
HABILITATION THESIS

Pushdown Automata:

New Modifications and Transformations

Dušan Kolář

Department of Information Systems
Faculty of Information Technology

Technical University of Brno

January ’01 – September ’04
Version 1.0

Abstract

Pushdown automata play a key role in the efficient syntax analysis of context-
free languages (in particular, the languages mentioned should belong either to
the set of LL1 languages or to the set of (LA)LR1 languages; both of these sets
belong to the set of all context-free languages). The great advantage is also
that the construction of the pushdown automata for the particular language
described by a proper grammar is straightforward. On the other hand, the
efficiency of automata constructed for, for instance, LL2 languages is not as
good as for LL1 languages. Moreover, we cannot use pushdown automata for
analysis of context-sensitive languages and thus their power is far below the one
of Turing machine.

This thesis demonstrates a transformation of pushdown automata to achieve
efficient behaviour even for LL2 and other more powerful LLk languages. After
these introductory pages, an extension of pushdown automata, which increases
their power to the one of Turing machine is presented. Extended automata
are further studied to clarify their possibilities and limitations. Especially, we
propose an extended pushdown automaton together with an algorithm of its
construction, which can be used for the efficient analysis of languages, a power
of which is higher than that for context-free languages.

Many thanks to all who encouraged and helped me when working on this thesis.

Contents

1 Preface 1

2 Preliminaries 3

2.1 General Preliminaries . 3
2.2 Formal Languages Theory Preliminaries 3
2.3 Formal Automata Theory Preliminaries 7
2.4 Usage of Pushdown Automata in Compiler Construction 9

3 Analysis of LLk Languages 15

3.1 Introduction . 15
3.2 One-Symbol Automata Construction 16

3.2.1 Parsing Automata and Table Modification 16
3.2.2 Empty Automaton Construction 17
3.2.3 Automaton Completion 18
3.2.4 Parsing Table Notation 21

3.3 Comparison of Parsing Tables 22
3.4 Intermediate Summary . 23
3.5 Proof of Automata Equivalence 23
3.6 Summary . 28

4 Regulated Pushdown Automata 29

4.1 Introduction . 29
4.2 Preliminaries . 30
4.3 Definitions . 30
4.4 Results . 31

4.4.1 Regular Control Languages 31
4.4.2 Linear Control Languages 32

4.5 Chapter Summary and Open Problems 39

5 Minimisation of RPA 41

5.1 Introduction . 41
5.2 Preliminaries . 42
5.3 Definitions . 42

i

5.4 Results . 43

6 Bounded Deterministic RPA 47

6.1 Introduction . 47
6.2 Preliminaries . 48
6.3 Definitions . 49
6.4 Results . 51
6.5 Chapter Summary and Open Problems 54

7 Usage of DRPA for Syntactic Analysis 55

7.1 Introduction . 55
7.2 Preliminaries . 56
7.3 Definitions . 57
7.4 Results . 59
7.5 Chapter Summary and Open Problems 66

8 Conclusion 67

8.1 Future Research . 68

ii

Chapter 1

Preface

This is a Habilitation thesis which aspires to summarise certain new extensions
and utilizations of pushdown automata. The basic research on this topic was
started in 1999 and the work presented shows the latest results from the first half
of 2004. Nevertheless, many conclusions come from practical development and
research performed at the Technical University of Brno, Faculty of Information
Technology (former Department of Computer Science and Engineering, Faculty
of Electrical Engineering and Computer Science) over programming languages
& their compilers since 1995.

Pushdown as an abstract data structure and pushdown automata have
played an important role in computer science for many years already. In par-
ticular, we can recognise them in quite a few places in compilers, for instance.
Nevertheless, it seems like the usage of these formal elements can be seen only
within certain ”schemes”—almost no new modifications and terms of usage can
be seen. The reason we could not find any extensions to these formalisms, may
be explained by the increasing power of hardware and, moreover, in the develop-
ment of other techniques, which do not require higher reasoning concerning new
features (of these formalisms), and in the exploitation of ”traditional” program-
ming structures. Thus, compilers built these days are built over context-free lan-
guages and contextual dependencies are verified using symbol tables and other
appropriate techniques. Moreover, the recursive descent approach of syntactic
analysis (based on LL1 grammars) is adopted where possible. This is proba-
bly because of the possibility that the work with various kinds of attributed
grammars and syntax driven translation is very attractive and it gives high ex-
pressive power to programmers. That is also a reason this approach is adopted
even for languages a grammar of which cannot be described by LL1 grammars
(for example GNU C++ compiler).

Nevertheless, programming languages become more and more complicated
for translation (either by their evolution—C++, or by simply inventing a new
language). This situation motivated us to start work on simpler and more
powerful description of programming languages, their analysis, and compiler

1

2 CHAPTER 1. PREFACE

construction. The first necessary step is presented in this thesis—bringing to
life new concepts applicable in syntactic analysis. Such concepts enable a pro-
grammer and language designer to have higher expressive power during design
and implementation.

The thesis is structured into eight chapters, this is Chapter 1. Chapter 2
contains mainly definitions used further in the thesis and thus introduces the
broad aspect of the topic. Chapter 3 deals with pushdown automata used for
analysis of LLk analysis, where wider contexts (k > 1) are difficult to imple-
ment and a transformation to automata with single symbol context is presented.
Chapters 4 and 5 introduce regulated pushdown automata and study their pos-
sible minimisation. As this is quite a new concept the introduction is provided
in a broader way. Deterministic regulated pushdown automata are newly intro-
duced in Chapter 6 together with some reasoning about them. Finally, Chapter
7 presents exploitation of the concept of deterministic regulated pushdown au-
tomata in syntactic analysis of languages. In particular, analysis of languages
based on scattered context grammars is presented. Last, but not least, is Chap-
ter 8, where the thesis is briefly concluded as a whole to give overall summary
as the chapters are concluded separately.

Chapter 2

Preliminaries

This chapter summarises some known terms and techniques from the area of
formal languages and automata, below (see, for instance, [53]). If the reader is
familiar with the theory of formal languages and automata and their application
in compilers he/she can skip to the next chapter.

2.1 General Preliminaries

This section introduces the notation of natural and integral numbers used below
in the thesis. Set N = {1, 2, . . .} and I = {0, 1, 2, . . .}.

Moreover, we define for a set, X, card(X) to denote its cardinality.

2.2 Formal Languages Theory Preliminaries

First of all a set of all strings over an alphabet is defined with respect to the
operation of concatenation and a language:

Definition 2.2.1 A semigroup S = (S, .) is a set S (carrier of S), with an
associative operation ’.’ (a semigroup multiplication). A monoid M = (S, ., 1)
is a semigroup S = (S, .), with a unit element 1 such that a.1 = 1.a = a, for
each a ∈ S.

Definition 2.2.2 Let V be an alphabet. V ∗ represents the free monoid gener-
ated by V under the operation of concatenation. The unit of V ∗ is denoted by
ε. Set V + = V ∗−{ε}; algebraically, V + is thus the free semigroup generated by
V under the operation of concatenation.

Definition of language can be derived straightforwardly as a (proper) subset of
a set of all strings over a given alphabet. Indeed, for example, not all sequences
of English words compose an English sentence.

3

4 CHAPTER 2. PRELIMINARIES

Definition 2.2.3 A language L with respect to the V ∗ is defined as L ⊆ V ∗.

Next, we define a set of operations that can be performed over a string over
the given alphabet:

Notation 2.2.1 For w ∈ V ∗, |w| denotes the length of w.

Notation 2.2.2 For w ∈ V ∗, reversal(w) denotes the reversal of w.

Notation 2.2.3 For w ∈ V ∗ set prefix (w) = {x | x is a prefix of w}.

Notation 2.2.4 For w ∈ V ∗ set suffix (w) = {x | x is a suffix of w}.

Notation 2.2.5 For w ∈ V ∗ set alph(w) = {a | a ∈ V, and a appears in w}.

Notation 2.2.6 For w ∈ V + and i ∈ {1, . . . , |w|}, sym(w, i) denotes the ith
symbol of w; for instance, sym(abcd, 3) = c.

Another possibility to define a language is via grammar . Of course, a (for-
mal) grammar is quite a well known term in the area of information technology.
In general, we can define a grammar the following way:

Definition 2.2.4 A grammar, G, is a quadruple G = (N, T, P, S), where N is
a final set of non-terminals, T is a final set of terminals, T ∩ N = ∅, P is a
final set of production rules, it is a subset of (N ∪ T)∗N(N ∪ T)∗ × (N ∪ T)∗,
an element (α, β) ∈ P will be written α → β, and the symbol S is the starting
non-terminal, S ∈ N .

To define language defined by a grammar, we have to define the term derivation.
A definition of it, together with a definition of language defined by a grammar,
follows:

Definition 2.2.5 If α→ β ∈ P and u, v, β ∈ (N∪T)∗, α ∈ (N∪T)∗N(N∪T)∗,
then uαv ⇒ uβv [α → β] or, simply, uαv ⇒ uβv is called a simple derivation.
In the standard manner, extend ⇒ to ⇒n, where n ≥ 0; then, based on ⇒n,
define ⇒+ and ⇒∗, a (general) derivation.

The language of G, L(G), is defined as L(G) = {w ∈ T ∗ | S ⇒∗ w}.

By restricting the form of production rules used for a grammar definition, we
can recognise several kinds of grammars and languages defined by such gram-
mars. Next are defined some kinds of them (for extension see, for example,
[53, 19]).

Definition 2.2.6 A context-sensitive grammar, G, restricts P (a finite set of
productions) such a way, so that for every α → β ∈ P : |α| ≤ |β|. If an empty
string (ε) is in the language a special rule is allowed in P : S → ε, where S is
the starting non-terminal.

2.2. FORMAL LANGUAGES THEORY PRELIMINARIES 5

A language, L, is context-sensitive if and only if L = L(G), where G is a
context-sensitive grammar.

Definition 2.2.7 A context-free grammar, G, restricts P (a finite set of pro-
ductions) to the form A → x, where A ∈ N and x ∈ (N ∪ T)∗. If there are
several rules of the form A → α1, A → α2, . . . , A → αn, where A ∈ N ,
αi ∈ (N ∪ T)∗ for i ∈ {1, . . . , n}, αi are mutually different, then we can write
them in the form A→ α1|α2| . . . |αn.

A language, L, is context-free if and only if L = L(G), where G is a context-
free grammar.

An example of a simple grammar defining additive and multiplicative expres-
sions with brackets and traditional precedence is presented next:
Let G = (N, T, P, S) be a grammar defining such expressions, then

N = {S,M,B}

T = {+,−, ∗, /, (,), num}

P = {S → M + S, S → M − S, S → M,M → B ∗M,S → B/M, S →
B,B → (S), B → num}

For better readability, we usually join right-hand-sides of the rules from P to-
gether and delimit them by a pipe, |. Thus we could obtain for P from our
example such a form:
P = {S → M + S | M − S | M,M → B ∗M | B/M | B,B → (S) | num}
which can also be written in a more readable form, where we devote each line
to one nonterminal on the left-hand-side of the production rule:
P = {

S → M + S | M − S | M,
M → B ∗M | B/M | B,
B → (S) | num

}
Definitions of other grammar categories continues next.

Definition 2.2.8 A linear grammar, G, restricts P (a finite set of productions)
to the form A → x, where A ∈ N and x ∈ T ∗(N ∪ {ε})T ∗, where ε stands for
empty string.

A language, L, is linear if and only if L = L(G), where G is a linear gram-
mar.

Definition 2.2.9 A regular grammar, G, restricts P (a finite set of produc-
tions) to the form A→ x, where A ∈ N and x ∈ T (N ∪ {ε}).

A language, L, is regular if and only if L = L(G), where G is a regular
grammar.

6 CHAPTER 2. PRELIMINARIES

Every category of the grammar defines a set of languages described by all
grammars of a particular type. Next we introduce abbreviations to recognise
these particular language sets.

Definition 2.2.10 A set of all languages described by non-restricted grammar
from Definition 2.2.4 is called a family of recursively enumerable languages and
it will be referenced by abbreviation RE.

A set of all languages described by context-sensitive grammar from Definition
2.2.6 is called a family of context-sensitive languages and it will be referenced
by abbreviation CS.

A set of all languages described by context-free grammar from Definition
2.2.7 is called a family of context-free languages and it will be referenced by
abbreviation CF .

A set of all languages described by linear grammar from Definition 2.2.8 is
called a family of linear languages and it will be referenced by abbreviation LIN .

A set of all languages described by regular grammar from Definition 2.2.9
is called a family of regular languages and it will be referenced by abbreviation
REG.

Besides the previously presented definition of a grammar, there are even some
other possibilities of a grammar definition. Next, we present another grammar
definition and a language defined by it, which is further used in this thesis:

Definition 2.2.11 A queue grammar (see [44]) is a six-tuple, Q = (V, T, W,
F, S, P), where V (terminals together with nonterminals) and W (state-like
representation symbols) are alphabets satisfying V ∩W = ∅, T stands for ter-
minals, T ⊆ V , F stands for final states, F ⊆ W , S is a starting pair non-
terminal&state, S ∈ (V −T)(W −F), and P ⊆ (V × (W −F))× (V ∗×W) is a
finite relation such that for every a ∈ V , there exists an element (a, b, x, c) ∈ P .
If u, v ∈ V ∗W such that u = arb, v = rzc, a ∈ V , r, z ∈ V ∗, b, c ∈ W and
(a, b, z, c) ∈ P , then u ⇒ v [(a, b, z, c)] in G or, simply, u ⇒ v. In the standard
manner, extend ⇒ to ⇒n, where n ≥ 0. Based on ⇒n, define ⇒+ and ⇒∗.

The language of Q, L(Q), is defined as L(Q) = {w ∈ T ∗ | S ⇒∗

wf where f ∈ F}.

Next is presented a slight modification of the notion of a queue grammar and
of a language defined by such grammar.

Definition 2.2.12 A left-extended queue grammar is a six-tuple, Q = (V, T,
W, F, S, P), where V , T , W , F , S, P have the same meaning as in a queue
grammar; in addition, assume that # 6∈ V ∪ W . If u, v ∈ V ∗{#}V ∗W so
u = w#arb, v = wa#rzc, a ∈ V , r, z, w ∈ V ∗, b, c ∈ W , and (a, b, z, c) ∈ P ,
then u⇒ v [(a, b, z, c)] in G or, simply, u⇒ v. In the standard manner, extend
⇒ to ⇒n, where n ≥ 0. Based on ⇒n, define ⇒+ and ⇒∗.

2.3. FORMAL AUTOMATA THEORY PRELIMINARIES 7

The language of Q, L(Q), is defined as L(Q) = {v ∈ T ∗ | #S ⇒∗

w#vf for some w ∈ V ∗ and f ∈ F}.

The modification provides, in fact, as a part of the derivation string, complete
information about the states the derivation goes through (placed left of the
symbol #). Thus, the features of the left-extended queue grammar are the
same as those of the queue grammar.

2.3 Formal Automata Theory Preliminaries

This section formally defines automata used in this thesis. We start with a
definition of pushdown automata:

Definition 2.3.1 A pushdown automaton (PA) is a 7-tuple, M = (Q, Σ, Ω,
R, s, S, F), where Q is a finite set of states, Σ is an input alphabet, Ω is a
pushdown alphabet, R is a finite set of rules of the form Apa → wqb, where
A ∈ Ω, p, q ∈ Q, a ∈ Σ ∪ {ε}, w ∈ Ω∗ and b ∈ {a, ε} (if b 6= ε then the rule
”tests” the value under the reading head, the head is not shifted, the symbol is
not read), s ∈ Q is the start state, S ∈ Ω is the start symbol, F ⊆ Q is a set of
final states.

Next, an atomic pushdown automaton is defined:

Definition 2.3.2 An atomic pushdown automaton is a 7-tuple, M = (Q, Σ,
Ω, R, s, $, F), where Q is a finite set of states, Σ is an input alphabet, Ω is a
pushdown alphabet (Q, Σ, and Ω are pairwise disjoint), s ∈ Q is the start state,
$ is the pushdown-bottom marker, $ 6∈ Q∪Σ∪Ω, F ⊆ Q is a set of final states,
R is a finite set of rules of the form Apa→ wq, where p, q ∈ Q, A,w ∈ Ω∪{ε},
a ∈ Σ ∪ {ε}, such that |Aaw| = 1. That is, R is a finite set of rules such that
each of them has one of these forms

(1) Ap→ q (popping rule)

(2) p→ wq (pushing rule)

(3) pa→ q (reading rule)

The role of determinism increases if we want to use pushdown automata in a
computer application. Thus we define determinism of (atomic) PA here:

Definition 2.3.3 An (atomic) pushdown automaton M = (Q, Σ, Ω, R, s, $,
F) is deterministic, if from (Apa → wqb) ∈ R and (Apa → w′q′b′) ∈ R it
follows that q = q′ ∧ w = w′ ∧ b = b′ (for atomic PA symbols b and b′ do not
appear at all).

Informally, for a given state, the top of the pushdown, and the symbol under
the reading head, there is at most one rule in R.

8 CHAPTER 2. PRELIMINARIES

If we want to denote the sequence of operations of a pushdown automata we
use sequences of configurations. Two possible definitions (differing in notation
only) are presented below:

Definition 2.3.4 A configuration of M is a triple (q, w, α) ∈ Q × Σ∗ × Ω∗,
where

1. q represents the current state of the finite control,

2. w represents the unused portion of the input; the first symbol of w is under
the input head; if w = ε then it is assumed that all of the input tape has
been read,

3. α represents the contents of the pushdown list; the leftmost symbol of α is
the topmost pushdown symbol; if α = ε, then the pushdown list is assumed
to be empty.

A move performed by M will be represented by the binary relation ⊢M (or ⊢
whenever identification of M is clear) on configuration. We write

(q, aw, Zα) ⊢ (q′, w, γα)

if Zqa → γq′ ∈ R for any q ∈ Q, a ∈ (Σ ∪ {ε}), w ∈ Σ∗, Z ∈ Ω, and α ∈ Ω∗.
And, we write

(q, aw, Zα) ⊢ (q′, aw, γα)

if Zqa→ γq′a ∈ R.

The relation ⊢i, for i ≥ 0 can be defined in a standard customary fashion.
Define ⊢∗ and ⊢+ in the standard manner, when ⊢∗ stands for reflexive-transitive
closure of ⊢ and ⊢+ stands for transitive closure of ⊢.

Definition 2.3.5 A configuration of M , χ, is alternatively any word from
Ω∗QΣ∗. For every x ∈ Ω∗, y ∈ Σ∗, and r = Apa→ wq, r ∈ R, M makes a move
from configuration xApay to configuration xwqy according to r = Apa → wq,
r ∈ R, written as xApay ⊢ xwqy [r]. If r = Apa → wqa, r ∈ R then we write
xApay ⊢ xwqay [r]

Let χ be any configuration of M . M makes zero moves from χ to χ according
to ε, symbolically written as χ ⊢0 χ [ε]. Let there exist a sequence of configu-
rations χ0, χ1, . . . , χn for some n ≥ 1 such that χi−1 ⊢ χi [ri], where ri ∈ R,
for i = 1, . . . , n, then M makes n moves from χ0 to χn, symbolically written as
χ0 ⊢

n χn [r1 . . . rn] or, more simply, χ0 ⊢
n χn. Define ⊢∗ and ⊢+ in the standard

manner.

2.4. USAGE OF PUSHDOWN AUTOMATA IN COMPILER

CONSTRUCTION 9

2.4 Usage of Pushdown Automata in Compiler

Construction

Pushdown automata play a significant role in compiler construction. Their key
task is to perform syntactic analysis based on a particular context-free grammar.
Basically, we recognise two main proper subsets of context-free languages used
for syntactic analysis—so called LL and LR languages. In this thesis, we mainly
focus on the LL languages and thus additional definitions of automata and
other necessary ones are targeted at them. To extend to both categories see, for
instance, [3, 4, 5]. The abbreviation LL stands for left-to-right reading of the
input and left parse.

