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The Identification of Registers in RTL Structures 
for the Test Application  

  
 
Abstract 
A highly efficient test schedule can be created for a given digital circuit if a proper test-scheduling algorithm is selected and 
if the circuit fulfils several criteria that affect the quality of a resulting test schedule significantly and independently on any 
scheduling algorithm. If a design for testability techniques are applied to the circuit structure, the way in which they are 
applied have a big impact on those circuit properties. Thus, it is feasible to deal with the relation between application of 
selected design for testability techniques and the quality of a resulting test schedule in detail. This is a wide research area. 
Our paper deals with the register selection technique through which a test will be applied. The paper presents a 
methodology for selecting registers for the test application in such a way that the cardinality of a set of selected registers is 
minimized and test resources allocated to functional units are shared in a maximum way. Proposed methodology is 
mathematically described, definitions are clearly illustrated and experimental results together with the future research 
perspectives are discussed. 
 
1 Introduction 
 
Today it is typical that modern complex designs are 
described at higher levels of the abstraction (e.g. register-
transfer level - RTL). Although these designs help to 
reduce design cycle time, they pose several difficult test 
challenges. In most of cases, the test constraints are related 
to minimum test resources, test data traffic, test application 
time and power consumption. The goal is to prepare the 
test when required constraints are satisfied. The best way 
how to do it is to use a test-scheduling methodology.  
To achieve short test time, it becomes important to study 
potential parallelisms in the application of test patterns to 
unit under test (UUT). As a UUT we can see different 
structures, SOC (System On Chip) or RTL componets can 
serve as an example. It can be stated generally that if more 
elements in a UUT can be tested in parallel then shorter 
test time can be gained. On the contrary, test resources 
sharing will result in longer test application time.  
The methodology presented in this paper selects registers 
in the way allowing their sharing. It  can be used for RTL 
structures consisting of functional units (fui), registers 
(reg) and multiplexers (mux).  
The paper is organised as follows. First, the related works 
from the area of the test scheduling and selecting registers 
are described. Then, in Section 3, the proposed 
methodology is explained and the possibilities how the 
Hasse diagram could be used are described. Section 4 
describes experimental results. The possible future work 
and conclusions are mentioned in Section 5 and 6.  
 
2 Related Work 

2.1 Test Scheduling 
In [6], a test scheduling problem is identified as an open-
shop scheduling problem, which is known to be NP-
complete and the use of heuristics are therefore justified. 
Recently, numerous methodologies for the test scheduling 
were developed, many of them for SOCs. In [15], an 
integrated framework for the design of SOC test solutions 
is presented. It deals with test scheduling, TAM design, 

test sets selection and test resource placement, together 
with minimization of test application time and TAM 
considering constraints posed on test and power 
consumption. In [7], a test resource partitioning (TRP) 
technique that simultaneously reduces test data volume, 
test application time, and scan power is presented. Another 
method for solving the resource allocation and test 
scheduling problems in order of achieving concurrent test 
of core-based SOC designs is described in [10]. The main 
objective is to reduce test application time under the 
constraints of SOC pins and peak power consumption. A 
TAM named CAS-BUS that solves some of the new 
problems the test industry has to deal with is presented in 
[2]. CAS-BUS is compatible with IEEE P1500 standard 
proposal, is controlled by Boundary Scan features. The 
upcoming IEEE P1500 (SECT) standard proposes DfT 
solutions to alleviate it. The solutions based on this 
approach can be found in [16], [17].  

