, J. – KOTÁSEK, Z. – MIKA, D.:
Methodologies of RTL Partial Scan Analysis and Their
Comparison, In: Proceeding of IEEE Workshop on Design
and Diagnostic of Electronic Circuits and Systems,
Poznan, PL, UNI-DRUK, 2003, p. 233–238

[19] http://www.cbl.ncsu.edu/pub/Benchmark_dirs/HLSynth92