Before we get to the definition of automata and their construction we need
a helping definition:

Definition 2.4.1 Let L1 +k L2, where L1 and L2 are arbitrary languages, is
defined as:

L1 +k L2 = {uv | u ∈ L1, v ∈ L2, |uv| = k}

A pushdown automata used for parsing of the languages, which can be de-
scribed by LL grammars, can be defined this way:

Definition 2.4.2 9-tuple M = (Q,Σ,Ω, δ, q0, z0, $,#, QF) is a k-context
grammar-based parsing pushdown automaton, if Ω stands for pushdown alpha-
bet, Σ for tape alphabet (terminal symbols), where Σ ⊆ Ω, Q is a set of states of
automaton (Ω and Q are disjoint), q0, q0 ∈ Q, is a starting state, QF , QF ⊆ Q,
is a set of final states of automaton, z0, z0 ∈ Ω, is initial symbol on the top
of the pushdown, # represents bottom marker of pushdown, $ stands for end
marker of input tape (#, $ 6∈ (Q ∪ Ω)), and δ is a mapping such that:

δ : Q× (Ω ∪ {#, ε}) × ((Σ+ +k {$}
∗) ∪ {$}) → Q× Ω∗ × {S, ε}

Every step of automata is driven by the mapping δ in such a way that according
to the actual state, symbol on the top of the pushdown, and string of the k/1
symbol(s) on the input tape (starting under the reading head) the state is changed
to the new one (possibly the same one), the symbol on the top of the pushdown is
replaced by a string of new symbols and the reading head is (optionally) shifted
(S) one symbol to the right.

For LL languages, it is not necessary to use all the possibilities of mapping δ.
In practice, we use just four operations, they are:

Definition 2.4.3

1. expand: δ is of the form Q× Ω × (Σ+ +k {$}∗) → Q× Ω∗ × {ε}
This operation replaces the top of the pushdown with a string of symbols
while not moving the reading head.

10 CHAPTER 2. PRELIMINARIES

2. pop: δ is of the form Q× Ω × (Σ+ +k {$}∗) → Q× {ε} × {S}
This operation removes one symbol from the top of the pushdown and
moves the reading head one symbol to the right.

3. accept: δ is of the form Q×{#}×{$} → QF ×{ε}×{ε}, where QF ⊆ Q
(see Definition 2.4.2)
This operation verifies that the pushdown is empty and the reading head
is at the end of the tape and stops the operation of the automata.

4. error: δ is of the form Q × (Ω ∪ {#}) × ((Σ+ +k {$}∗) ∪ {$}) → error

This is a special operation and is invoked to report a syntactic error. It
can be invoked in any state (possibly not the final one) and has no special
relation to the content of the pushdown or tape under the reading head.
Thus, reading the symbol under the reading head and watching the top of
the pushdown we can recognise the faulty symbol.

Grammars that can be used to build the mapping δ and, thus, to define a
deterministic parsing pushdown automata are known as LLk grammars, where
k represents a width of the context. That means, how many symbols are read
by a reading head of the automata at a time. Before we get to the definition
of the LLk grammar, we have to introduce one definition, which will be useful
even later, for construction of the automata:

Definition 2.4.4 Let G = (N, T, P, S) is a context-free grammar.
FIRSTk(α)={ a1a2 . . . ak | ai ∈ T, i ∈ {1, . . . , k}, α ⇒∗

|P | a1a2 . . . akβ } ∪

{ a1a2 . . . ak−1ε | ai ∈ T, i ∈ {1, . . . , k − 1}, α ⇒∗
|P | a1a2 . . . ak−1 } ∪ . . . ∪

{ ε1ε2 . . . εk | α ⇒∗
|P | ε }, where α, β ∈ (N ∪ T)∗.

Definition of the LLk grammar follows:

Definition 2.4.5 Let G = (N, T, P, S) is a context-free grammar. It is an LLk

grammar, where k > 0, if the following holds for any two derivations: if

S ⇒∗ wAβ ⇒ wα1β ⇒∗ wx and
S ⇒∗ wAβ ⇒ wα2β ⇒∗ wy

then it must also hold that from

FIRSTk(x) = FIRSTk(y)

it follows that

α1 = α2.

Informally, for a given string wαβ and a sequence of tokens a1a2 . . . ak, which
start the α, there is exactly one rule A → α such that we could derive the
complete string and, moreover, there is no other way to do that.

2.4. USAGE OF PUSHDOWN AUTOMATA IN COMPILER

CONSTRUCTION 11

A definition of mapping δ is not an easy task, in general. Moreover, a suitable
representation has to be chosen as well. Thus, for certain kinds of languages,
we can use a simple table. Such a table describes this mapping a very useful
way, which is easy for implementation. The key features are determinism of
operation, creation directly from an appropriate language grammar (it is the
only input and one-step operation), etc. The definition of such a parsing table,
which stands for the complete definition of pushdown automata for parsing of
LLk languages, can be found, for instance, in [4]. It is also presented directly
below:

Definition 2.4.6 A parsing table for LLk language, M ′, is defined on (Ω ∪
{#})× ((Σ+ +k {$}∗)∪{$}). Unlike the [4], the pushdown bottom marker is the
symbol #, we are not using ε to denote the <end of file> symbol as usual, but
we use the symbol $.

Every place of the parsing table contains an operation from Definition 2.4.3
(expand, pop, accept, error).

The automaton described by such a parsing table has then only two states—
one of them is the starting state the other one is the final state. The starting
one is also the only one used during parsing (we usually call it q in this thesis).
On the contrary, the other one (the final one) is used only for the successful
stopping of the automata (we usually call it qF in this thesis). Thus, from the
table and additional features, we can derive a complete definition of the parsing
pushdown automata.

Even if a table describes the automata completely, it still remains to define
an algorithm that enables the creation of such a table. The way to do that is
quite easy, even if it is not straightforward. First of all, we have to start with
two helping definitions. The first of them introduces a limitation to the length
of the sentences for the given language and the second one introduces a new
function (defined and extended in [4]):

Definition 2.4.7 Let Σ is an alphabet then let the notation, Σ∗k, represents
such a set of sentences over Σ, so that w ∈ Σ∗k : w ∈ Σ∗ ∧ |w| ≤ k.

Definition 2.4.8 Let G = (N,Σ, P, S) be a context-free grammar (2.2.7). For
each A ∈ N and L ⊆ Σ∗k we define BA,L, the LLk table associated with A and
L to be a function which given a lookahead string u ∈ Σ∗k returns either the
symbol error or an A-production and a finite list of subsets of Σ∗k.

Specifically,

1. BA,L = error if there is no production A → α in P such that
FIRSTk(α) +k L contains u.

2. BA,L = (A → α, < Y1, Y2, . . . , Ym >) if A → α is the unique
production in P such that FIRSTk(α) +k L contains u. If α =

12 CHAPTER 2. PRELIMINARIES

x0X1x1X2x2 . . .Xmxm, m ≥ 0, where each Xi ∈ N and xi ∈ Σ∗, then
Yi = FIRSTk(xiXi+1xi+1 . . . Xmxm) +k L. We shall call Yi a local follow
set for Xi.

3. BA,L is undefined if there are two or more productions A→ α1|α2| . . . |αn

such that FIRSTk(αi) +k L contains u, for 1 ≤ i ≤ n, n ≥ 2. This
situation will not occur if G is an LLk grammar, though.

These two definitions help us in the construction of LLk tables, which is a
necessary input to the construction of a parsing table, besides an appropriate
grammar, of course. An algorithm of LLk tables construction can also be found
in [4]:

Algorithm 2.4.1 The algorithm of LLk tables construction is defined in such
a way:
Input: An LLk context-free grammar, G = (N,Σ, P, S)
Output: ℑ, the set of LLk tables needed to construct a parsing table for G.
Method:

1. Construct B0, the LLk table associated with S and $.

2. Initially set ℑ = {B0}.

3. For each LLk table B ∈ ℑ with entry

B(u) = (A→ x0X1x1X2x2 . . . Xmxm, < Y1, Y2, . . . , Ym >)

add to ℑ the LLk table BXi,Yi
, for 1 ≤ i ≤ m, if BXi,Yi

is not already in ℑ.

4. Repeat step (3) until no new LLk tables can be added to ℑ.

Finally, we have all the necessary inputs to construct an LLk parsing table
for a given grammar. The algorithm comes from [4] again:

Algorithm 2.4.2

Input: An LLk context-free grammar G = (N,Σ, P, S) and ℑ, the set of LLk

tables for G (the algorithm for their construction can be found in Algorithm
2.4.1, or in [4]).
Output: M ′, a valid parsing table for G.
Method: From Definition 2.4.6, set Ω = ℑ ∪ Σ. The content of M ′ is defined
as follows:

1. If A → x0X1x1X2x2 . . .Xmxm is the ith production in P and BA,L is in
ℑ, then for all u such that

BA,L(u) = (A→ x0X1x1X2x2 . . .Xmxm, < Y1, Y2, . . . , Ym >)

we have M ′(BA,L, u) = (x0BX1,Y1
x1BX2,Y2

x2 . . . BXm,Ym
xm, i)—operation

expand.

2.4. USAGE OF PUSHDOWN AUTOMATA IN COMPILER

CONSTRUCTION 13

2. M ′(a, av) = pop for all v ∈ (Σ∗(k−1) +(k−1) {$}∗(k−1)).

3. M ′(#, $) = accept.

4. Otherwise, M ′(X, u) = error.

5. BS,{$} is the initial table.

We will show the complete table creation in the following example. It uses
quite a simple grammar defining a finite language, nevertheless, itself having an
LL2 features:
Let G = (N,Σ, P, S) be a grammar having such features:

N = {S,A}

Σ = {a, b}
Note:We used T to denote this set, which is traditional for language theory, Σ

is used in connection with automata.

P = {
S → aAaa | bAba
A → b | ε

}

When building the parsing table, we have to start with the LLk tables, namely
with table B0 = BS,{$}:

Table B0

u Production Sets
aa S → aAaa < {aa} >
ab S → aAaa < {aa} >
bb S → bAba < {ba} >

From this table, another two tables can be derived:

Table BA,{aa}

u Production Sets
ba A→ b —
aa A→ ε —

Table BA,{ba}

u Production Sets
ba A→ ε —
bb A→ b —

Construction of the LL2 parsing table is started with enumeration of the gram-
mar rules:

1. S → aAaa

2. S → bAba

3. A → b

4. A → ε

14 CHAPTER 2. PRELIMINARIES

aa ab a$ ba bb b$ $

B0 aB1aa, 1 aB1aa, 1 bB2ba, 2
B1 ε, 4 b, 3
B2 ε, 4 b, 3
a pop pop pop

b pop pop pop

accept

Figure 2.1: Parsing table for LL2 language

Finally, the parsing table (blank entries indicate error) is presented in figure 2.1.
For the sake of better readability, we rename the parsing tables the following
way: B0 = BS,{$}, B1 = BA,{aa}, and B2 = BA,{ba}.

Now, if we have an input string bba the pushdown automaton defined by the
table would make the following sequence of moves:

(bba$, B0#, ε) ⊢ (bba$, bB2ba#, 2)
⊢ (ba$, B2ba#, 2)
⊢ (ba$, ba#, 24)
⊢ (a$, a#, 24)
⊢ ($,#, 24).

Chapter 3

Analysis of LLk Languages

The LL grammars play an important role in programming languages description.
The construction of their efficient and simple analysers (pushdown automata) is
limited to the LL1 grammars, however. The descriptive power of these grammars
is quite low and, in addition, there are problems with analysis of the LLk+1,
k ≥ 1, grammars. This section presents an algorithm that allows transformation
from pushdown automaton with (k+1)-symbol reading head used for LLk+1

language analysis to the one-symbol reading head pushdown automaton. Thus,
we can simulate a function of the former by using the much simpler constructs
of the latter.

3.1 Introduction

The context-free grammars contain some proper subsets for which an efficient
analyser (parser) can be built. LL grammars belong to these subsets. Languages
such as Pascal, Modula, and Oberon were described by using context-free gram-
mars satisfying conditions of being LL. In particular, LL1 grammars were used.
It was proven (see [5]) that LLk grammar has a lower descriptive power than
LLk+1 grammars for any k > 0. Moreover, a description of systems using LL
grammars with higher k can lead to much readable and understandable nota-
tion. Unfortunately, the analysis of languages described by such grammars is
not that easy task, because using sequences of symbols for indexing or match-
ing operations requires a special approach and makes an implementation more
difficult.

Pushdown automata used for the analysis of LLk+1 languages are constructed
from the context-free grammars describing the particular language using pars-
ing tables. The algorithm for the parsing table construction can be found in [4]
and is briefly presented in Chapter 2. The main problem of analysis of LLk+1

languages lies in the comparison of several symbols under the pushdown au-
tomaton reading head (in file) with the same number of symbols in the parsing

15

16 CHAPTER 3. ANALYSIS OF LLK LANGUAGES

table and/or on the top of the pushdown.
The algorithm presented below enables the simulation of the automata with

several symbols under the reading head by automata using just one symbol
under the reading head. Moreover, as we will see, the transition from one
automaton/parsing table to another can be done very easily when the process
of transformation is fully understood.

The background of parsing table construction is presented in [4] or in Chapter
2. The algorithm of new automata construction is presented in several steps
below. Finally, the two parsing tables are compared so that the easy transition
from one to another can be seen and the section itself is concluded afterwards.

3.2 One-Symbol Automata Construction

We have already presented the main reasons as to why multi-symbol parsers are
not suitable—especially because searching for actions in a table based on more
than 1 symbol is not easily implementable.

The idea of simulating automata with several symbols by automata with
just one symbol lies in the storing of a sufficiently recent history of actually
processed symbols on the tape into states of the pushdown automata. Thus, we
will need just one symbol to decide on the next step, while fully simulating all
the features of the original automata.

3.2.1 Parsing Automata and Table Modification

An algorithm for the creation of a new pushdown automata, generally multi-
state ones, starts with the formal modification of the original parsing table and
automaton.

Definition 3.2.1 A modified parsing pushdown automaton is the one defined
in Definition 2.4.2 with the exception that mapping δ is defined the following
way:

δ : Q× (Ω ∪ {#, ε}) × (Σ∗ +k {$}
∗) → Q× Ω∗ × {S, ε}

Definition 3.2.2 Definition of LLk parsing table from 2.4.6 is modified in ac-
cordance with the automata definition. The modified parsing table is defined
over

(Ω ∪ {#}) × (Σ∗ +k {$}
∗)

The rest remains untouched.

Table 2.1, from example at the end of the Chapter 2, has to be modified in
such a way then (see figure 3.1). We can see that, the former column names
were formally changed, so that they could always have the same number, k, of

3.2. ONE-SYMBOL AUTOMATA CONSTRUCTION 17

aa ab a$ ba bb b$ $$

B0 aB1aa, 1 aB1aa, 1 bB2ba, 2
B1 ε, 4 b, 3
B2 ε, 4 b, 3
a pop pop pop

b pop pop pop

accept

Figure 3.1: Modified parsing table for LL2 language

symbols, in our example k = 2. It is done by the appending of the appropriate
number of symbols representing the end-of-file symbol ($).

3.2.2 Empty Automaton Construction

The automaton reading a single symbol under the reading head while analysing
LLk language for k > 1 is just a straightforward modification of the automaton
with k-context reading head:

Definition 3.2.3 A single symbol k-context grammar-based parsing pushdown
automaton (SSkPDA), M , follows Definition 2.4.2 except formal definition of
mapping δ, which is:

δ : Q× (Ω ∪ {#, ε}) × (Σ ∪ {$}) → Q× Ω∗ × {S, ε}

Pushdown and tape alphabet remains the same for the new automata, of
course. The states will be defined by their names. They are all column names
from the modified parsing table, plus all the prefixes of those not starting with
symbol $. In the case of our example, they are the following states: aa, ab, a$,
ba, bb, b$, $$, a, b. For the set to be complete, starting (0) and final (X) states
have to be added. Names of the states are telling us what the recent history is,
what symbols were already read and skipped by the reading head. Formally:

Definition 3.2.4 Set of states, Q, of SSkPDA is derived in such a way:

Q = { x̄ | x ∈ (Σ∗ +k {$}∗) } ∪
{ ȳ | x ∈ (Σ+ +k {$}∗), y ∈ prefix(x) } ∪
{0, X}, 0, X 6∈ Σ

Note: if x is a string a1a2 . . . an then x̄ stands for ā1ā2 . . . ān.

Moreover, the actions of new automata have to be added/modified to be
able to handle a new feature. The actions expand , accept , and error remain
informally the same, with the small exceptions described below. The action

18 CHAPTER 3. ANALYSIS OF LLK LANGUAGES

pop is modified though—it removes the correct symbol from the pushdown not
taking into account a symbol under the reading head. Moreover, as another
parameter it has a name of a new state of automata which will be active after
this action is performed. A completely new action is the action read , which has
as a parameter symbol, which should be on the tape under the reading head
and it is moved to the top of the pushdown, while the reading head is moved
one symbol to the right. Formally:

Definition 3.2.5 The operations of SSkPDA are the following: expand, read,
pop, accept, error. They are formally defined the following way:

• expand: δ is of the form Q× Ω × {ε} → Q× Ω∗ × {ε}
We can see that the history stored in the states influences this operation
in such a way so that it need not test the symbol under the reading head.
It is denoted by the state itself.

• read: δ is of the form Q× {ε} × Σ → Q× {ε} × {S}
According to the state and symbol under the reading head the new state is
denoted and the reading head shifted one symbol to the right.

• pop: δ is of the form Q× Ω × {ε} → Q× {ε} × {ε}
The correctness of the pushdown top content is ”checked” by the state.

• accept: δ is of the form Q× {#} × {$} → QF × {ε} × {ε}

• error: δ is of the form Q× (Ω ∪ {#}) × (Σ ∪ {$, ε}) → error

Thus, we have all the basic elements for the new automata creation ready.
So far, actions connecting the states already defined are the only missing thing,
but the most important one.

3.2.3 Automaton Completion

The connection of states with actions starts with the read actions. From the
modified parsing table, we can see that symbols a and b can be read at the
beginning, but not symbol $. Thus, we can perform actions reading symbols a
and b and changing the state from the starting one to the appropriate one (state
a or b). Moreover, for any combination of 2 symbols, there is a possible action.
Thus the appropriate read actions should continue even to relevant states (see
solid arrows in figure 3.2). For instance, when in state a a symbol b is read from
the tape and the reading head is moved one symbol to the right then the state
is changed from state a, which says that recently symbol a was read, to state ab,
which says that symbols ab were recently read, symbol a directly before symbol
b. Formally:

3.2. ONE-SYMBOL AUTOMATA CONSTRUCTION 19

Definition 3.2.6 The SSkPDA mapping δ must, besides others (other defini-
tions completing the mapping δ will follow), contain the following maps (read
operations):

1. (0, ε, a) → (p, ε, {S}) if in the modified parsing table, there is for table B0

an expand action in a column, which is marked with a string starting with
the symbol a, a ∈ Σ, and the name of state p is composed from the single
symbol string ā,

2. (q, ε, a) → (p, ε, {S}) if a name of state q is composed from string α and a
name of state p is composed from string αā, a ∈ Σ, moreover, if |αā| < k
then for symbol x, x̄ = sym(α, 1), x ∈ Σ, an action must be defined in
point 1,

3. (0, ε, $) → (p, ε, ε) if in the modified parsing table, there is for table B0

an expand action in a column, which is marked with a string $k, and the
name of state p is composed from string $̄k—this happens if an empty
string belongs to the language.