2.2 Identification of Registers for Test 
Application in RTL Structures 

Several approaches exist that suggest a modification of 
original circuit structure in order to obtain a circuit with 
the same functionality, but with improved selected 
properties, e.g. better testability, lower power-
consumption, lower test-data volume etc. In the following 
text, we will concentrate on a brief presentation of today’s 
selected approaches that try to modify original circuit 
structure in order to obtain a highly efficient test schedule 
for the circuit.  
It is evident that if more functional units (fui) can be tested 
in parallel then shorter test time can be gained. Several 
approaches are used to model this fact – e.g., in [l1] a 
resource graph is used to model the system where an edge 
between a test and a resource indicate that the resource is 
required for the test. From the resource graph, a test 
compatibility graph (TCG) is generated, where each test is 
a node and an edge between two nodes indicates that the 
tests can be scheduled concurrently, i.e. that tests are 
compatible. Using TCG, the test-scheduling problem is 
reduced to  
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1. finding all the cliques of the TCG, and  
2. solving the covering problem. 

 
Another problem in the test scheduling is to find minimum 
test resources, because not all RTL circuit elements can be 
used for the test of each fui. The identification of minimum 
test resources leads to maximum sharing. The paper [11] 
presents a scheduling method for reducing the number of 
scan registers for acyclic structures. To estimate a number 
of scan registers during scheduling, provisional binding of 
operational units is proposed and a force-directed 
scheduling algorithm with the provisional binding is 
presented. In [14], a technique integrating test scheduling, 
scan chain partitioning and test access mechanism (TAM) 
design minimizing the test time and the TAM routing cost 
while considering test conflicts and power constraints is 
presented. Main features of the technique are (1) the 
flexibility in modelling the systems test behaviour and (2) 
the support for interconnection test of unwrapped cores 
and user-defined logic. [8] describes a technique for 
reordering of scan cells to minimize power dissipation that 
is also capable of reducing the area overhead of the circuit 
compared to a random ordering of the scan cells. For a 
given test set, proposed greedy algorithm finds the 
(locally) optimal scan cell ordering for a given value of a 
trade-off parameter(s). During our research activities, we 
have developed a methodology for selecting registers into 
partial scan in order to achieve a solution with a feasible 
trade-off among area overhead, pin overhead and 
testability constraints - our latest research results in this 
area are presented in [18], [12]. 
It can be concluded that in RTL designs registers play the 
major role during test application.  In this paper, a new 
methodology for selecting registers for the test application 
is presented. The formal model - Hasse diagram and its 
theory are used. It allows to identify minimum number of 
circuit registers, through which test can be possibly 
applied. 
 
3 The Proposed Methodology 

3.1 Introduction 
A new methodology of selecting registers for test 
schedulling in RTL circuit will be described in this 
chapter. Test schedule is developed for functional units 
(fui) and it determines which test resources will be utilised 
to test every fui. It is assumed that along i paths (In [1] the 
i path concept was introduced in the following way: a 
structure S with an input port X and output port Y is said 
to have an identity mode (i mode of operation), if S has a 
mode of operation in which the data on port X is 
transferred (possibly after clocking) to port Y. Similarly, 
there is an identity transfer path (i path) from output port 
X of structure S1 to input port Z of structure S2, if the data 
at port X can be transferred unchanged to port Z) existing 
in the circuit, test vectors can be transported from primary 
inputs (or from scan register if there is no connection to 
primary inputs) to the inputs of particular fui. Similarly, 
test responses can be transported from the outputs of fui to 
primary outputs (or output scan register). I paths existing 

in the circuit can be utilised for these transports. It is 
necessary to stress that the number of i paths leading 
to/from fui can be different for each fui. In a circuit under 
analysis, several i paths  for particular fui can be identified. 
When a test schedule for the circuit under analysis is being 
developed, then the appropriate i path must be selected for 
the transport of diagnostic data, which can be provided by 
means of different criteria. The methodology presented in 
this paper takes into account the criteria of minimal 
number of registers which must be included into test 
resource set through which the test patterns will be applied 
and responses to them collected and observed. The number 
of selected registers can affect cost/testability trade-off 
significantly, as well as dynamic parameters can become 
worse. So it becomes to be reasonable to develop 
methodologies whose objective is to identify minimum 
number of registers through which the test will be applied. 
The drawback of such methodologies can be seen in the 
fact that the selected registers must be shared during the 
application of test to different fuis, thus increasing the test 
application time (the number of test phases increases as 
well [12]). Then, priorities must be defined – either 
minimum number of test phases or minimum number of 
registers used during test.  Another possibility can be 
found in utilising optimising procedures based on 
reflecting both of these aspects.  
In our research we concentrated on developing a 
methodology for the identification of a minimum number 
of registers (and primary connectors) through which the 
test will be applied.  For this purpose we used the theory of 
Hasse diagrams. The algorithms, which are presented in 
this paper, can be utilised to solve the problem of the 
identification of registers for scan. The elements of an 
RTL circuit in Fig. 2 are subdivided into sets according to 
the function covered by the element. The circuit consists 
of four fui elements, set FUI = {fui1, fui2, fui3, fui4} to 
which test patterns will be applied. Primary inputs and 
outputs belong to the sets PI = {pi1, pi2, pi3} and PO = 
{po1, po2}. Also, there is a set of circuit registers R = {r1, 
r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, 
r16}, multiplexers MUX = {mux1, mux2, mux3, mux4, 
mux5}. 
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A register may have one of the following roles [4][9] 
during the test application process (the roles of registers 
are illustrated in Fig. 1.):   
§ Test driver register (tdr) is the register, which feeds 

test vectors to the inputs of a functional unit (an i path 
between the tir output and the functional unit input 
exists). In the tir the test vectors are either generated 
or serially scanned in or loaded along i paths from a 
register or from a primary input,  

§ Test receiver (trv) is the register to which the test 
responses are loaded from the outputs of a functional 
unit (an i path between the functional unit output and 
the trv input exists). The test responses are either 
serially scanned out or transferred along parallel i 
paths to a primary output, 

§ Test input register (tir) is the first register in the 
parallel i path between a primary input and a 
functional unit inputs. It may be either a register the 
input port of which is interconnected with a primary 
input in parallel or a register which is the last one in 
the serial i path through which the test vectors for a 
functional unit are scanned in, 

§ Test output register (tor) is the last register in the 
parallel i path between the output of a functional unit 
and a primary output. It may be either a register the 
output port of which is interconnected with a primary 
output in parallel or a register which is the first one in 
the serial i path through which the test responses of a 
functional unit are scanned out.  

  
According to their roles, registers depicted in Fig. 2 are 
classified into the following sets: test input registers set 
TIR = {r1, r2, r3, r4, r5}, test driver registers TDR = {r6, 
r7, r8, r9}, test receivers TRV = {r10, r11, r12, r13} and 
test output registers TOR = {r14, r15, r16}.  

3.2 Order Relation 
Definition 1:  A relation ≤ is an (unsharp) order on a set M 
iff ≤ it is reflexive, transitive and antisymetric. Set M with 
the order ≤ on it is called an ordered set and it is denoted 
as (M, ≤). 
In definition 1, relation ≤ represents the data flow through 
the circuit structure. M is a set of all circuit elements. In 
(M, ≤), it is possible to determine whether a data flow is 
possible between two arbitrary elements a, b∈ M. Namely, 
if a ≤ b, then a data flow is possible (directly or by means 
of inter-elements) from the output of element b to the input 
of element a. Otherwise (if not (a ≤ b)), a data flow in the 
direction from b to a is not possible. 
 
Definition 2: Two elements a, b of (M, ≤) are called 
comparable iff a ≤ b or b ≤ a. Otherwise they are called 
uncomparable. Element a∈A ⊆ M is called the least 
element of A iff ∀ b ∈ A: a ≤ b. Element a ∈ A ⊆ M is 
called a greatest element of A iff ∀ b ∈ A: b ≤ a. 
 
Comparability of two elements reflects the fact that a 
connection exists between them. Thus, there is no way of 
transferring a diagnostic data between elements that are 
uncomparable. Supposing at least one data path exists 
between primary inputs and primary outputs then 1) circuit 
elements encountered in this path belong to set A, 2) the 
least element of A is a primary input pi ∈ PI and 3) the 
greatest element of A is primary output po ∈ PO.  
 