The symbol on the top of the pushdown can be removed whenever the history
stored in the state and symbol on the top of the pushdown matches (see dashed
lines with boxed labels in figure 3.2). For instance, being in state aa and having
symbol a on the top of the pushdown, we can remove the symbol from the
pushdown top, but we have to change the state from the one called aa to the
one called a. Thus, we keep coherence of preservation of history of processed
symbols with the state activity. Formally:

Definition 3.2.7 The SSkPDA mapping δ must, besides others, contain the
following maps:

1. (q, a, ε) → (p, ε, ε) if a name of state q is composed from string xα, x = ā,
a ∈ (Σ∩Ω), and a name of state p is composed from string α, α 6= $̄(k−1),
if ȳ ∈ alph(α) then y ∈ (Σ ∪ {$}).

2. (q, a, ε) → (p, ε, ε) if a name of state q is composed from string x$̄k−1,
x = ā, a ∈ (Σ ∩ Ω), and a name of state p is composed from string $̄k.

These can be seen as operations pop defined in such a way, so that symbol a on
the top of the pushdown and actual state q denotes performance of the operation
itself, which has as a parameter state p that is a new state after completion of
the operation.

Table symbols (replacing nonterminals) stored on the top of the pushdown
must be expanded at the correct time. The information for when to do that is
stored in the modified parsing table, of course. Now, instead of tape content,
we just work with automata states. Thus, whenever a state for name of which a

20 CHAPTER 3. ANALYSIS OF LLK LANGUAGES

Figure 3.2: Read and Pop actions are easy to define

column of the modified parsing table contains expand action appears, the same
action is added to the new automaton. The tape contents is represented by
state, the top of the pushdown must match the symbol being expanded by the
action (see solid arrows with labels boxed in solid boxes in figure 3.3—the figure
uses numbers to denote the proper actions, they are: 1 for rule (B0 → aB1aa,
1), 2 for rule (B0 → bB2ba, 2), 3 for rule (B1 → b, 3), 4 for rule (B1 → ε, 4), 5
for rule (B2 → b, 3), 6 for rule (B2 → ε, 4)). Formally:

Definition 3.2.8 The SSkPDA mapping δ must, besides others, contain the
following maps (expand operations): (q, Bi, ε) → (q, γ, ε) if a name of state q
is composed from string ᾱ and the modified parsing table contains for table Bi

and string under the reading head, α, operation expand, which replaces the top
of the pushdown with string γ.

Note: besides expansion, the number of used grammar rule is sent to the output.

Finally, the accept action must be added, so that the automata can stop its
operation. This can be done only in one case when there is no symbol on the
pushdown and the tape is read till the end (see dashed arrow with label boxed
in dashed box in figure 3.3). Formally:

Definition 3.2.9 The SSkPDA mapping δ must, besides others, contain the
following map (accept operation): (q,#, $) → (X, ε, ε) if a name of state q is

3.2. ONE-SYMBOL AUTOMATA CONSTRUCTION 21

Figure 3.3: Expand and Pop actions added

composed from string $̄k.

If the automaton is in a state, for which there is no action defined for the
actual content of the pushdown top and/or symbol under the reading head the
error occurs. Formally:

Definition 3.2.10 If Definitions 3.2.6, 3.2.7, 3.2.8, 3.2.9 do not define the
mapping δ completely the remaining entries are filled with action error.

Note: Not for all combinations is it necessary, see next subsection.

3.2.4 Parsing Table Notation

The pushdown automata creation was described above (without the formal ap-
proach presented in [49]). The representation by a labelled state transition
diagram is not useful, though. Moreover, even if the transformation algorithm
is not complicated it is not straightforward.

Nevertheless, a table representation for the new automata can be found.
Moreover, the representation can even have such features so that the new au-
tomata can be derived very easily and straightforwardly.

The columns of the new table will be denoted by automata states. The
rows will be divided into two groups. In the first one, lines will be denoted by
pushdown alphabet (the same way as in the case of the regular parsing table).
The second part will use the tape alphabet. Moreover, the second lower part
will not need columns, where state names are based on k-symbol strings.

22 CHAPTER 3. ANALYSIS OF LLK LANGUAGES

Even the upper part of the table, where lines are denoted by pushdown
alphabet, can be logically separated into two parts. Moreover, the same way as
the lower part—one part is denoted by k-symbol names, while the other not.
And what is even more, one part, in this case, the one denoted by columns
where state names do not contain k symbols, is also always empty.

As there is not any action outgoing from the final state, it is not necessary
to explicitly mention this state in the table.

Thus, we can see that the table is divided into four parts, while two of them
are always empty:

states with states with
fewer than k-symbol names exactly k-symbol names

pushdown always actions of original table,
alphabet empty uses new actions semantics

tape always action read, always
alphabet new states stored empty

Empty parts of the table represent cases that are not taken into account as
there should be action in another part of the table. If there is no action in the
non-empty part, an error should be reported.

3.3 Comparison of Parsing Tables

The new parsing table for the example presented would look like this:

0 ā b̄ āā āb̄ ā$̄ b̄ā b̄b̄ b̄$̄ $̄$̄

B0 aB1aa, aB1aa, bB2ba,
1 1 2

B1 ε, 4 b, 3

B2 ε, 4 b, 3

a pop ā pop b̄ pop $̄

b pop ā pop b̄ pop $̄
acc

a ā āā b̄ā

b b̄ āb̄ b̄b̄

$ ā$̄ b̄$̄

The part, which recollects the modified original parsing table is presented in
bold. If we take into account that columns are not indexed by the contents
of the tape, but by states and that the action pop has a modified behaviour,
we can see that the only difference is the left lower corner. Filling it is quite
straightforward, though.

3.4. INTERMEDIATE SUMMARY 23

3.4 Intermediate Summary

To summarise, this chapter presents, so far, an algorithm that enables simulating
the behaviour of pushdown automata used for the analysis of LL languages
with wider context (2 and more symbols on the tape are read at a single time).
Moreover, the representation of such a new automata is possible by table too.
What is even more important, the new representation is very similar to the old
one and a formal change of semantics of various parts of the table has to be
done. The only extension that is required is quite straightforward.

Storage of such a table in the program memory and implementation of an
analyser based on this table seems to be quite easy as well. This is because we
talk about two two-dimensional arrays only. Moreover, it is sufficient to read
only one symbol from the tape at a time.

The algorithm enables using, in a much broader way, the LLk grammars and
languages based on these grammars in various parts of computer science. As an
open item, we can see a construction of automatic parser generator similar to the
particularly known one—y.a.c.c. Another open item is the proof of equivalence
of both automata. It is presented next.

3.5 Proof of Automata Equivalence

The proof shows the step by step equality of the LLk parsing table driven
pushdown automata and SSkPDA pushdown automata. The proof uses
mathematical induction with extra small proofs to demonstrate all possibilities.

0) Empty string analysis

First of all, let us assume, that the empty string, ε, belongs to the language.

We start with the LLk parsing automata. If Algorithm 2.4.2 is followed the
automata would go through the following sequence of configurations: (q, $, B0#)
⊢ (q, $,#) ⊢ (qF , $,#). The first configuration, (q, $, B0#), is the starting one
and follows from the definition. Transition to the next configuration follows the
operation expand coming from the Algorithm 2.4.2—it replaces the symbol
B0 with the empty string. The next transition is performance of the operation
accept, it also comes from Algorithm 2.4.2. The last configuration contains the
final state, qF , and represents successful acceptance of the input.

The SSkPDA automata would behave the following way in the same situ-
ation. The starting configuration, coming from the definition is the following
one: (0, $, B0#). From the starting configuration, there is, for this case, defined
an operation read coming from Definition 3.2.6. Applying the operation the
configuration changes in such a way: (0, $, B0#) ⊢ ($̄k, $, B0#). For a given
configuration, there is defined operation expand coming from Definition 3.2.8.

24 CHAPTER 3. ANALYSIS OF LLK LANGUAGES

Applying this operation the configuration changes in such a way: ($̄k, $, B0#)
⊢ ($̄k, $,#). This operation performs replacement of the symbol B0 with the
empty string. Finally, for the last configuration, there is defined operation ac-

cept from Definition 3.2.9. The last transition ($̄k, $,#) ⊢ (X, ε, ε) reaches the
configuration containing the final state, which represents successful acceptance
of the input.

Now, let us assume, that the empty string, ε, does not belong to the language.

We start with the LLk parsing automata again. If Algorithm 2.4.2 is followed
the automata would behave the following way: (q, $, B0#) ⊢ error. This is
because there is no operation expand defined for such a configuration and any
other operation (except the error one) is not even used in such configuration at
all.

The SSkPDA automata would behave the following way in the same situ-
ation. The starting configuration is obvious: (0, $, B0#). As the empty string
is not in the language assumed in this case, there is no transition defined by
operations defined in 3.2.6 and all the other kinds of operations (except the
error one) are not used in the situation. Thus, the transition performs an error
detecting/reporting operation: (0, $, B0#) ⊢ error.

We can see that both automata behave the same way in the presented situations.

1) One-symbol string analysis (step 1 of the induction part of the proof)

First of all, let us assume, that the one-symbol string, a, belongs to the language.

We start with the LLk parsing automata. If Algorithm 2.4.2 is fol-
lowed the automata would go through the following sequence of configura-
tions: (q, a$, B0#) ⊢ (q, a$, a#) ⊢ (q, $,#) ⊢ (qF , $,#). The first configuration,
(q, a$, B0#), is the starting one and follows from the definition. Transition to the
next configuration follows operation expand coming from Algorithm 2.4.2—it
replaces the symbol B0 with the one-symbol string a. The next transition stands
for operation pop, which is also defined by 2.4.2. The last transition is the per-
formance of the operation accept, it also comes from Algorithm 2.4.2. The last
configuration contains the final state, qF , and represents successful acceptance
of the input.

The SSkPDA automata would behave the following way in the same situ-
ation. The starting configuration, coming from the definition is the following
one: (0, a$, B0#). From the starting configuration, there is, for this case, de-
fined an operation read coming from Definition 3.2.6. Applying the operation
the configuration changes in such a way: (0, a$, B0#) ⊢ (ā, $, B0#). Now, the
operation read, defined in 3.2.6, continues reading till k symbols have been read
in total (repeatedly reads end of file marker—$, in total k − 1 times). Thus,

3.5. PROOF OF AUTOMATA EQUIVALENCE 25

the next transition looks like (ā, $, B0#) ⊢ (ā$̄, $, B0#). Reading the $ sym-
bol repeats till the following configuration is reached: (ā$̄(k−1), $, B0#). For
a given configuration, there is defined operation expand coming from Defini-
tion 3.2.8. Applying this operation the configuration changes in such a way:
(ā$̄(k−1), $, B0#) ⊢ (ā$̄(k−1), $, a#). This operation performs replacement of the
symbol B0 with the one-symbol string a. Now, the only operation that can be
performed is the pop operation defined in 3.2.7. It changes the configuration
in the following way: (ā$̄(k−1), $, a#) ⊢ ($̄k, $,#) Finally, for the last configura-
tion, there is defined operation accept from Definition 3.2.9. The last transition
($̄k, $,#) ⊢ (X, ε, ε) reaches the configuration containing the final state, which
represents successful acceptance of the input.

Now, let us assume, that the one-symbol string, a, does not belong to the
language.

We start with the LLk parsing automata again. If Algorithm 2.4.2 is followed
the automata would behave the following way: (q, a$, B0#) ⊢ error. This is
because there is no operation expand defined for such a configuration and any
other operation (except the error one) is not even used in such a configuration
at all.

The SSkPDA automata can behave in two ways with the same result de-
pending on the language features. If the language does not allow symbol a at
the beginning of any string at all, the SSkPDA would behave this way. The
starting configuration is obvious: (0, a$, B0#). As the empty string is not as-
sumed in the language at the beginning of any string in this case, there is no
transition defined by the operations defined in 3.2.6 and all the other kinds
of operations (except the error one) are not used in the situation. Thus, the
transition performs an error detecting/reporting operation: (0, $, B0#) ⊢ error.

If symbol a is allowed at the beginning of certain strings, but not alone, the
automaton behaviour would start the same way as if the one-symbol string
is part of the language: (0, a$, B0#) ⊢ (ā, $, B0#) ⊢ (ā$̄, $, B0#) ⊢ . . . ⊢
(ā$̄(k−1), $, B0#). It simply reads the first k symbols and reaches the appropri-
ate state. Nevertheless, for a given state there is no operation expand defined
and no pop operation can be performed. The other operations, except the error
one, are not defined in such situations at all. Thus the error operation has to
be performed: (ā$̄(k−1), $, B0#) ⊢ error.

We can see that both automata behave the same way in the presented situations.

2) (n+ 1)-symbol string analysis (step 2 of the induction part of the proof)

First of all, let us assume, that the (n + 1)-symbol string, aα, belongs to the
language. From induction hypothesis, we assume that a string of the length n,
α, is processed correctly.

26 CHAPTER 3. ANALYSIS OF LLK LANGUAGES

We start with the LLk parsing automata. If Algorithm 2.4.2 is fol-
lowed the automata would start with the following sequence of configurations:
(q, aα$, B0#) ⊢ (q, aα$, β#). The first configuration, (q, aα$, B0#), is the start-
ing one and follows from the definition. Transition to the next configuration
follows operation expand coming from Algorithm 2.4.2—it replaces the symbol
B0 with a string of symbols, β, according to the k symbols, starting with the
symbol a, under the reading head of the automata. For the next transition,
there are two possibilities, in general.

1. String β = Zγ, where Z 6∈ (Σ∩Ω), i.e. it is a table symbol. In such a case,
the expand operation is performed till the configuration (q, aα$, bω#),
where b ∈ (Σ ∩ Ω), is reached. The situation following is described under
point 2.

2. String β = bγ, where b ∈ (Σ ∩ Ω), b = a. In such a case, the operation
pop is performed: (q, aα$, bγ#) ⊢ (q, α$, γ#). From now on, the situation
described by either point 1 or point 2 can occur till the configuration gets
to the following status: (q, $,#)—we rely on induction hypothesis here,
as by performing the operation pop, string α is to be accepted, which is
the base of the induction hypothesis.

If the automata reach the status (q, $,#) then the last transition is performed—
the operation accept, it also comes from Algorithm 2.4.2. The last configuration
contains the final state, qF , and it represents successful acceptance of the input:
(q, $,#) ⊢ (qF , $,#).

The SSkPDA automata would behave the following way in the same situ-
ation. The starting configuration, coming from the definition is the following
one: (0, aα$, B0#). From the starting configuration, there is, for this case, de-
fined an operation read coming from Definition 3.2.6. Applying the operation,
the configuration changes in such a way: (0, aα$, B0#) ⊢ (ā, α$, B0#). Now,
the operation read defined in 3.2.6 continues reading till k symbols have been
read in total. Thus, the next (k − 1) transitions look like (ā, α$, B0#) ⊢ . . . ⊢
(āσ̄, δ$, B0#), where σδ = α if |α| ≥ (k−1), or σδ = α$i, where i = k−|α|−1 if
|α| < (k−1). For a given configuration, there is defined operation expand com-
ing from Definition 3.2.8. Applying this operation, the configuration changes in
such a way: (āσ̄, δ$, B0#) ⊢ (āσ̄, δ$, β#). This operation performs the replace-
ment of the symbol B0 with the string β. For the next transition, there are two
possibilities, in general.

1. String β = Zγ, where Z 6∈ (Σ ∩ Ω), i.e. it is a table symbol. In such a
case, the expand operation (def. 3.2.8) is performed till the configuration
(āσ̄, δ$, bω#), where b ∈ (Σ ∩ Ω), is reached. The situation following is
described under point 2.

2. String β = bγ, where b ∈ (Σ ∩ Ω), b = a. In such a case, the operation
pop (def. 3.2.7) is performed: (āσ̄, δ$, bγ#) ⊢ (σ̄, δ$, γ#). From now on,

3.5. PROOF OF AUTOMATA EQUIVALENCE 27

the situation described by either point 1 or point 2 can occur till the con-
figuration gets to the following status: ($̄k, $,#)—induction hypothesis.

If the automata reach the status ($̄k, $,#) then the last transition is performed—
the operation accept from Definition 3.2.9. The last transition ($̄k, $,#) ⊢
(X, ε, ε) reaches the configuration containing the final state, which represents
successful acceptance of the input.

Now, let us assume, that the (n + 1)-symbol string, aα, does not belong to the
language.

The string may be rejected under two circumstances only:

1. the symbol on the top of the pushdown is a table symbol and it cannot be
expanded , or

2. the symbol on the top of the pushdown is a terminal/input alphabet symbol
and it cannot be popped .

The former one has already been shown for the one-symbol input string. The
behaviour could be the same even for longer strings with the exception that it
may happen even later. Thus, the detailed proof is left to the reader.

The latter one will be partially demonstrated below. The detailed part of
the proof is also left up to the reader.

We start with the LLk parsing automata, as usual. The error may
happen if we get into the following configuration: (q, a1 . . . akαbβ$, Biγ#).
If the expansion is performed in such a way, so that we get con-
figuration (q, a1 . . . akαbβ$, δγ#), then for δ = a1 . . . akαc we can per-
form a sequence of pop operations (it is performed k + |α| operations):
(q, a1 . . . akαbβ$, a1 . . . akαcγ#) ⊢ . . . ⊢ (q, bβ$, cγ#). Now, as we assume an er-
ror, b 6= c, b, c ∈ (Σ∩Ω) and, thus, an error operation is performed: (q, bβ$, cγ#)
⊢ error.

The SSkPDA automata would behave the following way in the same situa-
tion. It is in the same situation as the LLk automata above if it is in the configu-
ration: (ā1ā2 . . . āk, αbβ$, Biγ#). If the expansion is performed in such a way, so
that we get configuration (ā1ā2 . . . āk, αbβ$, δγ#), then for δ = a1 . . . akαc we can
perform a sequence of pop and read operations (it is performed k+ |α| pairs of
operations): (ā1ā2 . . . āk, αbβ$, a1 . . . akαcγ#) ⊢ (ā2 . . . āk, αbβ$, a2 . . . akαcγ#)
⊢ (ā2 . . . ākx̄, ζbβ$, a2 . . . akαcγ#)|xζ=α| ⊢ . . . ⊢ (χ̄, β ′$, cγ#). Now, as we as-
sume an error, χ = bχ′ and b 6= c, b, c ∈ (Σ ∩ Ω), from which it follows that
the error operation is performed as there is no expansion possible and no pop

operation can be done for different symbols, thus: (b̄χ̄′, β ′$, cγ#) ⊢ error.

We can see that both automata behave the same way in the presented situations.

28 CHAPTER 3. ANALYSIS OF LLK LANGUAGES

It has been shown that both kinds of automata behave the same way for the
same input and, thus, they are equal in the sense of acceptance/rejection of the
input strings. �

3.6 Summary

It has been shown that a transformation from automata with several symbols
under the reading head to those, which use just a one-symbol reading head, is
possible. Moreover, the transformation is informally quite easy. Nevertheless,
the formal proof of equivalence of behaviour of both kinds of automata was
presented too.

At the end of the chapter we ask more or less a rhetorical question: Is
it possible to modify SSkPDA automata in such a way so that they remain
deterministic, equal to the LLk ones and they are atomic ones?

Chapter 4

Regulated Pushdown Automata

The present chapter demonstrates a recent investigation area of the formal lan-
guage theory—regulated automata (see [54]). Specifically, it investigates push-
down automata that regulate the use of their rules by control languages. It
proves that this regulation has no effect on the power of pushdown automata if
the control languages are regular. However, the pushdown automata regulated
by linear control languages characterise the family of recursively enumerable
languages. All these results are established in terms of:

(A) acceptance by final state,

(B) acceptance by empty pushdown, and

(C) acceptance by final state and empty pushdown.

In its conclusion, this chapter formulates several open problems.