Definition 3: The element a ∈ M is called a low limit of A 
⊆ M iff ∀ b ∈ A: a ≤ b. Element a ∈ M is called a high 
limit of A ∈ M iff ∀ b ∈ A: b ≤ a.  
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Fig. 2: Example of an RTL circuit 
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As the least and greatest elements of A represent the start 
(first) element and the end (last) element of a certain i 
path, so by means of low limit and high limit elements, it 
is possible to construct a set of elements that can be 
utilized for expansion (further information) of the 
corresponding i path – low limit element informs about the 
data-flow successor of the last element in an i path and 
high limit element informs about the data-flow predecessor 
of the first element in i path.  
 
Definition 4: Element b ∈ M directly covers element a ∈ 
M iff a ≤ b, a ≠ b and for a ≤ c ≤ b: a = c or b = c .  
 
If the circuit element a is directly covered by circuit 
element b, then data inputs of a (covering) circuit element 
b are directly connected to data outputs of (covered 
element) a. 
 
Definition 5: Element b ∈ M indirectly covers element a 
∈ M iff a ≤ b, a ≠ b and ∃ c ∈ M: a ≤ c ≤ b, where c ≠ a 
and c ≠ b.   
 
If circuit element a is indirectly covered by circuit element 
b, then data inputs of a (covering) circuit element b are not 
directly connected to data outputs of (covered element) a – 
a data path consisting of at least one circuit element exist 
between the output of a and input of b. In the following 
text, situation “a is directly covered by b” is denoted as 
a<= b and situation “a is indirectly covered by b” is 
denoted as a<<= b. Alike, situation “a is not directly 
covered by b” is denoted as a<≠ b and situation “a is not 
indirectly covered by b” is denoted as a<<≠ b. 
 

3.3 Hasse Diagram 
A visual representation of an ordered set (M, ≤) via the 
cover relation is called a Hasse diagram (a and b are 

connected by an edge in such a way that b is placed at 
higher position than a iff a is covered by b, i.e. a 
connection between output of b to input of a exists, i.e. 
data flow between them is possible). If 1) M is a set of 
circuit elements, 2) those elements are connected 
according to definitions 1–7 where 3) a data-flow is 
represented by a cover relation then a data-flow among 
primary inputs/outputs, tested functional units and selected 
registers can be graphically represented by a Hasse 
diagram of a data-flow. The diagram is defined as a         
2-tuple GH  = (M, E), where 
 
• M … is a set of circuit elements, M = PI ∪ PO ∪ TIR 

∪ TDR ∪ FUI ∪  TRV ∪ TOR  
• E … is a set of edges (a subset of a direct coverage 

relation, see definitions 5 and 6). An edge can exist 
only between the following pairs of elements of M (in 
the following list, an element on the left (right) is a 
covering (covered) element): 

 
o pi ∈ PI  ∧  tir ∈ TIR 
o tir ∈ TIR  ∧   tdr ∈ TDR 
o tdr ∈ TDR  ∧   fui ∈ FUI 
o fui ∈ FUI   ∧   trv ∈ TRV 
o trv ∈ TRV  ∧   tor ∈ TOR 
o tor ∈ TOR  ∧   po ∈ PO 
 

An edge between any other elements is not allowed.       
 
As an example, Hasse diagram GH = (M,E)  for the circuit 
from Fig. 2 is depicted in Fig. 3. In GH, each circuit 
element is displayed as a vertex of GH  – here registers, 
primary inputs/outputs and functional units are displayed 
as circles. Generally, other elements can exist in data-paths 
between tir and tdr or between trv and tor. Because such 
elements are not important for selecting registers into scan, 
they are excluded from GH (which is an abstraction of 
circuit data-path for the purposes of selecting registers into 
scan) structure. Thus, if there is an edge between two 
vertices a, b of GH, it does not imply a circuit element c 
does not exists in the data-flow between a and b. In GH, a 
data-flow of each i path starts at circuit primary inputs and 
ends at circuit primary outputs. Because GH is a Hasse 
diagram, a covering element (data-flow source) is 
displayed higher than a covered element (data-flow target) 
in GH. 
 If an element a is covered by only one element b, then 
element b is called an indispensable element (of an 
element a, see following definition) in given Hasse 
diagram GH. Because by removing of indispensable 
elements the assumption will become invalid, 
indispensable elements have to remain in (therefore they 
cannot be removed from) GH structure. Next the 
definitions of various indispensable elements of Hasse 
diagram will be presented. 
 
Definition 6: Element b ∈ M of GH is called an 
indispensable element iff ∃ a ∈ M: ∀ c ∈ M (c ≠ b a c ≠ 
a): a is not directly covered by c. The following types of 
indispensable elements elements are distinguished: 

 
Fig. 3: Hasse diagram of a data-flow for Fig. 2 
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i. Register r∈TDR is called an indispensable tdr register 
if it directly covers fui∈FUI, which is not directly 
covered by another tdr register, i.e., ∀q∈TDR (q≠r):  
fui <≠ q. 

ii. Register r∈TRV is called an indispensable trv register 
if it is directly covered by fui ∈ FUI, which does not 
directly cover another trv register, i.e. ∀ q∈TRV (q ≠ 
r):  q <≠ fui. 

iii. Register r ∈ TIR is called an indispensable tir register 
if 1) it directly covers register q∈TDR, 2) q is an 
indispensable tdr register and 3) ∀ p∈TIR  (p ≠ r): q  
<≠ p. 

iv. Register r ∈ TOR is called an indispensable tor 
register if it is directly covered by a register q∈TRV, q  
is an indispensable  trv register and ∀p∈TOR (p ≠ r): 
p <≠ q. 

v. Primary input pi∈PI is called an indispensable 
primary input if it directly covers register r∈TIR, r is 
an indispensable tir register and ∀ pi’∈PI  (pi’≠ pi): r 
<≠ pi’. 

vi. Primary input po∈PO is called an indispensable 
primary output if it is directly covered by register 
r∈TOR, r is  an indispensable tor register and ∀ po’ ∈ 
PO (po’ ≠ po): po’ <≠ r. 

 
The main goal of proposed methodology is to detect 
minimal (i.e. the most shared) set of indispensable 
elements that can be used for testing all functional units by 
means of the data-flow through circuit i paths. To apply 
test to each functional unit, exactly one i path (with a data 
flow from primary inputs to primary outputs) will be 
detected. All such i paths are characterized by sharing 
their sub-paths in the greatest way (i.e. characterized by 
maximal number of shared registers, that is by minimum 
number of registers in total). Registers included in those i 
paths will be used in the test application.  

3.4 Proposed Algorithms  
 
The search algorithm based on the analysis of Hasse 
diagram whose objective is the identification minimal 
number of registers to be included into scan chain consists 
of six partial tasks. For this purpose, GH_Minimisation 
procedure was developed whose input is the non-
minimised Hasse diagram reflecting the data flow through 
the circuit under analysis. It is assumed that the elements 
of the circuit were subdivided into subsets of M set. Every 
partial task is performed by means of the 
Coverage_Minimisation(GH, List_A, List_B) general 
algorithm for minimising the coverage between two sets of 
Hasse diagram.  One subset (List_A parameter) contains 
covering elements while the other one consists of 
elements, which are supposed to be covered (List_B 
parameter). As a result of applying the procedure, we gain 
Data Flow Hasse Diagram, which contains functional 
units fuis, primary inputs/outputs and registers which will 
be included into the fui test application process. 
 

Algorithm 1: 
The input data structures are Hasse diagram (GH) and lists 
of covering (List_A) and covered (List_B) vertexes of GH. 
 