4.1 Introduction

Over the past three or four decades, grammars that regulate the use of their rules
by various control mechanisms have played an important role in language theory.
Indeed, literally hundreds of studies have been written about these grammars
(see [21], Chapter 5 in the second volume of [62], and Chapter V in [63] for an
overview of these studies). Besides grammars, however, language theory uses
automata as fundamental language models, and this very elementary fact gives
rise to the idea of regulated automata, which are introduced and discussed in
the present paper.

More specifically, this chapter presents pushdown automata that regulate the
use of their rules by control languages. First, it demonstrates that this regula-
tion has no effect on the power of pushdown automata if the control languages
are regular. Based on this result, it points out that pushdown automata regu-
lated by analogy with the control mechanisms used in most common regulated

29

30 CHAPTER 4. REGULATED PUSHDOWN AUTOMATA

grammars, such as matrix grammars, are of little interest because their resulting
power coincides with the power of ordinary pushdown automata. Then, however,
the present chapter proves that the pushdown automata increase their power
remarkably if they are regulated by linear languages; indeed, they characterise
the family of recursively enumerable languages.

All results given in this paper are established in terms of (A) acceptance by
final state, (B) acceptance by empty pushdown, and (C) acceptance by final
state and empty pushdown. In its conclusion, this chapter discusses some open
problem areas concerning regulated automata.

4.2 Preliminaries

We assume that the reader is familiar with language theory (see [53]). The
notation can be found in Chapter 2 as 2.2.1, 2.2.2, 2.2.3, 2.2.4, 2.2.5, 2.2.6. The
definitions can be found in Chapter 2 as 2.2.2, 2.2.4, 2.2.5, 2.2.8, 2.2.9, 2.2.10,
2.2.11, and 2.2.12.

4.3 Definitions

Consider a pushdown automaton, M , and a control language, Ξ, over M ’s rules.
Informally, with Ξ, M accepts a word, x, if and only if Ξ contains a control
word according to which M makes a sequence of moves so it reaches a final
configuration after reading x.

Formally, a pushdown automaton is a 7-tuple, M = (Q,Σ,Ω, R, s, S, F). In
addition to 2.3.1, this chapter requires that Q, Σ, Ω are pairwise disjoint.

Let Ψ be an alphabet of rule labels such that card(Ψ) = card(R), and ψ
be a bijection from R to Ψ. For simplicity, to express that ψ maps a rule,
Apa→ wq ∈ R, to ρ, where ρ ∈ Ψ, this paper writes ρ.Apa→ wq ∈ R; in other
words, ρ.Apa → wq means ψ(Apa → wq) = ρ. A configuration of M , χ, is any
word from Ω∗QΣ∗. For every x ∈ Ω∗, y ∈ Σ∗, and ρ.Apa → wq ∈ R, M makes
a move from configuration xApay to configuration xwqy according to ρ, written
as xApay ⊢ xwqy [ρ]. Let χ be any configuration of M . M makes zero moves
from χ to χ according to ε, symbolically written as χ ⊢0 χ [ε]. Let there exist a
sequence of configurations χ0, χ1, . . . , χn for some n ≥ 1 such that χi−1 ⊢ χi [ρi],
where ρi ∈ Ψ, for i = 1, . . . , n, then M makes n moves from χ0 to χn according
to ρ1 . . . ρn, symbolically written as χ0 ⊢n χn [ρ1 . . . ρn].

Let Ξ be a control language over Ψ; that is, Ξ ⊆ Ψ∗. With Ξ, M defines the
following three types of accepted languages:

L(M,Ξ, 1)—the language accepted by final state

L(M,Ξ, 2)—the language accepted by empty pushdown

4.4. RESULTS 31

L(M,Ξ, 3)—the language accepted by final state and empty pushdown

defined as follows. Let χ ∈ Ω∗QΣ∗. If χ ∈ Ω∗F , χ ∈ Q, χ ∈ F , then χ is
a 1-final configuration, 2-final configuration, 3-final configuration, respectively.
For i = 1, 2, 3, define L(M,Ξ, i) as L(M,Ξ, i) = {w | w ∈ Σ∗, and Ssw ⇒∗

χ [σ] in M for an i−final configuration, χ, and σ ∈ Ξ}.
For any family of languages, X, set RPD(X, i) = {L | L =

L(M,Ξ, i), where M is a pushdown automaton and Ξ ∈ X}, where i = 1, 2, 3.
Specifically, RPD(REG, i) and RPD(LIN, i) are central to this chapter.

4.4 Results

This section demonstrates that CF = RPD(REG, 1) = RPD(REG, 2) =
RPD(REG, 3) and RE = RPD(LIN, 1) = RPD(LIN, 2) = RPD(LIN, 3).

Some of the following proofs involve several grammars and automata. To
avoid any confusion, these proofs sometimes specify a regular grammar, G, as
G = (V [G], P [G], S[G], T [G]) because this specification clearly expresses that
V [G], P [G], S[G], and T [G] represent G’s components. Other grammars and
automata are specified analogously whenever any confusion may exist.

4.4.1 Regular Control Languages

Next, this section proves that if the control languages are regular, then the
regulation of pushdown automata has no effect on their power. The proof of
Lemma 4.4.1 presents a transformation that converts any regular grammar, G,
and any pushdown automaton, K, to an ordinary pushdown automaton, M ,
such that L(M) = L(K,L(G), 1).

Lemma 4.4.1 For every regular grammar, G, and every pushdown automaton,
K, there exists a pushdown automaton, M , such that L(M) = L(K,L(G), 1).

Proof : Let G = (N [G], T [G], P [G], S[G]) be any regular grammar, and let K =
(Q[K],Σ[K],Ω[K], R[K], s[K], S[K], F [K]) be any pushdown automaton. Next,
we construct a pushdown automaton, M , that simultaneously simulates G and
K so that L(M) = L(K,L(G), 1).

Let f be a new symbol. Define the pushdown automatonM = (Q[M], Σ[M],
Ω[M], R[M], s[M], S[M], F [M]) as Q[M] = {〈qB〉 | q ∈ Q[K], B ∈ N [G]∪{f}},
Σ[M] = Σ[K], Ω[M] = Ω[K], s[M] = 〈s[K]S[G]〉, S[M] = S[K], F [M] =
{〈qf〉 | q ∈ F [K]}, and R[M] = {C〈qA〉b → x〈pB〉 | a.Cqb → xp ∈ R[K], A →
aB ∈ P [G]} ∪ {C〈qA〉b→ x〈pf〉 | a.Cqb → xp ∈ R[K], A→ a ∈ P [G]}.

Observe that a move in M according to C〈qA〉b→ x〈pB〉 ∈ R[M] simulates
a move in K according to a.Cqb → xp ∈ R[K], where a is generated in G by
using A→ aB ∈ P [G]. Based on this observation, it is rather easy to see thatM

32 CHAPTER 4. REGULATED PUSHDOWN AUTOMATA

accepts an input word, w, if and only if K reads w and enters a final state after
using a complete word of L(G); therefore, L(M) = L(K,L(G), 1). A rigorous
proof that L(M) = L(K,L(G), 1) is left to the reader. �

Theorem 4.4.1 For i ∈ {1, 2, 3}, CF = RPD(REG, i).

Proof : To prove CF = RPD(REG, 1), notice that RPD(REG, 1) ⊆ CF fol-
lows from Lemma 4.4.1. Clearly, CF ⊆ RPD(REG, 1), so RPD(REG, 1) =
CF .

By analogy with the demonstration of RPD(REG, 1) = CF , prove that
CF = RPD(REG, 2) and CF = RPD(REG, 3). �

Let us point out that most fundamental regulated grammars use control
mechanisms that can be expressed in terms of regular control languages (c.f.
Theorem V.6.1 on page 175 in [63]). However, pushdown automata introduced
by analogy with these grammars are of little or no interest because they are as
powerful as ordinary pushdown automata (see Theorem 4.4.1 above).

4.4.2 Linear Control Languages

The rest of this section demonstrates that the pushdown automata regulated by
linear control languages are more powerful than ordinary pushdown automata.
In fact, it proves that RE = RPD(LIN, 1) = RPD(LIN, 2) = RPD(LIN, 3).

Lemma 4.4.2 For every left-extended queue grammar, K, there exists a
left-extended queue grammar Q = (V, T,W, F, s, P) satisfying L(K) = L(Q), !
is a distinguished member of (W − F), V = U ∪ Z ∪ T such that U , Z, T are
pairwise disjoint, and Q derives every z ∈ L(Q) in this way

#S ⇒+ x#b1b2 . . . bn!
⇒ xb1#b2 . . . bny1p2

⇒ xb1b2#b3 . . . bny1y2p3
...
⇒ xb1b2 . . . bn−1#bny1y2 . . . yn−1pn

⇒ xb1b2 . . . bn−1bn#y1y2 . . . ynpn+1

where n ∈ N , x ∈ U∗, bi ∈ Z for i = 1, . . . , n, yi ∈ T ∗ for i = 1, . . . , n,
z = y1y2 . . . yn, pi ∈W −{!} for i = 1, . . . , n− 1, pn ∈ F , and in this derivation
x#b1b2 . . . bn! is the only word containing !.

Proof : Let K be any left-extended queue grammar. Convert K to a left-
extended queue grammar, H = (V [H], T [H],W [H], F [H], S[H], P [H]), such
that L(K) = L(H) and H generates every x ∈ L(H) by making two or more
derivation steps (this conversion is trivial and left to the reader).

Define the bijection α from W to W ′, where W ′ = {q′ | q ∈ W}, as
α(q) = {q′} for every q ∈ W . Analogously, define the bijection β from W

4.4. RESULTS 33

to W ′′, where W ′′ = {q′′ | q ∈ W}, as β(q) = {q′′} for every q ∈ W .
Without any loss of generality, assume that {1, 2} ∩ (V ∪ W) = ∅. Set
Ξ = {〈a, q, u1v, p〉 | (a, q, uv, p) ∈ P [H] for some a ∈ V, q ∈ W − F, v ∈ T ∗, u ∈
V ∗, and p ∈ W} and Γ = {〈a, q, z2w, p〉 |(a, q, zw, p) ∈ P [H] for some a ∈
V, q ∈ W − F,w ∈ T ∗, z ∈ V ∗, and p ∈ W}. Define the relation χ from V [H]
to ΞΓ so for every a ∈ V , χ(a) = {〈a, q, y1x, p〉〈a, q, y2x, p〉 | 〈a, q, y1x, p〉 ∈
Ξ, 〈a, q, y2x, p〉 ∈ Γ, q ∈ W − F, x ∈ T ∗, y ∈ V ∗, p ∈ W}. Define the bijection
δ from V [H] to V ′, where V ′ = {a′ | a ∈ V }, as δ(a) = {a′}. In the standard
manner, extend δ so it is defined from (V [H])∗ to (V ′)∗. Finally, define the
bijection φ from V [H] to V ′′, where V ′′ = {a′′ | a ∈ V }, as φ(a) = {a′′}. In the
standard manner, extend φ so it is defined from (V [H])∗ to (V ′′)∗.

Define the left-extended queue grammar

Q = (V [Q], T [Q],W [Q], F [Q], S[Q], P [Q])

so that V [Q] = V [H] ∪ δ(V [H]) ∪ φ(V [H]) ∪ Ξ ∪ Γ, T [Q] = T [H], W [Q] =
W [H]∪α(W [H])∪β(W [H])∪{!}, F [Q] = β(F [H]), S[Q] = δ(S[H]), and P [V]
is constructed in this way

1. if (a, q, x, p) ∈ P [H] where a ∈ V , q ∈ W − F , x ∈ V ∗, and p ∈ W , then
add (δ(a), q, δ(x), p) and (δ(a), α(q), δ(x), α(p)) to P [Q];

2. if (a, q, xAy, p) ∈ P [H], where a ∈ V , q ∈ W − F , x, y ∈ V ∗, A ∈ V , and
p ∈W , then add (δ(a), q, δ(x)χ(A)φ(y), α(p)) to P [Q];

3. if (a, q, yx, p) ∈ P [H], where a ∈ V , q ∈ W − F , y ∈ V ∗, x ∈ T ∗, and
p ∈ W , then add (〈a, q, y1x, p〉, α(q), φ(y), !) and (〈a, q, y2x, p〉, !, x, β(p))
to P [Q];

4. if (a, q, y, p) ∈ P [H], where a ∈ V , q ∈ W − F , y ∈ T ∗, and p ∈ W , then
add (φ(a), β(q), y, β(p)) to P [Q].

Set U = δ(V [H])∪Ξ and Z = φ(V [H])∪Γ. Notice that Q satisfies properties
2 and 3 of Lemma 4.4.2. To demonstrate that the other two properties hold as
well, observe that H generates every z ∈ L(H) in this way

#S[H] ⇒+ x#b1b2 . . . bip1

⇒ xb1#b2 . . . bibi+1 . . . bny1p2

⇒ xb1b2#b3 . . . bibi+1 . . . bny1y2p3
...
⇒ xb1b2 . . . bi−1#bibi+1 . . . bny1y2 . . . yi−1pi

⇒ xb1b2 . . . bi#bi+1 . . . bny1y2 . . . yi−1yipi+1
...
⇒ xb1b2 . . . bn−1#bny1y2 . . . yn−1pn

⇒ xb1b2 . . . bn−1bn#y1y2 . . . ynpn+1

34 CHAPTER 4. REGULATED PUSHDOWN AUTOMATA

where n ∈ N , x ∈ V +, bi ∈ V for i = 1, . . . , n, yi ∈ T ∗ for i = 1, . . . , n,
z = y1y2 . . . yn, pi ∈W for i = 1,∈, n, pn+1 ∈ F . Q simulates this generation of
z as follows

#S[Q] ⇒+ δ(x)#χ(b1)φ(b2 . . . bi)α(p1)
⇒ δ(x)〈b1, p1, bi+1 . . . bn1y1, p2〉#〈b1, p1, bi+1 . . . bn2y1, p2〉

φ(b2 . . . bibi+1 . . . bn)!
⇒ δ(x)χ(b1)#φ(b2 . . . bn)y1p2

⇒ δ(x)χ(b1)φ(b2)#φ(b3 . . . bn)y1y2p3
...
⇒ δ(x)χ(b1)φ(b2 . . . bn−1)#φ(bn)y1y2 . . . yn−1pn

⇒ δ(x)χ(b1)φ(b2 . . . bn)#y1y2 . . . ynpn+1

Q makes the first |x| − 1 steps of #S[Q] ⇒+ δ(x)#χ(b1)φ(b2 . . . bi)α(p1)
according to productions introduced in 1; in addition, during this derivation,
Q makes one step by using a production introduced in 2. By using productions
introduced in 3, Q makes the two steps

δ(x)#χ(b1)φ(b2 . . . bi)α(p0) ⇒
δ(x)〈b1, p1, bi+1 . . . bn1y1, p2〉#〈b1, p1, bi+1 . . . bn2y1, p2〉φ(b2 . . . bibi+1 . . . bn)! ⇒
δ(x)χ(b1)#φ(b2 . . . bn)y1p2

with
χ(b1) = 〈b1, p0, bi+1 . . . bn1y1, p1〉〈b1, p0, bi+1 . . . bn2y1, p2〉.

Q makes the rest of the derivation by using productions introduced in 4.
Based on the previous observation, it is easy to see thatQ satisfies all the four

properties stated in Lemma 4.4.2, whose rigorous proof is left to the reader. �

Lemma 4.4.3 Let Q be a left-extended queue grammar that satisfies the prop-
erties of Lemma 4.4.2. Then, there exists a linear grammar, G, and a pushdown
automaton, M , such that L(Q) = L(M,L(G), 3).

Proof : Let Q = (V [Q], T [Q],W [Q], F [Q], s[Q], P [Q]) be a left-extended queue
grammar satisfying the properties of Lemma 4.4.2. Without any loss of gener-
ality, assume that {@,£,¶}∩ (V ∪W) = ∅. Define the coding, ζ , from (V [Q])∗

to {〈£as〉 | a ∈ V [Q]}∗ as ζ(a) = {〈£as〉} (s is used as the start state of the
pushdown automaton, M , defined later in this proof).

Construct the linear grammar G = (N [G], T [G], P [G], S[G]) in the following
way. Initially, set

N [G] = {S[G], 〈!〉, 〈!, 1〉} ∪ {〈f〉 | f ∈ F [Q]}

T [G] = ζ(V [Q]) ∪ {〈£§s〉, 〈£@〉} ∪ {〈£§f〉 | f ∈ F [Q]}

P [G] = {S[G] → 〈£§s〉〈f〉 | f ∈ F [Q]} ∪ {〈!〉 → 〈!, 1〉〈£@〉}

4.4. RESULTS 35

Increase N [G], T [G], and P [G] by performing 1 through 3, following next.

1. for every (a, p, x, q) ∈ P [Q] where p, q ∈W [Q], a ∈ Z, x ∈ T ∗,

N [G] = N [G] ∪ {〈apxqk〉 | k = 0, . . . , |x|} ∪ {〈p〉, 〈q〉}
T [G] = T [G] ∪ {〈£sym(y, k)〉 | k = 1, . . . , |y|} ∪ {〈£apxq〉}
P [G] = P [G] ∪ {〈q〉 → 〈apxq|x|〉〈£apxq〉, 〈apxq0〉 → 〈p〉}

∪ {〈apxqk〉 → 〈apxq(k − 1)〉〈£sym(x, k)〉 | k = 1, . . . , |x|};

2. for every (a, p, x, q) ∈ P [Q] with p, q ∈W [Q], a ∈ U , x ∈ (V [Q])∗,

N [G] = N [G] ∪ {〈p, 1〉, 〈q, 1〉}
P [G] = P [G] ∪ {〈q, 1〉 → reversal(ζ(x))〈p, 1〉ζ(a)};

3. for every (a, p, x, q) ∈ P [Q] with ap = S[Q], p, q ∈W [Q], x ∈ (V [Q])∗,

N [G] = N [G] ∪ {〈q, 1〉}
P [G] = P [G] ∪ {〈q, 1〉 → reversal(x)〈£$s〉}.

The construction of G is completed. Set Ψ = T [G]. Ψ represents the alphabet
of rule labels corresponding to the rules of the pushdown automaton M =
(Q[M],Σ[M],Ω[M], R[M], s[M], S[M], {⌉}), which is constructed next.

Initially, set Q[M] = {s[M], 〈¶!〉, ⌊, ⌉} (throughout the rest of this proof,
s[M] is abbreviated to s), Σ[M] = T [Q], Ω[M] = {S[M], §} ∪ V [Q], R[M] =
{〈£§s〉.S[M]s → §s} ∪ {〈£§f〉.§〈¶f〉 →⌉ | f ∈ F [M]}. Increase Q[M] and
R[M] by performing A through D, following next.

A. R[M] = R[M] ∪ {〈£bs〉.as→ abs | a ∈ Ω[M] − {S[M]}, b ∈ Ω[M] − {$}};

B. R[M] = R[M] ∪ {〈£$s〉.as→ a⌊ | a ∈ V [Q]} ∪ {〈£a〉.a⌊→ ⌊ | a ∈ V [Q]};

C. R[M] = R[M] ∪ {〈£@〉.a⌊→ a〈¶!〉 | a ∈ Z};

D. for every (a, p, x, q) ∈ P [Q], where p, q ∈W [Q], a ∈ Z, x ∈ (T [Q])∗,

Q[M] =Q[M] ∪ {〈¶p〉} ∪ {〈¶qu〉 | u ∈ prefix(x)}
R[M] =R[M] ∪ {〈£b〉.a〈¶qy〉b→ a〈¶qyb〉 | b ∈ T [Q], y ∈ (T [Q])∗,

yb ∈ prefix(x)} ∪ {〈£apxq〉.a〈¶qx〉 → 〈¶p〉}.

The construction of M is completed.
Notice that several components of G and M have this form: 〈x〉. Intuitively,

if x begins with £, then 〈x〉 ∈ T [G]. If x begins with ¶, then 〈x〉 ∈ Q[M].
Finally, if x begins with a symbol different from £ or ¶, then 〈x〉 ∈ N [G].

36 CHAPTER 4. REGULATED PUSHDOWN AUTOMATA

First, we only sketch the reason L(Q) contains L(M,L(G), 3). According to
a word from L(G), M accepts every word w as

§w1 . . . wm−1wm ⊢+ §bm . . . b1an . . . a1sw1 . . . wm−1wm

⊢ §bm . . . b1an . . . a1⌊w1 . . . wm−1wm

⊢n §bm . . . b1⌊w1 . . . wm−1wm

⊢ §bm . . . b1〈¶q1〉w1 . . . wm−1wm

⊢|w1| §bm . . . b1〈¶q1w1〉w2 . . . wm−1wm

⊢ §bm . . . b2〈¶q2〉w2 . . . wm−1wm

⊢|w2| §bm . . . b2〈¶q2w2〉w3 . . . wm−1wm

⊢ §bm . . . b3〈¶q3〉w3 . . . wm−1wm

...
⊢ §bm〈¶qm〉wm

⊢|wm| §bm〈¶qmwm〉
⊢ §〈¶qm+1〉
⊢ ⌉

where w = w1 . . . wm−1wm, a1 . . . anb1 . . . bm = x1 . . . xn+1, and R[Q] contains
(a0, p0, x1, p1), (a1, p1, x2, p2), . . . , (an, pn, xn+1, q1), (b1, q1, w1, q2), (b2, q2, w2, q3),
. . . , (bm, qm, wm, qm+1). According to these members of R[Q], Q makes

#a0p0 ⇒ a0#y0x1p1 [(a0, p0, x1, p1)]
⇒ a0a1#y1x2p2 [(a1, p1, x2, p2)]
⇒ a0a1a2#y2x3p3 [(a2, p2, x3, p3)]
...
⇒ a0a1a2 . . . an−1#yn−1xnpn [(an−1, pn−1, xn, pn)]
⇒ a0a1a2 . . . an#ynxn+1q1 [(an, pn, xn+1, q1)]
⇒ a0 . . . anb1#b2 . . . bmw1q2 [(b1, q1, w1, q2)]
⇒ a0 . . . anb1b2#b3 . . . bmw1w2q3 [(b2, q2, w2, q3)]
...
⇒ a0 . . . anb1 . . . bm−1#bmw1w2 . . . wm−1qm [(bm−1, qm−1, wm−1, qm)]
⇒ a0 . . . anb1 . . . bm#w1w2 . . . wmqm+1 [(bm, qm, wm, qm+1)]

Therefore, L(M,L(G), 3) ⊆ L(Q).
More formally, to demonstrate that L(Q) contains L(M,L(G), 3), consider

any h ∈ L(G). G generates h as

S[G]⇒ 〈£§s〉〈qm+1〉
⇒|wm|+1 〈£§s〉〈qm〉tm〈£bmqmwmqm+1〉
⇒|wm−1|+1 〈£§s〉〈qm−1〉tm−1〈£bm−1qm−1wm−1qm〉tm〈£bmqmwmqm+1〉
...
⇒|w1|+1 〈£§s〉〈q1〉o
⇒|w1|+1 〈£§s〉〈q1, 1〉〈£@〉o

[〈q1〉 → 〈q1, 1〉〈£@〉]

4.4. RESULTS 37

⇒ 〈£§s〉ζ(reversal(xn+1))〈pn, 1〉〈£an〉〈£@〉o
[〈q1, 1〉 → reversal(ζ(xn+1))〈pn, 1〉〈£an〉〈£@〉]

⇒ 〈£§s〉ζ(reversal(xnxn+1))〈pn−1, 1〉〈£an−1〉〈£an〉〈£@〉o
[〈pn, 1〉 → reversal(ζ(xn))〈pn−1, 1〉〈£an−1〉]

...

⇒ 〈£§s〉ζ(reversal(x2 . . . xnxn+1))〈p1, 1〉〈£a1〉〈£a2〉 . . . 〈£an〉〈£@〉o
[〈p2, 1〉 → reversal(ζ(x2))〈p1, 1〉〈£a1〉]

⇒ 〈£§s〉ζ(reversal(x1 . . . xnxn+1))〈£$s〉〈£a1〉〈£a2〉 . . . 〈£an〉〈£@〉o
[〈p1, 1〉 → reversal(ζ(x1))〈£$s〉]

where n,m ∈ N ; ai ∈ U for i = 1, . . . , n; bk ∈ Z for k =
1, . . . , m; xl ∈ V ∗ for l = 1, . . . , n + 1; pi ∈ W for i = 1, . . . , n;
ql ∈ W for l = 1, . . . , m + 1 with q1 = ! and qm+1 ∈ F ; tk =
〈£sym(wk, 1)〉 . . . 〈£sym(wk, |wk| − 1)〉〈£sym(wk, |wk|)〉 for k = 1, . . . , m; o =
t1〈£b1q1w1q2〉 . . . 〈£§s〉〈qm−1〉tm−1〈£bm−1qm−1wm−1qm〉tm〈£bmqmwmqm+1〉; h =
〈£§s〉ζ(reversal(x1 . . . xnxn+1))〈£$〉〈£a1〉〈£a2〉 . . . 〈£an〉〈£@〉o.

In greater detail, G makes S[G] ⇒ 〈£§s〉〈qm+1〉 according to
S[G] → 〈£§s〉〈qm+1〉. Furthermore, G makes

〈£§s〉〈qm+1〉
⇒|wm|+1 〈£§s〉〈qm〉tm〈£bmqmwmqm+1〉
⇒|wm−1|+1 〈£§s〉〈qm−1〉tm−1〈£bm−1qm−1wm−1qm〉tm〈£bmqmwmqm+1〉
...
⇒|w1|+1 〈£§s〉〈q1〉o

according to productions introduced in step 1. Then, G makes

〈£§s〉〈q1〉o⇒ 〈£§s〉〈q1, 1〉〈£@〉o

according to 〈!〉 → 〈!, 1〉〈£@〉 (recall that q1 =!). After this step, G makes

〈£§s〉〈q1, 1〉〈£@〉o
⇒ 〈£§s〉ζ(reversal(xn+1))〈pn, 1〉〈£an〉〈£@〉o
⇒ 〈£§s〉ζ(reversal(xnxn+1))〈pn−1, 1〉〈£an−1〉〈£an〉〈£@〉o
...
⇒ 〈£§s〉ζ(reversal(x2 . . . xnxn+1))〈p1, 1〉〈£a1〉〈£a2〉 . . . 〈£an〉〈£@〉o

according to productions introduced in step 2. Finally, according to
〈p1, 1〉 → reversal(ζ(x1))〈£$〉, which is introduced in step 3, G makes

38 CHAPTER 4. REGULATED PUSHDOWN AUTOMATA

〈£§s〉ζ(reversal(x2 . . . xnxn+1))〈p1, 1〉〈£a1〉〈£a2〉 . . . 〈£an〉〈£@〉o
⇒ 〈£§s〉ζ(reversal(x1 . . . xnxn+1))〈£$〉〈£a1〉〈£a2〉 . . . 〈£an〉〈£@〉o

If a1 . . . anb1 . . . bm differs from x1 . . . xn+1, then M does not accept according
to h. Assume that a1 . . . anb1 . . . bm = x1 . . . xn+1. At this point, according to h,
M makes this sequence of moves

§w1 . . . wm−1wm ⊢+ §bm . . . b1an . . . a1sw1 . . . wm−1wm

⊢ §bm . . . b1an . . . a1⌊w1 . . . wm−1wm

⊢n §bm . . . b1⌊w1 . . . wm−1wm

⊢ §bm . . . b1〈¶q1〉w1 . . . wm−1wm

⊢|w1| §bm . . . b1〈¶q1w1〉w2 . . . wm−1wm

⊢ §bm . . . b2〈¶q2〉w2 . . . wm−1wm

⊢|w2| §bm . . . b2〈¶q2w2〉w3 . . . wm−1wm

⊢ §bm . . . b3〈¶q3〉w3 . . . wm−1wm

...
⊢ §bm〈¶qm〉wm

⊢|wm| §bm〈¶qmwm〉
⊢ §〈¶qm+1〉
⊢ ⌉

In other words, according to h, M accepts w1 . . . wm−1wm. Return to the
generation of h in G. By the construction of P [G], this generation im-
plies that R[Q] contains (a0, p0, x1, p1), (a1, p1, x2, p2), . . . , (aj−1, pj−1, xj , pj),
. . . , (an, pn, xn+1, q1), (b1, q1, w1, q2), (b2, q2, w2, q3), . . . , (bm, qm, wm, qm+1).

Thus, in Q,

#a0p0 ⇒ a0#y0x1p1 [(a0, p0, x1, p1)]
⇒ a0a1#y1x2p2 [(a1, p1, x2, p2)]
⇒ a0a1a2#y2x3p3 [(a2, p2, x3, p3)]
...
⇒ a0a1a2 . . . an−1#yn−1xnpn [(an−1, pn−1, xn, pn)]
⇒ a0a1a2 . . . an#ynxn+1q1 [(an, pn, xn+1, q1)]
⇒ a0 . . . anb1#b2 . . . bmw1q2 [(b1, q1, w1, q2)]
⇒ a0 . . . anb1b2#b3 . . . bmw1w2q3 [(b2, q2, w2, q3)]
...
⇒ a0 . . . anb1 . . . bm−1#bmw1w2 . . . wm−1qm [(bm−1, qm−1, wm−1, qm)]
⇒ a0 . . . anb1 . . . bm#w1w2 . . . wmqm+1 [(bm, qm, wm, qm+1)]

Therefore, w1w2 . . . wm ∈ L(Q). Consequently, L(M,L(G), 3) ⊆ L(Q).
A proof that L(Q) ⊆ L(M,L(G), 3) is left to the reader. As L(Q) ⊆

L(M,L(G), 3) and L(M,L(G), 3) ⊆ L(Q), L(Q) = L(M,L(G), 3). Therefore,
Lemma 4.4.3 holds. �

4.5. CHAPTER SUMMARY AND OPEN PROBLEMS 39

Theorem 4.4.2 For i ∈ {1, 2, 3}, RE = RPD(LIN, i).

Proof : Obviously, RPD(LIN, 3) ⊆ RE. To prove RE ⊆ RPD(LIN, 3),
consider any recursively enumerable language, L ∈ RE. By Theorem 2.1 in
[44], L(Q) = L, for a queue grammar. Clearly, there exists a left-extended
queue grammar, Q′, so L(Q) = L(Q′). Furthermore, by Lemmas 4.4.2 and
4.4.3, L(Q′) = L(M,L(G), 3), for a linear grammar, G, and a pushdown au-
tomaton, M . Thus, L = L(M,L(G), 3). Hence, RE ⊆ RPD(LIN, 3). As
RPD(LIN, 3) ⊆ RE and RE ⊆ RPD(LIN, 3), RE = RPD(LIN, 3).

By analogy with the demonstration of RE = RPD(LIN, 3), prove RE =
RPD(LIN, i) for i = 1, 2. �

4.5 Chapter Summary and Open Problems

As already pointed out, this chapter has presented regulated automata as a re-
cent investigation field of the formal language theory. Therefore, it has defined
all notions and established all results in terms of this field. However, this ap-
proach does not rule out a relation of the achieved results to the classical formal
language theory. Specifically, Theorem 4.4.2 can be viewed as a new charac-
terisation of RE and compared with other well-known characterisations of this
family (see pages 180 through 184 in the first volume of [62] for an overview of
these characterisations).

Several research topics can be seen as open with respect to the term of
regulated pushdown automata:

A. For i = 1, . . . , 3, consider RPD(X, i), where X is a language family sat-
isfying REG ⊂ X ⊂ LIN ; for instance, set X equal to the family of
minimal linear languages. Compare RE with RPD(X, i).

B. By analogy with regulated pushdown automata, introduce and study some
other types of regulated automata.

On the other hand, several topics originally proposed by [54] are further
presented in this thesis. They are:

1. Descriptional complexity of regulated pushdown automata.

2. Special cases of regulated pushdown automata, such as their deterministic
versions,

40 CHAPTER 4. REGULATED PUSHDOWN AUTOMATA

Chapter 5

Minimisation of RPA

This chapter presents some simple and natural restrictions of regulated push-
down automata, whose moves are regulated by some control languages. Most
importantly, it studies one-turn regulated pushdown automata and proves that
they characterise the family of recursively enumerable languages. In fact, this
characterisation holds even for atomic one-turn regulated pushdown automata
of a reduced size. This result is established in terms of

(A) acceptance by final state,

(B) acceptance by empty pushdown, and

(C) acceptance by final state and empty pushdown.

5.1 Introduction

Chapter 4 has presented pushdown automata, whose moves are regulated by
linear languages or, more simply, regulated pushdown automata, which charac-
terise the family of recursively enumerable languages (see [54]). This chapter
continues with the discussion of these automata. More specifically, it studies
one-turn regulated pushdown automata.

To recall the concept of one-turn pushdown automata (see [30]), consider
two consecutive moves made by a pushdown automaton, M . If during the first
move M does not shorten its pushdown and during the second move it does,
then M makes a turn during the second move. A pushdown automaton is one-
turn if it makes no more than one turn with either of its pushdowns during any
computation starting from an initial configuration. Recall that the one-turn
pushdown automata characterise the family of linear languages (see [30]) while
their unrestricted versions characterise the family of context-free languages. As
a result, the one-turn pushdown automata are less powerful than the pushdown
automata.

41

42 CHAPTER 5. MINIMISATION OF RPA

This chapter demonstrates that one-turn regulated pushdown automata
characterise the family of recursively enumerable languages. Thus, as opposed
to the ordinary one-turn pushdown automata, the one-turn regulated pushdown
automata are as powerful as the regulated pushdown automata that can make
any number of turns. In fact, this equivalence holds even for some restricted ver-
sions of one-turn regulated pushdown automata, including their atomic versions,
which are sketched next.

During a move, an atomic one-turn regulated pushdown automaton changes
a state and, in addition, performs exactly one of the following actions:

1. it pushes a symbol onto the pushdown

2. it pops a symbol from the pushdown

3. it reads an input symbol

This chapter proves that every recursively enumerable language is accepted
by an atomic one-turn regulated pushdown automaton of a reduced size in terms
of (A) acceptance by final state, (B) acceptance by empty pushdown, and (C)
acceptance by final state and empty pushdown. Notice that this characterisation
of the family of recursively enumerable languages can be seen as an automata-
based counterpart to several grammatically based economical characterisations
of this family (see, for instance, [60], [61], and [50]).

5.2 Preliminaries

We assume that the reader is familiar with language theory (see [53]). The
notation can be found in Chapter 2 as 2.2.1, 2.2.2, 2.2.3, 2.2.4, 2.2.5, 2.2.6. The
definitions can be found in Chapter 2 as 2.2.2, 2.2.4, 2.2.5, 2.2.8, 2.2.10, 2.2.11,
and 2.2.12.

5.3 Definitions

This section defines the notion of a one-turn atomic pushdown automaton reg-
ulated by a linear language.

An atomic pushdown automaton is a 7-tuple, M = (Q, Σ, Ω, R, s, $, F)
(see 2.3.2).

Let Ψ be an alphabet of rule labels such that card(Ψ) = card(R), and ψ
be a bijection from R to Ψ. For simplicity, to express that ψ maps a rule,
Apa → wq ∈ R, to ρ, where ρ ∈ Ψ, this paper writes ρ.Apa → wq ∈ R; in
other words, ρ.Apa → wq means ψ(Apa → wq) = ρ. A configuration of M ,
χ, is any word from {$}Ω∗QΣ∗; χ is an initial configuration if χ = $sw, where
w ∈ Σ∗. For every x ∈ Ω∗, y ∈ Σ∗, and ρ.Apa → wq ∈ R, M makes a move

5.4. RESULTS 43

from configuration $xApay to configuration $xwqy according to ρ, written as
$xApay ⊢ $xwqy [ρ] or, more simply, $xApay ⊢ $xwqy. Let χ be any config-
uration of M . M makes zero moves from χ to χ according to ε, symbolically
written as χ ⊢0 χ [ε]. Let there exist a sequence of configurations χ0, χ1, . . . , χn

for some n ≥ 1 such that χi−1 ⊢ χi [ρi], where ρi ∈ Ψ, for i = 1, . . . , n, then
M makes n moves from χ0 to χn according to ρ1 . . . ρn, symbolically written as
χ0 ⊢n χn [ρ1 . . . ρn] or, more simply, χ0 ⊢n χn. Define ⊢∗ and ⊢+ in the standard
manner.

Let x, x′, x′′ ∈ Ω∗, y, y′, y′′ ∈ Σ∗, q, q′, q′′ ∈ Q, and $xqy ⊢ $x′q′y′ ⊢ $x′′q′′y′′.
If |x| ≤ |x′| and |x′| > |x′′|, then $x′q′y′ ⊢ $x′′q′′y′′ is a turn. If M makes
no more than one turn during any sequence of moves starting from an initial
configuration, then M is said to be one-turn.

Let Ξ be a control language over Ψ; that is, Ξ ⊆ Ψ∗. With Ξ, M defines the
following three types of accepted languages:

L(M,Ξ, 1)—the language accepted by final state

L(M,Ξ, 2)—the language accepted by empty pushdown

L(M,Ξ, 3)—the language accepted by final state and empty pushdown

defined as follows. Let χ ∈ {$}Ω∗QΣ∗. If χ ∈ {$}Ω∗F , χ ∈ {$}Q, χ ∈ {$}F ,
then χ is a 1-final configuration, 2-final configuration, 3-final configuration,
respectively. For i = 1, 2, 3, define L(M,Ξ, i) as L(M,Ξ, i) = {w | w ∈
Σ∗, and $sw ⊢∗ χ [σ] in M for an i−final configuration, χ, and σ ∈ Ξ}.

For any family of languages, X, and i ∈ {1, 2, 3}, set L(X, i) = {L | L =
L(M,Ξ, i), where M is a pushdown automaton and Ξ ∈ X}. RE and LIN
denote the families of recursively enumerable and linear languages, respectively.

5.4 Results

This section proves that the one-turn atomic pushdown automata regulated by
linear languages characterise RE . In fact, these automata need no more than
one state and two pushdown symbols to achieve this characterisation.

Lemma 5.4.1 [54] For every left-extended queue grammar, K, there exists a
left-extended queue grammar Q = (V, τ, W, F, s, P) satisfying L(K) = L(Q), !
is a distinguished member of (W − F), V = U ∪ Z ∪ τ such that U , Z, τ are
pairwise disjoint, and Q derives every z ∈ L(Q) in this way

44 CHAPTER 5. MINIMISATION OF RPA

#S ⇒+ x#b1b2 . . . bn!
⇒ xb1#b2 . . . bny1p2

⇒ xb1b2#b3 . . . bny1y2p3
...
⇒ xb1b2 . . . bn−1#bny1y2 . . . yn−1pn

⇒ xb1b2 . . . bn−1bn#y1y2 . . . ynpn+1

where n ∈ N , x ∈ U∗, bi ∈ Z for i = 1, . . . , n, yi ∈ τ ∗ for i = 1, . . . , n,
z = y1y2 . . . yn, pi ∈W −{!} for i = 1, . . . , n− 1, pn ∈ F , and in this derivation
x#b1b2 . . . bn! is the only word containing !.

�

Lemma 5.4.2 Let Q be a left-extended queue grammar satisfying the properties
of Lemma 5.4.1. Then, there is a linear grammar, G, and a one-turn atomic
pushdown automaton M = ({ξ}, τ, {0, 1}, H, ξ, $, {ξ}) such that card(H) =
card(τ) + 4 and L(Q) = L(M,L(G), 3).