Coverage_Minimisation(GH, List_A, List_B)  
1. Do the identification of indispensable elements in 
List_A (the list of covering elements). 
 
2. Create a new List_B‘ containing elements of List_B (the 
list of covered elements) which will contain only the 
elements with the edge(s) leading to the indispensable 
elements of the List_A (identified in the preceding step). 
 
3. Delete from GH all the edges leading from elements 
incorporated in List_B‘ to List_ A elements which are not 
marked as indispensable in the List_A. 
 
4. Delete from List_A all the elements which do not cover 
any element from List_B (thus, there is no edge between a 
∈ List_A and b ∈ List_B elements). 
 
5. Are all the elements remaining in List_A marked as 
indispensable? If yes, the algorithm ends – go to step 8, 
else continue by step 6. 
 
6. Identify in List_A all the ele ments which are not 
indispensable and insert them into a new auxiliary List_A‘.  
 
7. By means of the the auxiliary procedure Decision(…) 
select a’∈ List_A‘ as the output of the auxiliary procedure  
(according to the predefined criteria) which will be marked 
as indispensable in List_A. Then go to step 2. 
 
8. End of procedure. 
 
End of Algorithm 1. 
 
Algorithm 2:  
The input data structure is List_A’: List_A’ ⊆ List_A, ∀ a’ 
∈ List_A’ : a’ ∉ Indispensable_A 
 
Decision(List_A’): 
 
1. Is there any element a' ∈ List A' marked as 
„indispensable“ in another part of  Gh_minimisation( …)? 
If not, then go to step 2 else delete all elements from 
List_A’ without this mark. 
 
2. Are there all elements a' ∈ List A' marked as „candidate 
for scan“? If yes, go to step 3 else delete all elements from 
List_A’ without this mark. 
 
3. Search for a' ∈ List_A' which has the maximum number 
of edges leading to elements from List_B. If there is only 
one a‘ go to step 7 else delete from List_A' such elements 
which have maximum number of edges leading to List_B 
elements lower than the maximum number  
 
4. Search for a' ∈ List_A' which has the lowest node 
degree. If there is only one a‘ go to step 7 else delete from 
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List_A' all elements with „the node degree“ value higher 
than the lowest.  
 
5. Search for a' ∈ List_A' which has the lowest number of  
i-paths leading to primary inputs/outputs? If there is only 
one a‘ go to step 7 else delete from List_A' all elements 
with the „number of i-paths“ value higher than the lowest. 
 
6. Is there just one element a' ∈ List_A' from which an i 
path with the highest sum of edge value leads to PI/PO? If 
there is only one a‘ go to step 7 else choose the first 
element from List_A' and mark it as a'. 
 
7. Mark the a' element as a candidate for indispensability 
in the List_A. 
 
End of Algorithm 2. 
 
Algorithm 3: 
The assumption: 
M = PI ∪ PO ∪ TIR ∪ TDR ∪ FUI ∪ TRV ∪  TOR  
GH = (M,E) …Hasse diagram of diagnostic data flow for 
M set  
 
The GH_minimisation (GH)  

1. Coverage_Minimisation (GH, TDR, FUI) 
2. Coverage_Minimisation (GH, TIR, TDR) 
3. Coverage_Minimisation (GH, PI, TIR) 
4. Coverage_Minimisation (GH, TRV, FUI) 
5. Coverage_Minimisation (GH, TOR, TRV) 
6. Coverage_Minimisation (GH, PO, TOR) 

 
End of Algorithm 3. 
 