Proof : LetQ = (V, τ,W, F, s, R) be a queue grammar satisfying the properties of
Lemma 5.4.1. For some n ≥ 1, introduce a homomorphism f fromR toX, where
X = ({1}∗{0}{1}∗{1}n ∩ {0, 1}2n). Extend f so it is defined from R∗ to X∗.
Define the substitution h from V ∗ to X∗ as h(a) = {f(r) | r = (a, p, x, q) ∈ R
for some p, q ∈ W , x ∈ V ∗}. Define the coding d from {0, 1}∗ to {2, 3}∗ as
d(0) = 2, d(1) = 3. Construct the linear grammar G = (N, T, P, S) as follows.
Set

T = {0, 1, 2, 3} ∪ τ

N = {S} ∪ {q̃ | q ∈W} ∪ {q̂ | q ∈W}

P = {S → f̃ | f ∈ F} ∪ {̃! → !̂}

Extend P by performing 1 through 3 given next.

1. for every r = (a, p, x, q) ∈ R, p, q ∈W , x ∈ T ∗: P = P ∪ {q̃ → p̃d(f(r))x}

2. for every (a, p, x, q) ∈ R: P = P ∪ {q̂ → yp̂b | y ∈ rev(h(x)), b ∈ h(a)}

3. for every (a, p, x, q) ∈ R, ap = S, p, q ∈W , x ∈ V ∗: P = P ∪{q̂ → y | y ∈
rev(h(x))}

Define the pushdown automaton M = ({ξ}, τ, {0, 1}, H, ξ, $, {ξ}), where H con-
tains the next transition rules:

0. ξ → 0ξ

1. ξ → 1ξ

5.4. RESULTS 45

2. 0ξ → ξ

3. 1ξ → ξ

a. ξa→ ξ for every a ∈ τ

We next demonstrate that L(M,L(G), 3) = L(Q).

To demonstrate L(M,L(G), 3) = L(Q), observe that M accepts every word
w as

$ξw1 . . . wm−1wm ⊢+ $b̄m . . . b̄1ān . . . ā1ξw1 . . . wm−1wm

⊢n $b̄m . . . b̄1ξw1 . . . wm−1wm

⊢|w1| $b̄m . . . b̄1ξw2 . . . wm−1wm

⊢ $b̄m . . . b̄2ξw2 . . . wm−1wm

⊢|w2| $b̄m . . . b̄2ξw3 . . . wm−1wm

⊢ $b̄m . . . b̄3ξw3 . . . wm−1wm

...
⊢ $b̄mξwm

⊢|wm| $b̄mξ
⊢ $ξ

according to a word of the form βαα′β ′ ∈ L(G) where

β = rev(f(rm))rev(f(rm−1)) . . . rev(f(r1)),
α = rev(f(tn))rev(f(tn−1)) . . . rev(f(t1)),
α′ = f(t0)f(t1) . . . f(tn),
β ′ = d(f(r1))w1d(f(r2))w2 . . . d(f(rm))wm,

for some m,n ≥ 1 so that

for i = 1, . . . , m,
ti = (bi, qi, wi, qi+1) ∈ R, bi ∈ V − τ , qi, qi+1 ∈ Q, b̄i = f(ti)

for j = 1, . . . , n+ 1,

rj = (aj−1, pj−1, xj , pj), aj−1 ∈ V− τ , pj−1, pj ∈ Q−F , xj ∈ (V− τ)∗,
āj = f(rj), qm+1 ∈ F , ā0p0 = s

Thus, in Q,

#a0p0 ⇒ a0#y0x1p1 [(a0, p0, x1, p1)]
⇒ a0a1#y1x2p2 [(a1, p1, x2, p2)]
⇒ a0a1a2#y2x3p3 [(a2, p2, x3, p3)]
...

46 CHAPTER 5. MINIMISATION OF RPA

⇒ a0a1a2 . . . an−1#yn−1xnpn [(an−1, pn−1, xn, pn)]
⇒ a0a1a2 . . . an#ynxn+1q1 [(an, pn, xn+1, q1)]
⇒ a0 . . . anb1#b2 . . . bmw1q2 [(b1, q1, w1, q2)]
⇒ a0 . . . anb1b2#b3 . . . bmw1w2q3 [(b2, q2, w2, q3)]
...

⇒ a0 . . . anb1 . . . bm−1#bmw1w2 . . . wm−1qm [(bm−1, qm−1, wm−1, qm)]
⇒ a0 . . . anb1 . . . bm#w1w2 . . . wmqm+1 [(bm, qm, wm, qm+1)]

Therefore, w1w2 . . . wm ∈ L(Q). Consequently, L(M,L(G), 3) ⊆ L(Q).
A proof that L(Q) ⊆ L(M,L(G), 3) is left to the reader.
As L(Q) ⊆ L(M,L(G), 3) and L(M,L(G), 3) ⊆ L(Q), L(Q) =

L(M,L(G), 3). Observe that M is atomic and one-turn. Furthermore,
card(H) = card(τ) + 4. Thus, Lemma 5.4.2 holds. �

Corollary 5.4.1 For every L ∈ RE and every i = 1, 2, 3, there is a linear lan-
guage Ξ, and a one-turn atomic pushdown automaton, M = (Q,Σ,Ω, R, s, $, F)
such that card(Q) ≤ 1, card(Ω) ≤ 2, card(R) ≤ card(Σ)+4, and L(M,Ξ, i) = L.

Proof : By Theorem 2.1 in [44], for every L ∈ RE, there is a queue grammar Q
such that L = L(Q). Clearly, there is a left-extended queue grammar, Q′, such
that L(Q) = L(Q′). Thus, for i = 3 this corollary follows from Lemmas 5.4.1
and 5.4.2. Analogically, prove this corollary for i = 1, 2. �

Corollary 5.4.2 For i ∈ {1, 2, 3}, RE = L(LIN , i).

Proof : This theorem follows from Corollary 5.4.1. �

Chapter 6

Bounded Deterministic RPA

This chapter presents a possible definition of the bounded deterministic reg-
ulated pushdown automata, which are regulated by some control languages.
What is more important, it demonstrates the equivalence of this automata with
bounded deterministic Turing machine. The determinism and power equal to
bounded deterministic Turing machine is demonstrated by use of control lan-
guages belonging to a set of all context-free languages (CF) though. Thus, the
question of powerful deterministic regulated pushdown automata regulated by
language coming from LIN remains open.

6.1 Introduction

Chapter 4 has presented pushdown automata, whose moves are regulated by
linear languages or, more simply, regulated pushdown automata, which charac-
terise the family of recursively enumerable languages. Chapter 5 has presented
atomic one-turn regulated pushdown automata, whose moves are also regulated
by linear languages, which characterise the family of recursively enumerable
languages (see [55]).

This chapter demonstrates the definition of determinism in the area of reg-
ulated pushdown automata. Moreover, it demonstrates that linear-bounded
deterministic pushdown automata (DRPA) regulated by context-free languages
are of the same power as linear-bounded deterministic Turing machine (DTM).
It is demonstrated that every linear-bounded DRPA regulated by CF languages
is equal to linear-bounded DTM where the DRPA successfully finishes its work
by reaching the final state leaving on the pushdown content representing the
one obtained by simulated DTM on its tape.

47

48 CHAPTER 6. BOUNDED DETERMINISTIC RPA

6.2 Preliminaries

We assume that the reader is familiar with language theory (see [53]) and theory
of automata (see [53]). The necessary definitions can be found in Chapter 2 as
2.2.7, 2.2.8, 2.2.10, 2.3.1, 2.3.2.

Moreover, we define a deterministic Turing machine this way [52]:

Definition 6.2.1 A (deterministic) Turing machine (DTM) is a 5-tuple T =
(Q, Σ, Γ, q0, δ), where

• Q is a finite set of states, the halt state (h) is assumed not to be in Q,
h 6∈ Q;

• Σ, the input alphabet, is a set of symbols;

• Γ, the tape alphabet, is a finite set with Σ ⊆ Γ; Γ is assumed not to
contain ∆, the blank symbol;

• q0 ∈ Q (the initial state); and

• δ is a partial function from Q × (Γ ∪ {∆}) to (Q ∪ {h}) × (Γ ∪ {∆}) ×
{R,L, S}.

Next we define a configuration of the DTM and language accepted by DTM to
make a complete set of definitions binding DTM with language theory:

Definition 6.2.2 A configuration of the DTM is a pair (Q, xay), where q is a
state, x, y ∈ (Γ∪ {∆})∗, a ∈ Γ∪ {∆}, and the underlined symbol represents the
current position of the head, which allows reading from and writing to a tape
one symbol to the square of current position and which can possibly stay (S) in
the same position, move right (R), or move left (L). We say

(q, xay) ⊢T (r, zbw)

if T passes from the configuration on the left to that on the right in one move,
and

(q, xay) ⊢∗
T (r, zbw)

if T passes from the first configuration in zero or more moves.

Definition 6.2.3 An input string x ∈ Σ∗ is accepted by T if starting T with
input x leads eventually to halting configuration. In other words, x is accepted
if for some strings y and z in (Γ ∪ {∆})∗ and some a ∈ Γ ∪ {∆},

(q0,∆x) ⊢
∗
T (h, yaz)

In this situation we say T halts on input x. The language accepted by T is the
set of input strings that are accepted by T . For further details see [52].

6.3. DEFINITIONS 49

The last, but not least, definition presented in this place presents a definition
of linear-bounded deterministic Turing machine.

Definition 6.2.4 A linear-bounded deterministic Turing machine (LBDTM)
is a 5-tuple T ′ = (Q,Σ,Γ, q0, δ) that is the same as a (deterministic) Turing
machine except in the following respect: there are two extra tape symbols 〈 and
〉, assumed not to be elements of Γ; M begins in the configuration (q0, 〈x〉), where
x is the input string, and M is not permitted to replace the symbols 〈 or 〉, or
to move its head left of the square with 〈 or right of the square with 〉.

See [52] for further details on linear-bounded automaton.

6.3 Definitions

This section defines the notion of a deterministic regulated pushdown automaton
regulated by a context-free language. According to Chapter 4 we only give
extension to define the deterministic behaviour of the RPA.

Let us extend Definition 2.3.1 and Definition 2.3.2 in such a way, so that we
can obtain a deterministic atomic regulated pushdown automata:

Definition 6.3.1 As a basis, we refer to Definition 2.3.2 and we add regulation
and determinism here.

Regulation (it is defined the same way as in Chapter 4)
Let Ψ be an alphabet of rule labels such that card(Ψ) = card(R), and ψ
be a bijection from R to Ψ. For simplicity, to express that ψ maps a rule,
Apa → wq ∈ R, to ρ, where ρ ∈ Ψ, this paper writes ρ.Apa → wq ∈ R; in
other words, ρ.Apa → wq means ψ(Apa → wq) = ρ. A configuration of M ,
χ, is any word from {$}Ω∗QΣ∗; χ is an initial configuration if χ = $sw, where
w ∈ Σ∗. For every x ∈ Ω∗, y ∈ Σ∗, and ρ.Apa → wq ∈ R, M makes a move
from configuration $xApay to configuration $xwqy according to ρ, written as
$xApay ⊢ $xwqy [ρ] or, more simply, $xApay ⊢ $xwqy. Let χ be any config-
uration of M . M makes zero moves from χ to χ according to ε, symbolically
written as χ ⊢0 χ [ε]. Let there exist a sequence of configurations χ0, χ1, . . . , χn

for some n ≥ 1 such that χi−1 ⊢ χi [ρi], where ρi ∈ Ψ, for i = 1, . . . , n, then
M makes n moves from χ0 to χn according to ρ1 . . . ρn, symbolically written as
χ0 ⊢n χn [ρ1 . . . ρn] or, more simply, χ0 ⊢n χn. Define ⊢∗ and ⊢+ in the standard
manner.

Control Language (it is defined a similar way as in Chapter 4, context-free
languages are used instead of the linear languages to control the operation of
automaton)
Let Ξ be a control language over Ψ; that is, Ξ ⊆ Ψ∗. Let Ξ be from the family

50 CHAPTER 6. BOUNDED DETERMINISTIC RPA

of context-free languages (CF). With Ξ, M defines the following three types of
accepted languages:

L(M,Ξ, 1)—the language accepted by final state

L(M,Ξ, 2)—the language accepted by empty pushdown

L(M,Ξ, 3)—the language accepted by final state and empty pushdown

defined as follows. Let χ ∈ {$}Ω∗QΣ∗. If χ ∈ {$}Ω∗F , χ ∈ {$}Q, χ ∈ {$}F ,
then χ is a 1-final configuration, 2-final configuration, 3-final configuration,
respectively. For i = 1, 2, 3, define L(M,Ξ, i) as L(M,Ξ, i) = {w | w ∈
Σ∗, and $sw ⇒∗ χ [σ] in M for an i−final configuration, χ, and σ ∈ Ξ}.

Determinism (it is a newly introduced notion)
An RPA is deterministic (DRPA) if being in a state q, q ∈ Q, the appropriate
action which should be performed can always be deterministically selected. This
can only be due to the following two circumstances:

1. For the given state, there is only one rule r ∈ R that is applicable in a
given situation (state, symbol on the top of the pushdown or under the
reading head) and, moreover, control language admits such a rule.

2. If there are more than one rules that are applicable in a given situation then
the rule can be deterministically denoted according to the actual context of
sentential form of the control language applicable to the current state of
operation performed by RPA.

Informally, the first item describes a situation where DRPA behaves as a com-
mon (non-regulated) deterministic PA and the control language just ”checks”
the correctness of the work. The second case describes a situation where there
is a non-determinism on the level of PA and thus the appropriate action must
be selected on the level of the control language and the decision can be done due
to the actual context of the sentential form/derivation represented by actions
performed by DRPA till this point of analysis.

Next we define boundedness of the (deterministic) RPA by limiting a size of
the pushdown:

Definition 6.3.2 A (deterministic) RPA is linear-bounded (LB) if the maxi-
mal number of elements stored on the pushdown at a time is less then kn + c,
where n is the length of the input string on the tape and k, n ∈ I.

6.4. RESULTS 51

6.4 Results

Theorem 6.4.1 For every LBDTM, there exists an atomic DRPA, L(M,Ξ, i),
i ∈ {1, 2, 3}, which exactly simulates behaviour of LBDTM. (We say they are
equivalent—one can be replaced by another.)
Note: Ξ = CF

Proof :

Construction: Let T ′ = (Q,Σ,Γ, q0, δ) is a LBDTM. The equivalent atomic
DRPA M = (Q′, Σ′, Ω, R, s, ∇, F) can be constructed in the following way:

1. Σ′ = Σ ∪ {〈, 〉}, where it is clear that 〈, 〉 6∈ Σ

2. Ω = Γ ∪ {∆, 〈, 〉,∇} ∪ {ā | a ∈ Σ ∪ {∆, 〉}}, where ∆, 〈, 〉,∇, ā 6∈ Γ

3. Q′ = Q ∪ {h,Fin, S∇, S0, S1, S2, S3, S4} ∪ {q′ | q ∈ Q} ∪
∪ {Rq1 | q ∈ Q} ∪ {Rq2 | q ∈ Q} ∪ {Rq3 | q ∈ Q} ∪
∪ {Aqa | q ∈ Q, a ∈ Σ, δ(q, a) is defined } ∪
∪ {Lqa | q, q′ ∈ Q, a, a′ ∈ Σ, δ(q, a) = (q′, a′, L)} ∪
∪ {Rqa | q, q′ ∈ Q, a, a′ ∈ Σ, δ(q, a) = (q′, a′, R)} ∪
∪ {Sqa | q, q′ ∈ Q, a, a′ ∈ Σ, δ(q, a) = (q′, a′, S)},

where all of the h,Fin, S∇, S0, S1, S2, S3, S4, q
′, Rq1, Rq2, Rq3, Aqa, Lqa,

Rqa, Sqa are not in Q

4. F = {Fin}

5. s = S0

6. R = Rs ∪ (∪q∈QRq) ∪Rf , where
Rs = {S0〈→ S1, S1 → 〈S2, S2〉 → S4, S4 → 〉̄q0} ∪

∪ {S2a→ S3 | a ∈ Σ} ∪
∪ {S3 → āS2 | ā ∈ Ω}

Rf = {ah→ h | a ∈ Γ} ∪ {∇h→ Fin}
∀q ∈ Q : Rq = {q → āq | ā ∈ Ω} ∪

∪ {āq → q′ | ā ∈ Ω, δ(q, a) is defined for some a ∈ Σ} ∪
∪ {〉q → q′ | δ(q, a) is defined for some a ∈ Σ} ∪
∪ {āq′ → Rq1 | ā ∈ Ω, δ(q, a) is defined for some a ∈ Σ} ∪
∪ {Rq1 → āRq2 | ā ∈ Ω, δ(q, a) is defined for some a ∈ Σ} ∪
∪ {Rq2 → āRq3 | ā ∈ Ω, δ(q, a) is defined for some a ∈ Σ} ∪
∪ {āRq3 → q | ā ∈ Ω, δ(q, a) is defined for some a ∈ Σ} ∪
∪ {aq′ → Aqa | a ∈ Σ, δ(q, a) is defined } ∪
∪ {Aqa→ c̄Lqa | a, c ∈ Σ, p ∈ Q, δ(q, a) = (p, c, L)} ∪

∪ {Lqa→ b̄p | a, c ∈ Σ, b ∈ Ω, p ∈ Q, δ(q, a) = (p, c, L)} ∪
∪ {Aqa→ cRqa | a, c ∈ Σ, p ∈ Q, δ(q, a) = (p, c, R)} ∪

52 CHAPTER 6. BOUNDED DETERMINISTIC RPA

∪ {Rqa→ bp | a, b, c ∈ Σ, p ∈ Q, δ(q, a) = (p, c, R)} ∪
∪ {Aqa→ cSqa | a, c ∈ Σ, p ∈ Q, δ(q, a) = (p, c, S)} ∪

∪ {Sqa→ b̄p | a, c ∈ Σ, b ∈ Ω, p ∈ Q, δ(q, a) = (p, c, S)} ∪
∪ {q′ → 〉p | p ∈ Q, δ(q, 〉) = (p, 〉, S)} ∪
∪ {q′ → 〉̄p | p ∈ Q, δ(q, 〉) = (p, 〉, L)}

Note for rules containing 〉: Rules in δ may not be other than presented,
as DLBA is not allowed to move right of the marker 〉 position nor change
it.

A control language, Ξ, which is a context-free one, is defined for the equiv-
alent atomic DRPA M by the following grammar G = (N, T, S, P):

1. N = {K,L,M,O, P}

2. T = {< r > | r ∈ R}

3. S = K

4. P contains the following derivation rules:
K →< S0〈→ S1 >< S1 → 〈S2 > L
L→< S2a→ S3 >< S3 → āS2 > L, ∀a ∈ Σ, ā derived from a
L→< S2〉 → S4 >< S4 → 〉̄q0 > M
M → OM , Note: the only non-linear grammar rule

M → P
P →< ah→ h > P, ∀a ∈ Ω
P →< ∇h→ Fin >
If there is defined δ(q, a) = (p, c, L), a 6=〉 then ∀ā0, ā1 ∈ Ω:
O →< ā0q → q′ >< ā1q

′ → Rq1 >< Rq1 → ā1Rq
2 >

< Rq2 → ā0Rq
3 >< ā0Rq

3 → q > O < p→ ā0p >
O →< ā0q → q′ >< aq′ → Aqa >< Aqa→ c̄Lqa >< Lqa→ ā0p >

If there is defined δ(q, a) = (p, c, S), a 6=〉 then ∀ā0, ā1 ∈ Ω:
O →< ā0q → q′ >< ā1q

′ → Rq1 >< Rq1 → ā1Rq
2 >

< Rq2 → ā0Rq
3 >< ā0Rq

3 → q > O < p→ ā0p >
O →< ā0q → q′ >< aq′ → Aqa >< Aqa→ cSqa >< Sqa→ ā0p >

If there is defined δ(q, a) = (p, c, R), a 6=〉 then ∀ā0, ā1 ∈ Ω:
O →< ā0q → q′ >< ā1q

′ → Rq1 >< Rq1 → ā1Rq
2 >

< Rq2 → ā0Rq
3 >< ā0Rq

3 → q > O < p→ ā0p >
O →< ā0q → q′ >< aq′ → Aqa >< Aqa→ cRqa >< Rqa→ a0p >

If there is defined δ(q, 〉) = (p, 〉, L) (〉 cannot be modified) then:
O →<〉q → q′ >< q′ → 〉̄p >

If there is defined δ(q, 〉) = (p, 〉, S) (〉 cannot be modified) then:
O →<〉q → q′ >< q′ →〉p >

Proof M ⊆ T ′:
The key idea of the proof is introduced informally. Formal way of proof is left
to the reader.

6.4. RESULTS 53

The automaton M starts work by copying input string on the pushdown in
such a way so that symbols a lying right of the position of the reading head are
encoded as ā. This is done in a deterministic way on the level of PA and the
control language just ”follows” the work of the automaton.

Every step of the LBDTM is then simulated by popping all the symbols lying
right of the simulated position of the reading head, changing the symbol on the
top of the pushdown according to the action defined by LBDTM, and pushing
the symbols back. While pushing the symbols back de/encoding is performed
to simulate reading head position change.

The determinism of DRPA is given by the determinism of LBDTM as the
only non-deterministic rules of the automaton (i.e. those that need to be made
deterministic by the control language) are those that perform pushing (after
popping) the symbols when access to the reading head is simulated. And this
issue is sufficiently handled by the control language (exploiting the so called
”bracketed structures” of the language).

The automaton finishes its work when it is in state h, which is the final state
of the LBDTM. In this state, the pushdown is cleared and while removing the
symbol ∇ the atomic DRPA M moves to its only final state Fin. As rules of
LBDTM do not work with ∇, moreover, LBDTM cannot move out nor change
pair 〈 and 〉, being in the state Fin it is the only state when the pushdown is
empty and together it is a final state. Thus such an automaton accepts language
by empty pushdown, final state, and final state and empty pushdown.

Proof T ′ ⊆M is left to the reader. Idea: We can describe the DRPA easily
by two-tape TM. It can be re-coded to one-tape TM. The description of such a
TM, together with the input, can be used as an input for Universal TM. As the
DRPA does not go beyond the bottom of the pushdown and beyond marker on
the top of the pushdown (input is copied to the pushdown), the Universal TM
is also bounded during its behaviour. �

Theorem 6.4.2 Every DRPA from Theorem 6.4.1 requires exactly n + 1 cells
on the pushdown, where n is the length of the input string including symbols 〈
and 〉. Thus, such automata are linear-bounded. That means that LBDTM is
equal in power to LB atomic DRPA.

Proof : This theorem follows directly from Theorem 6.4.1 as the atomic DRPA
pushes on the pushdown one extra symbol at the beginning of the work and
then it copies input on the pushdown and it does not add any other symbol
during work. It always removes and pushes back exactly the same number of
symbols. �

Theorem 6.4.3 Every L ∈ CS is accepted by LB atomic RPA.

Proof : This theorem follows directly from Theorems 6.4.1, 6.4.2 and Theo-
rem 19.5 from [52], which proves that every L ∈ CS is accepted by LB TM.

54 CHAPTER 6. BOUNDED DETERMINISTIC RPA

The modification of deterministic LB atomic RPA to a non-deterministic one is
straightforward. �

6.5 Chapter Summary and Open Problems

This chapter introduced a deterministic version of RPA. Nevertheless, a linear-
bounded version of both deterministic and non-deterministic version of modified
RPA was studied. The modification used context-free languages to control the
RPA. It has been demonstrated that the (deterministic) RPA controlled by a
context-free language can simulate any (deterministic) linear-bounded Turing
machine. Moreover, the RPA was linear-bounded too.

The open questions remain, whether:

1. It can be defined a linear-bounded (deterministic) RPA controlled by the
linear language having the same features as the one controlled by the
context-free language presented in this chapter.

2. If omitted linear-boundedness, the power of deterministic RPA increases
to the power of deterministic Turing machine (which is the power of Turing
machine, in general).

Chapter 7

Usage of DRPA for Syntactic

Analysis

This chapter utilises investigation performed in the previous chapters. We will
define a new kind of grammars (inspired by LL grammars and scattered context
grammars [29]) the power of which is higher than that of context-free languages.
We use these grammars to describe deterministic RPA controlled by context-free
languages. Such automata will be able to parse sentences of language generated
by such grammars. The word ”parse” is used in the traditional meaning known
from compiler theory—it means to decide whether the sentence is or is not part
of the language and to detect more or less exactly the place of syntactic error
in the input sentence.

7.1 Introduction

Chapters 2 and 3 demonstrated how parsing of LLk languages (for k > 1) can be
done (efficiently). Nevertheless, usage of LALR or LL1 grammars is mostly in
the focus of today’s parser designers (see [12, 3]). Moreover, the LL1 grammars
are becoming more and more popular thanks to the recursive descent parsing
technique. Nevertheless, the trend may be changed if grammar construction
remains simple while the power of grammar increases beyond the CF languages.
A good tip, the scattered context grammars may be so.

Chapters 4, 5, and 6 present the concept of regulated pushdown automata. It
has been presented that their power is on the level of Turing machine. A possible
exploitation of the RPA for language analysis may be a way of introducing
grammars with a higher descriptive power than that of CF languages in the
area of programming languages.

This chapter presents the utilisation of several concepts:

• scattered context grammars,

• regulated pushdown automata, and

55

56 CHAPTER 7. USAGE OF DRPA FOR SYNTACTIC ANALYSIS

• parsing of LL languages.

These concepts are combined into one form, which enables the efficient deter-
ministic parsing of languages described by grammars with a descriptive power
greater than the one of context-free grammars.

7.2 Preliminaries

Even if the concept of LLk grammars holds generally for any k > 0 we present
another view on LL1 grammars, which is much simpler and which will be used
below in this chapter. A detailed view on the topic can be found in [3, 4, 5, 12,
52].

First of all, we define a simpler version of set FIRST = FIRST 1, just for
LL1 languages:

Definition 7.2.1 Let G = (N, T, P, S) is a context-free grammar, α ∈ (N∪T)∗.

FIRST (α) ::= {a ∈ T | α ⇒∗ aβ, β ∈ (N ∪ T)∗} ∪ {ε | α⇒∗ ε}

Next, we have to define a set FOLLOW , which is new to this thesis, nevertheless
a well known term in formal language theory:

Definition 7.2.2 Let G = (N, T, P, S) is a context-free grammar, A ∈ N .

FOLLOW (A) ::= {a ∈ T | S ⇒∗ αAβ, a ∈ FIRST (β), α, β ∈ (N ∪ T)∗}

We write FIRSTP or FOLLOW P to denote a particular set of production rules.
Based on the previous two definitions, we can establish two conditions, which

can help us to verify whether a grammar is LL1 or not.

Definition 7.2.3 Condition FF holds if for every set of production rules:

A→ α1 | α2 | . . . | αk ∈ P

from context-free grammar, G = (N, T, S, P), it is satisfied:

FIRST (αi) ∩ FIRST (αj) = ∅, ∀i 6= j, 1 ≤ i, j ≤ k

Definition 7.2.4 Condition FFL holds if for every set of production rules

A→ α1 | α2 | . . . | αk ∈ P

such that
∃i, 1 ≤ i ≤ k : αi ⇒

∗ ε

from context-free grammar, G = (N, T, S, P), it is satisfied:

FIRST (αj) ∩ FOLLOW (A) = ∅, ∀i 6= j, 1 ≤ i, j ≤ k

7.3. DEFINITIONS 57

Finally, we can have an alternative to define an LL1 grammar:

Definition 7.2.5 A context-free grammar, G, is LL1 grammar if conditions FF
and FFL are satisfied for the G.

Scattered context grammars (see [29]) represent an alternative to context-
sensitive and non-restricted grammars. Nevertheless, their power can be seen
in the usage of production rules known from context-free grammars:

Definition 7.2.6 A scattered context grammar, G, is a quadruple (V, T, P, S),
where V is a finite set of symbols, T ⊂ V , S ∈ V \T , and P is a set of production
rules of the form (A1, . . . , An) → (w1, . . . , wn), n ≥ 1, ∀Ai : Ai ∈ V \ T , ∀wi :
wi ∈ V +.

Definition 7.2.7 A reducing scattered context grammar (SCG), G, is a
quadruple (V, T, P, S), where V is a finite set of symbols, T ⊂ V , S ∈ V \T , and
P is a set of production rules of the form (A1, . . . , An) → (w1, . . . , wn), n ≥ 1,
∀Ai : Ai ∈ V \ T , ∀wi : wi ∈ V ∗.

Definition 7.2.8 Let G = (V, T, P, S) be a SCG. Let (A1, . . . , An) →
(w1, . . . , wn) be in P and for 1 ≤ i ≤ n + 1, let xi ∈ V ∗. We write

x1A1x2A2 . . . xnAnxn+1 ⇒ x1w1x2w2 . . . xnwnxn+1

Let ⇒∗ be a reflexive transitive closure of ⇒.
The language generated by G is defined as L(G) = {w ∈ T ∗ | S ⇒∗ w}.

Note: If the SCG is non-reducing, then w ∈ T+.

Definitions of regulated pushdown automata and their deterministic versions
can be found in Chapter 4 and Chapter 6.

7.3 Definitions

The notion of the chapter aims at LL grammars. Therefore, we start with the
definition of the ”LL notion” for the SCG. First of all, we bring a definition of
left derivation to the SCG.

Definition 7.3.1 Let G = (V, T, P, S) be a SCG. Let G be a left derivating SCG
then for (A1, . . . , An) → (w1, . . . , wn) ∈ P we write x1A1x2A2 . . . xnAnxn+1 ⇒
x1w1x2w2 . . . xnwnxn+1, xi ∈ V ∗, if x1 6= y1A1z1, x2 6= y2A2z2, . . . , xn 6= ynAnzn,
yi, zi ∈ V ∗.

Next, we define sets FIRST ′ and FOLLOW ′. Their definition is the same as
for context-free grammar sets FIRST or FOLLOW . The difference is that the
context-free production rules are constructed from the SCG ones by composing

58 CHAPTER 7. USAGE OF DRPA FOR SYNTACTIC ANALYSIS

appropriate pairs of non-terminals on the left-hand side of the tuple-rule with
a corresponding string of symbols on the right-hand side of the tuple-rule from
SCG.

Definition 7.3.2 Let G = (V, T, P, S) is a SCG, α ∈ V ∗.

FIRST ′(α) ::= FIRSTP ′(α)

where context-free grammar rules P ′ are constructed from the set P in such a
way so that A → β ∈ P ′ if (A1, . . . , A, . . . , An) → (w1, . . . , β, . . . wn) ∈ P for
any n and any position of pair A, β in the rule-tuple from P .

Definition 7.3.3 Let G = (V, T, P, S) is a SCG, A ∈ V \ T .

FOLLOW ′(A) ::= FOLLOW P ′(A)

where context-free grammar rules P ′ are constructed from the set P in such a
way so that A → β ∈ P ′ if (A1, . . . , A, . . . , An) → (w1, . . . , β, . . . wn) ∈ P for
any n and any position of pair A, β in the rule-tuple from P .

Based on the previous two definitions, we can define conditions FF’ and FFL’.
Again, they copy the definition of conditions FF and FFL for context-free gram-
mars. Again, we have to build context-free production rules. In the case of
conditions FF’ and FFL’, we take in the account just the leftmost pairs of non-
terminal and string.

Definition 7.3.4 Condition FF’ holds if for every set of production rules:

(A, . . .) → (α1, . . .) | (A, . . .) → (α2, . . .) | . . . | (A, . . .) → (αk, . . .) ∈ P

from SCG grammar, G = (V, T, P, S), it is satisfied:

FIRST ′(αi) ∩ FIRST ′(αj) = ∅, ∀i 6= j, 1 ≤ i, j ≤ k

Definition 7.3.5 Condition FFL’ holds if for every set of production rules

(A, . . .) → (α1, . . .) | (A, . . .) → (α2, . . .) | . . . | (A, . . .) → (αk, . . .) ∈ P

such that
∃i, 1 ≤ i ≤ k : αi ⇒

∗ ε

from SCG grammar, G = (V, T, P, S), it is satisfied:

FIRST ′(αj) ∩ FOLLOW ′(A) = ∅, ∀i 6= j, 1 ≤ i, j ≤ k

Finally, the notion of LL grammars can be introduced for SCG grammars. It
is the same as for context-free grammars with respect to the appropriate defi-
nitions.

7.4. RESULTS 59

Definition 7.3.6 Let G = (V, T, P, S) be a left derivating SCG. G is an LL
SCG if condition FF’ and FFL’ are satisfied.

As an example, we give an LL SCG defining the language {anbncn|n ≥ 0}.
Let G = (V, T, P, S) where:

1. V = {S,A,B, C, a, b, c}

2. T = {a, b, c}

3. S is the starting symbol

4. P = ((S) → (ABC)
(A,B,C) → (aA, bB, cC)
(A,B,C) → (ε, ε, ε))

7.4 Results

The key result of the chapter is twofold:

1. Simple creation of parsing table (in fact ”the same” as for LL1 languages)

2. Formal binding of the table with DRPA (deterministic regulated pushdown
automata)

This section starts with a definition of the appropriate parsing table. The algo-
rithm for filling in the table follows.

Definition 7.4.1 The parsing table for LL SCG, G = (V, T, P, S), is a matrix,
columns of which are denoted with set T plus a symbol denoting end-of-tape (we
use $). Rows of the matrix are denoted with set V plus a symbol denoting empty
pushdown (we use #). Moreover, for the sake of better readability, the rows are
grouped by symbols belonging to set T and symbols belonging to the set V \ T .

For a given column and row, there is always exactly one action defined. The
actions follow next (informally):

• expand: expands pushdown content according to a given rule from P—
the rule is usually denoted by its number (the action is written as a single
letter e with the appropriate number), but the rule itself may be used if
necessary/appropriate.
Note: detailed operation is given in the definition of the DRPA defined by the

parsing table.

• pop: checks that symbols on the top of the pushdown and under the reading
head are the same ones and, moreover, they are the requested ones. If the
condition is satisfied the symbol from the top of the pushdown is removed
and the reading head is moved one symbol to the right.

60 CHAPTER 7. USAGE OF DRPA FOR SYNTACTIC ANALYSIS

• accept: (often written as acc) verifies that the pushdown is empty (just
symbol # is present) and that the reading head is at the end of the input
tape (symbol $ under the reading head). If the condition is satisfied the
work of the parser is successfully completed—input string accepted.

• error: (often denoted by blank space) for a given combination of push-
down and tape symbols there is no rule and thus the syntax error may be
reported—input string is refused.

The following scheme sketches the table structure (symbols T and V come
from the SCG, G = (V, T, P, S), $ stands for the end-of-tape, and # stands for
empty pushdown):

T $

V \ T

T

#

Algorithm 7.4.1 The table defined in Definition 7.4.1 is filled this way:
Input: LL SCG G = (V, T, P, S)
Output: The parsing table
Algorithm: Marking of rows and columns of the table is given by Definition
7.4.1. The content is defined in the following way:

1. All the cells are filled with the action error

2. The cell, which is on the row denoted by symbol a, a ∈ T , and which is at
the same time denoted by the column marked by the same symbol a, a ∈ T ,
should contain the action pop a.

3. For a rule (A1, . . . , An) → (α1, . . . , An) ∈ P , we fill the row marked with
symbol A1, A1 ∈ V \ T . The columns are denoted by FIRST ′(α1) \ {ε}
and if α1 ⇒∗ ε then the columns are also denoted by FOLLOW ′(A1).
Such cells are filled with action expand for the given rule (A1, . . . , An) →
(α1, . . . , αn).

4. The cell, which is on the row denoted by symbol #, pushdown bottom, and
which is at the same time denoted by the column marked by the symbol $,
end of input tape, should contain the action accept.

7.4. RESULTS 61

As an example, we can use the LL SCG from the end of section 7.3. The table
built using Definition 7.4.1 and Algorithm 7.4.1 should look like this one:

a b c $
S e1
A e2 e3 e3 e3
B
C
a pop a
b pop b
c pop c

acc

The rules of the grammar are numbered this way:

P = ((S) → (ABC) (1)
(A,B,C) → (aA, bB, cC) (2)
(A,B,C) → (ε, ε, ε)) (3)

The presented notion of the parsing table is very much like the one for LL1

languages (see [3, 12]), but the semantics of the behaviour is still missing. Next,
we give a construction of DRPA and, thus, we formally define the behaviour of
the DRPA controlled (and defined) by such a parsing table.

Algorithm 7.4.2 The deterministic regulated pushdown automata for parsing
of LL SCG can be constructed the following way:
Input: LL SCG parsing table (Algorithm 7.4.1) and appropriate grammar G,
G = (V, T, P, S ′)
Output: DRPA (def. 6.3.1)
Algorithm: First of all we build the pushdown automaton M = (Q, Σ, Ω, R,
s, S, F). For the sake of simplicity, we assume that {$,#} ∩ V = ∅, where $
stands for end-of-input marker and # stands for pushdown bottom marker.

Note: For a SCG rule (A1, . . . , An) → (α1, . . . , αn) ∈ P , we refer further
to its components using two indices: i and n. The index i stands for items
1 . . . (n − 1) and the index n for items indexed by n only. Thus, Ai stands for
any non-terminal on the left-hand side of the grammar rule except the rightmost
one, An. On the other hand, αn stands for the rightmost string over V from the
given grammar rule.

1. Σ = T

2. Ω = V

3. S = S ′

4. Q = {q, qF} ∪ A2 ∪ A2ε ∪ A1 ∪ A1ε

A2 = {A1x2A2, . . . , A1xnAn, A1xnrαn, . . . , A1x1rα1 |
∀A1, x : (A1, . . . , An) → (α1, . . . , αn) ∈ P ∧ x ∈ FIRST ′(α1) \ {ε}}

62 CHAPTER 7. USAGE OF DRPA FOR SYNTACTIC ANALYSIS

A2ε = {A1x2A2, . . . , A1xnAn, A1xnrαn, . . . , A1x1rα1 |
∀A1, x : (A1, . . . , An) → (α1, . . . , αn) ∈ P ∧

x ∈ FOLLOW ′(A1) ∧ ε ∈ FIRST ′(α1) }
A1 = {A1xα1 | ∀A1, x : (A1) → (α1) ∈ P ∧ x ∈ FIRST ′(α1) \ ε}
A1ε = {A1xα1 | ∀A1, x : (A1) → (α1) ∈ P ∧

x ∈ FOLLOW ′(A1) ∧ ε ∈ FIRST ′(α1)}

5. F = {qF}

6. s = q

7. R = {#q$ → qF | q, qF ∈ Q} ∪ P ∪ E2 ∪ E1 ∪ T ∪ U
P = {xqx → q | q ∈ Q, popx is defined in the parsing table, x ∈ Σ}
E2 = {A1qx→ A1x2A2x | q, A1x2A2 ∈ Q,A1 ∈ Ω \ Σ, x ∈ Σ} ∪

{AiA1xiAi → A1x(i+ 1)A(i+1) |

A1xiAi, A1x(i+ 1)A(i+1) ∈ Q,Ai ∈ Ω \ Σ} ∪

{AnA1xnAn → A1xnrαn | A1xnAn, A1xnrαn ∈ Q,An ∈ Ω \ Σ} ∪
{A1xjrαj → αjA1x(j − 1)rα(j−1) |

A1xjrαj , A1x(j − 1)rα(j−1) ∈ Q,αj ∈ Ω∗, j ∈ {2, . . . , n}} ∪

{A1x1rα1 → α1q | A1x1rα1, q ∈ Q,α1 ∈ Ω∗}
E1 = {A1qx→ A1xα1x | q, A1xα1 ∈ Q,A1 ∈ Ω \ Σ, x ∈ Σ} ∪

{A1xα1 → α1q | A1xα1, q ∈ Q,α1 ∈ Ω∗}
T = {aA1xjAj → A1xjAj | A1xjAj ∈ Q, a ∈ Ω \ {Ai}, j ∈ {2, . . . , n}}

U = {A1xirαi → aA1xirαi | A1xirαi ∈ Q, a ∈ Ω}

This pushdown automaton (non-regulated so far) is non-deterministic, obvi-
ously. Informally, we briefly describe the meaning of the construction. Input
alphabet equals to terminals of the grammar. That is why the pushdown alphabet
equals the set of symbols V . Thus, relation Σ ⊂ Ω is given. The set of states
contains the state q, which is also the starting state and actions pop are con-
centrated to this state. Another state, qF , is the final state, if this is reached the
input string was successfully accepted. States described by sets A1, A1ε and A2,
A2ε are used to handle actions expand. Set A1 contains states used for grammar
rules of a context-free character (grammar rules of the shape (A) → (α)). Set
A2 contains states useful for expansion of context grammar rules. Sets Ajε are
counterparts of the non-ε sets handling situation, where ε is a member of set
FIRST ′ and the set FOLLOW ′ is used to denote the appropriate ”expansion”
symbols. Operation of the automaton defined in R is non-deterministic due to
the set of rules defined in U . Rules defined in P perform actions pop, rules
described by set E1 handle expansion of the context-free rules. Rules described
by the sets E2, T ,U perform actions expand. Set E2 defines operations for re-
moving non-terminals and placing the appropriate strings of symbols from the
right-hand side of the grammar rules. To search for appropriate non-terminals,
rules defined in T are used. Symbols skipped by rules in T are returned back by
rules contained in U . This is done a non-deterministic way, so far.