4 Experimental Results 
 
In Fig. 5, the Hasse diagram of Diffeq benchmark circuit  
data-flow is shown. The corresponding minimised Hasse 
diagram of a data-flow is depicted in Fig. 6; registers R1, 
R4, R5, and R6 are selected to be included into scan chain. 
Fig. 4 illustrates minimised diagram of a demo exa mple 
that was depicted in Fig. 2 and Fig. 3. According to Fig. 4, 
following registers are to be included into scan chain: R3, 
R5, R6, R7, R8, R9, R10, R11, R13, R15, R16. 
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Fig. 5: Hasse diagram of Diffeq data-flow  
 
Other methodologies for selecting registers into scan chain 
exist. Generally stated, such methodologies are based on 
different criteria for inserting registers into scan, thus a set 
of selected registers can differ according to the criteria. 
Methodologies published in [5], [13], [18] dealt with a 
selection of registers in the scan chain for Diffeq 
benchmark circuit too, so we can compare results gained 
by those methodologies and by the proposed one in short. 
All following results are related to Diffeq circuit. In [5], 
registers R4, R6, R1 and R5 were selected to scan chain in 
order to achieve an optimal trade-off among selected 
design constraints and Diffeq testability parameters. 
Selected registers were supposed to be included into one 
scan chain in the presented order. The criteria were to 
achieve the highest possible controllability and 
observability during a random-pattern test generation and 
to fulfil given design constraints simultaneously. The 
quality of a selection was evaluated using special-purpose 
testability measures and a cost/quality trade-off function. 
In [13], which is based on formal approach for selecting 
registers into scan, registers R1, R4 and R6 or registers R1, 
R3 and R4 are supposed to be included into scan. The 
criteria were to select minimal set of registers in such a 
way that the number of parallel paths within the Diffeq 
structure would be maximized (i.e. hopefully: test 
application time minimized). In [18], criteria for including 
registers into the scan chain were as follows: 1) to make all 
global feedback loops winthin Diffeq structure easily 
controllable (observable) by means of Diffeq primary 
inputs (primary outputs) and 2) to include registers into the 

 
Fig. 4: Minimised Hasse diagram 
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scan chain at the cost of minimal area and primary 
input/output overheads. The method was bas ed on a 
utilization of a genetic algorithm. As the result, only 
registers R1 and R6 were included into scan chain. 
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Fig. 6: Minimized Hasse diagram for Diffeq 
 
5 Future Research Perspectives 
 
In our previous research we developed a methodology, 
which allows to schedule test application of an RTL circuit 
[3]. It was taking into account the possibility of sharing 
test resources (i.e. registers, multiplexers and connections) 
for the test of separate fuis. The result of applying the 
methodology to an RTL structure is the list of test phases 
with the identification of fuis, which can be tested in 
parallel. We also developed a methodology, which was 
based on the classification of elements (especially 
registers) and on their role during test application, which 
allows develop new types of test application 
methodologies [9]. We see now that the merging of the 
methodologies can be further utilised for synchronised test 
application to an RTL circuit. As the synchronised test 
application we denote the methodology of selecting 
registers through which the test will be applied to fuis such 
that the transports of test pattern to inputs of fuis will 
require the same number of system clock pulses as the 
transport of test responses from outputs of fuis. We intend 
to utilise Hasse diagrams to develop, implement and verify 
the methodology.   
 
6 Conclusions  
 
In this paper new methodology was presented for selection 
of circuit register through which test will be applied. The 
theory of Hasse diagram is a suitable tool for the proposed 
methodology. The Hasse diagram of a data flow was 

defined as formal tool, which can depict the flow of 
diagnostic data trough the circuit under test. The procedure 
for the minimisation of Hasse diagram of a data-flow was 
developed and implemented. The proposed procedure can 
find a minimal number of tir, tdr, tor and trv registers and 
primary ports inside the circuit under test, which are 
required to implement test controller. The selection of 
registers is influenced by the predefined criteria. The 
criteria reflect maximum number of registers shared during 
the test of functional units. The shared register belongs to i 
paths through which diagnostic data are transported. The 
selection of registers could be possibly done by another 
criteria. The methodology was verified on many practical 
RTL circuits, e.g. Diffeq, Tseng (both from HLSynth92 
[19] benchmark suite) or Bert benchmark circuits.  
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