7.4. RESULTS 63

Thus, we have to define a control language (by a context-free grammar) in
such a way, so that the regulated pushdown automaton becomes deterministic.
The grammar defining the language follows.
It is a context-free grammar Gc, which describes the control language. Let Gc =
(Nc, Tc, Sc, Pc), where:

• Nc = {K,L}

• Tc = {< r > | r ∈ R}

• Sc = K

• Pc = {
K → < #q$ → qF > action accept
K → < xqx→ q > K, for all x if pop x is defined in parsing table
K → < A1qx→ A1xα1x >< A1xα1 → α1q > K,

for all suitable rules from R—
appropriate pairs are taken from set E1 from Algorithm 7.4.2

(complete set E1 is used)
K → < A1qx→ A1x2A2x > L < A1x1rα1 → α1q > K,

for all suitable rules from R—
appropriate pairs are taken from set E2 from Algorithm 7.4.2

(the first and the last definition subsets are taken into account;
complete subsets are used)

L → < AiA1xiAi → A1x(i+ 1)A(i+1) > L

< A1xirαi → αiA1x(i− 1)rα(i−1) >,

for all suitable rules from R—
appropriate pairs are taken from set E2 from Algorithm 7.4.2

(the second and the fourth definition subsets are taken into account;
complete the second and partial the fourth subsets are used)

L → < AnA1xnAn → A1xnrαn >< A1xnrαn → αnA1x(n− 1)rα(n−1) >,

for all suitable rules from R—
appropriate pairs are taken from set E2 from Algorithm 7.4.2

(the third and the fourth definition subsets are taken into account;
complete the third and partial the fourth subsets are used)

L → < aA1xjAj → A1xjAj > L

< A1x(j − 1)rα(j−1) → aA1x(j − 1)rα(j−1) >,

for all suitable rules from R, where j ∈ {2, . . . , n}—
appropriate pairs are taken from sets T and U from Algorithm 7.4.2

(sets T and U are used partially)
}

All the rules bound with the non-terminal L serve for the expansion of the context
rules of the SCG. Moreover, these rules make the RPA be a deterministic one.
Note: The grammar Gc is LL1 context-free grammar.

64 CHAPTER 7. USAGE OF DRPA FOR SYNTACTIC ANALYSIS

The definition and respective construction of the DRPA is completed. It also
stated a theorem that the resulting RPA is deterministic. The proof is left to
the reader, because the idea was only sketched in the construction: The only
non-deterministic part of the pushdown automaton is made deterministic by
control language as removal of the symbol from the pushdown during expansion
of context rules is always paired with storage of the same symbol later, in the
correct position.

As an example, we present a definition of such a DRPA for the LL SCG
presented above in this section. We recollect the grammar changing the name
of the starting symbol to ensure clarity: Let G = (V, T, P, S ′) where:

1. V = {S ′, A,B, C, a, b, c}

2. T = {a, b, c}

3. S ′ is the starting symbol

4. P = ((S ′) → (ABC) (1)
(A,B,C) → (aA, bB, cC) (2)
(A,B,C) → (ε, ε, ε)) (3)

The appropriate parsing table directly follows Algorithm 7.4.1. Construction of
parsing DRPA will be started with the definition of PA, M , according to the
definition. Let M = (Q, Σ, Ω, R, s, S, F), where:

1. Σ = T = {a, b, c}

2. Ω = V = {a, b, c, S ′, A,B, C}

3. S = S ′

4. Q = {q, qF} ∪ A2 ∪ A2ε ∪ A1 ∪ A1ε

A2 = {Aa2B,Aa3C,Aa3rcC,Aa2rbB,Aa1raA}
A2ε = {Ab2B,Ab3C,Ab3rε, Ab2rε, Ab1rε,

Ac2B,Ac3C,Ac3rε, Ac2rε, Ac1rε,
A$2B,A$3C,A$3rε, A$2rε, A$1rε}

A1 = {S ′aABC}
A1ε = {}

5. F = {qF}

6. s = q

7. R = {#q$ → qF | q, qF ∈ Q} ∪ P ∪ E2 ∪ E1 ∪ T ∪ U
P = {aqa→ q, bqb→ q, cqc→ q}
E2 = {Aqa→ Aa2Ba,BAa2B → Aa3C,CAa3C → Aa3rcC,

Aa3rcC → cCAa2rbB,Aa2rbB → bBAa1raA,Aa1raA→ aAq,
Aqb → Ab2Bb,BAb2B → Ab3C,CAb3C → Ab3rε,

7.4. RESULTS 65

Ab3rε→ Ab2rε, Ab2rε→ Ab1rε, Ab1rε → q,
Aqc→ Ac2Bc,BAc2B → Ac3C,CAc3C → Ac3rε,
Ac3rε → Ac2rε, Ac2rε→ Ac1rε, Ac1rε→ q,
Aq$ → A$2B$, BA$2B → A$3C,CA$3C → A$3rε,
A$3rε → A$2rε, A$2rε → A$1rε, A$1rε→ q}

E1 = {S ′qa→ S ′aABCa, S ′aABC → ABCq}
T = {aAa2B → Aa2B, bAa2B → Aa2B, cAa2B → Aa2B,

AAa2B → Aa2B,CAa2B → Aa2B, SAa2B → Aa2B,
aAa3C → Aa3C, bAa3C → Aa3C, cAa3C → Aa3C,
AAa3C → Aa3C,BAa3C → Aa3C, SAa3C → Aa3C,
aAb2B → Ab2B, bAb2B → Ab2B, . . .}

U = {Aa2rbB → aAa2rbB,Aa2rbB → bAa2rbB,Aa2rbB → cAa2rbB,
Aa2rbB → AAa2rbB,Aa2rbB → BAa2rbB,Aa2rbB → CAa2rbB,
Aa2rbB → SAa2rbB,
Aa1raA→ aAa1raA,Aa1raA→ bAa1raA,Aa1raA→ cAa1raA,
Aa1raA→ AAa1raA,Aa1raA→ BAa1raA,
Aa1raA→ CAa1raA,Aa1raA→ SAa1raA,
Ab2rε→ aAb2rε, Ab2rε→ bAb2rε, . . .}

The construction of PA is completed (in the example, sets T and U are not
fully listed because their content can be easily derived and the number of their
elements quite large). The last, but not least, remaining task is to build a
grammar, Gc, of the control language. Let Gc = (Nc, Tc, Sc, Pc), where:

• Nc = {K,L}

• Tc = {< r > | r ∈ R}

• Sc = K

• Pc = {
K → < #q$ → qF >
K → < aqa→ q > K | < bqb→ q > K | < cqc→ q > K
K → < S ′qa→ S ′aABCa >< S ′aABC → ABCq > K
K → < Aqa→ Aa2Ba > L < Aa1raA→ aAq > K

| < Aqb→ Ab2Bb > L < Ab1rε → q > K
| < Aqc→ Ac2Bc > L < Ac1rε → q > K
| < Aq$ → A$2B$ > L < A$1rε→ q > K

L → < BAa2B → Aa3C > L < Aa2rbB → bBAa1raA >
| < BAb2B → Ab3C > L < Ab2rε → Ab1rε >
| < BAc2B → Ac3C > L < Ac2rε→ Ac1rε >
| < BA$2B → A$3C > L < A$2rε → A$1rε >

L → < CAa3C → Aa3rcC >< Aa3rcC → cCAa2rbB >
| < CAb3C → Ab3rε >< Ab3rε→ Ab2rε >
| < CAc3C → Ac3rε >< Ac3rε → Ac2rε >

66 CHAPTER 7. USAGE OF DRPA FOR SYNTACTIC ANALYSIS

| < CA$3C → A$3rε >< A$3rε→ A$2rε >
L → < aAa2B → Aa2B > L < Aa1raA→ aAa1raA >

| < bAa2B → Aa2B > L < Aa1raA→ bAa1raA >
| < cAa2B → Aa2B > L < Aa1raA→ cAa1raA >
| < AAa2B → Aa2B > L < Aa1raA→ AAa1raA >
| < CAa2B → Aa2B > L < Aa1raA→ CAa1raA >
| < SAa2B → Aa2B > L < Aa1raA→ SAa1raA >
| < aAa3C → Aa3C > L < Aa2rbB → aAa2rbB >
| < bAa3C → Aa3C > L < Aa2rbB → bAa2rbB >
| < cAa3C → Aa3C > L < Aa2rbB → cAa2rbB >
| < AAa3C → Aa3C > L < Aa2rbB → AAa2rbB >
| < BAa3C → Aa3C > L < Aa2rbB → BAa2rbB >
| < SAa3C → Aa3C > L < Aa2rbB → SAa2rbB >
| < aAb2B → Ab2B > L < Ab1rε → aAb1rε >
. . .

The construction of context-free grammar is completed too (again, not all gram-
mar rules are presented as their construction for rules representing paired re-
trieval from and storage to pushdown is obvious). Thus, the DRPA is completely
defined.

7.5 Chapter Summary and Open Problems

This chapter presented a possibility of how the DRPA can be used for syntactic
analysis. In particular, a new kind of grammars (LL SCG) was introduced.
Moreover, a way of how the efficient deterministic parser of such grammars can
be constructed was also presented. Such a parser is then built over DRPA.
A notion known from the LL1 grammars is utilized in this approach and further
extended to cover the possibilities of LL SCG and the power of DRPA.

Even if the presented approach opens big possibilities for powerful syntactic
analysis (quite simple construction of grammar, not too ”far” from context-free
grammars), there are still some open items:

• What is the relation of LL SCG to Chomsky language hierarchy?

• Parsing table construction and DRPA construction contains certain inef-
ficiencies, could they be improved?

• LL SCG class of grammars is, in a fact, LL1 SCG class. Is it feasible
to define LLk SCG class of grammars for k > 1? How complex would a
construction of the parser be then? How complex would the parser itself
be then?

Besides these open items, we can see as an open item the implementation
of a parser constructor similar to particularly known ones such as y.a.c.c. and
bison.

Chapter 8

Conclusion

This thesis presented two approaches as to how certain classes of grammars
(languages) can be exploited in parser construction. In particular, LLk, k > 1,
languages and languages defined by LL scattered context grammars were at the
centre of our focus.

Syntactic analysis of LLk languages is already a known issue and construction
of their parsers has already been possible for quite a long time. Nevertheless,
the resulting parsers, especially for k > 1, are not too efficient. The reason lies
in implementation, which does not enable handling multiple symbols under the
reading head effectively. The technique presented in this thesis enables trans-
formation of multi-symbol reading head pushdown automata used for syntactic
analysis of LLk languages to ”classical” pushdown automata working with a
single-symbol under the reading head. This feature offers an efficient way to the
implementation of parsers based on such automata. Moreover, designers and
programmers of programming language compilers and/or interpreters can feel
unbounded by the restricting rules of LL1 languages during grammar design.
Even if the expressive power of (LA)LR languages is always greater than the
one of LLk languages, manipulation with attributes is much easier and wider for
LL languages. In particular, inherited attributes are natural to LL languages
while their incorporation to (LA)LR languages requires the usage of high skills
and tricks during implementation of a parser.

Syntactic analysis of languages derived from scattered context grammars has
not been introduced yet. In particular, efficient deterministic syntactic analysis
is meant, in this case, that general applicable non-deterministic approaches are
always available. The thesis presents a new subclass of scattered context gram-
mars called LL SCG. The rules applied to SCG to make it LL SCG are derived
from ones used for definition of the LL context-free grammars. If a grammar
satisfies conditions for being LL SCG a deterministic parser can be built for it
easily. The parser is based on regulated pushdown automata, though (contrary
to LL context-free languages’ parsers). This is due to the higher expressive
power of LL SCG. Fortunately, the expressive power of regulated pushdown

67

68 CHAPTER 8. CONCLUSION

automata is also higher if compared with ”classical” pushdown automata. For
efficient parsing, a deterministic version of regulated pushdown automata was
used. Creation of a deterministic regulated pushdown automata from LL SCG
is straightforward and can be done by deterministic algorithm, presented in
this thesis too. Implementation of such a parser also seems to be quite easy
as the control language satisfies conditions for being LL1. Talking about con-
trol language, a small difference between control languages of deterministic and
non-deterministic regulated pushdown automata could be noticed. Linear lan-
guages are sufficiently strong to control non-deterministic regulated pushdown
automata while context-free languages are used for the deterministic version so
far. Nevertheless, this feature does not influence the parser behaviour. More-
over, having the control language from a set of LL1 languages is advantageous.
From our point of view, the existence of efficient parsers for LL SCG languages
opens great possibilities in compiler construction for the future.

As already mentioned in this chapter, regulated pushdown automata play a
big role in this thesis. That is why this recently introduced concept was pre-
sented in detail in this thesis. Its expressive power is equal to the one of Turing
machine and, thus, it provides us great possibilities especially in the area of
compiler construction because the base of the regulated pushdown automata
(the pushdown automata) is well known in the area—compilers of present pro-
gramming languages use pushdown automata for syntactic analysis. Moreover,
it seems that the definition of regulated pushdown automata is more straight-
forward than the definition of Turing machine of the same function.

8.1 Future Research

Every chapter besides the introducing one presented open items and questions
as its conclusion. Our future research would like to provide answers to them.
Moreover, practical implementation should be available too. There are three
main tasks for the near future:

1. Classification of the expressive power of LL SCG, their position in Chom-
sky language classification.

2. Further studies over deterministic pushdown automata—expressive power,
control language, etc.

3. Attributed parsing based on LL SCG—experiments with the practical
implementations of parsers, the definition of attribute classification and
usage, etc.

Of course, there are a few more questions to be answered, nevertheless, our
closest focus is on providing a practically usable compiler constructor (such as
y.a.c.c. or bison) together with pilot implementation of a compiler/interpreter

8.1. FUTURE RESEARCH 69

of some known programming language. We think it is possible as LL SCG is
very close to context-free grammars, to find a definition of LL SCG for current
programming languages in such a way so that context links can be verified on
the level of grammar itself.

70 CHAPTER 8. CONCLUSION

Bibliography

[1] Abadi, M., Cardelli, L.: A Theory of Objects, Springer, New York, 1996,
ISBN 0-387-94775-2.

[2] Aho, A.V., Hopcroft, J.E., Ullman, J.D.: The Design and Analysis of Com-
puter Algorithms, Addison Wesley, 1974.

[3] Aho, A.V., Sethi, R., Ullman, J.D.: Compilers: Principles, Techniques,
and Tools , Addison Wesley, Reading MA, 1986.

[4] Aho, A.V., Ullman, J.D.: The Theory of Parsing, Translation, and Com-
piling, Volume I: Parsing , Prentice-Hall, Inc., 1972, ISBN 0-13-914556-7.

[5] Aho, A.V., Ullman, J.D.: The Theory of Parsing, Translation, and Compil-
ing, Volume II: Compiling , Prentice-Hall, Inc., 1972, ISBN 0-13-914564-8.

[6] Appel, A.W.: Garbage Collection Can Be Faster Than Stack Allocation,
Information Processing Letters 25 (1987), North Holland, pages 275–279.

[7] Appel, A.W.: Compiling with Continuations , Cambridge University Press,
1992.

[8] Augustsson, L., Johnsson, T.: Parallel Graph Reduction with the < ν,G >-
Machine, Functional Programming Languages and Computer Architecture
1989, pages 202–213.

[9] Barendregt, H.P., Kennaway, R., Klop, J.W., Sleep, M.R.: Needed Re-
duction and Spine Strategies for the Lambda Calculus, Information and
Computation 75(3): 191-231 (1987).

[10] Beneš, M.: Object-Oriented Model of a Programming Language, Proceed-
ings of MOSIS’96 Conference, 1996, Krnov, Czech Republic, pp. 33–38,
MARQ Ostrava, VSB - TU Ostrava.

[11] Beneš, M.: Type Systems in Object-Oriented Model , Proceedings of MO-
SIS’97 Conference Volume 1, April 28–30, 1997, Hradec nad Moravićı,
Czech Republic, pp. 104–109, ISBN 80-85988-16-X.

71

72 BIBLIOGRAPHY

[12] Beneš, M., Češka, M., Hruška, T.: Překladače, Technical University of
Brno, 1992.

[13] Beneš, M., Hruška, T.: Modelling Objects with Changing Roles , Proceedings
of 23rd Conference of ASU, 1997, Stara Lesna, High Tatras, Slovakia, pp.
188–195, MARQ Ostrava, VSZ Informatika s r.o., Kosice.

[14] Beneš, M., Hruška, T.: Layout of Object in Object-Oriented Database Sys-
tem, Proceedings of 17th Conference DATASEM 97, 1997, Brno, Czech
Republic, pp. 89–96, CS-COMPEX, a.s., ISBN 80-238-1176-2.

[15] Brodský, J., Staudek, J., Pokorný, J.: Operačńı a databázové systémy,
Technical University of Brno, 1992.

[16] Bruce, K.B.: A Paradigmatic Object-Oriented Programming Language:
Design, Static Typing and Semantics, J. of Functional Programming , Jan-
uary 1993, Cambridge University Press.

[17] Cattell, G.G.: The Object Database Standard ODMG-93 , Release 1.1, Mor-
gan Kaufmann Publishers, 1994.

[18] Češka, M., Hruška, T., Motyčková, L.: Vyč́ıslitelnost a složitost , Technical
University of Brno, 1992.

[19] Češka, M., Rábová, Z.: Gramatiky a jazyky , Technical University of Brno,
1988.

[20] Damas, L., Milner, R.: Principal Type Schemes for Functional Programs,
Ninth Annual ACM Symposium on Principles of Programming Languages,
Albuquerque, New Mexico, USA, January 1982, pages 207–212.

[21] Dassow, J., Paun, G.: Regulated Rewriting in Formal Language Theory ,
Springer, New York, 1989.

[22] Douence, R., Fradet, P.: A taxonomy of functional language implementa-
tions. Part II: Call-by-Name, Call-by-Need and Graph Reduction, INRIA,
technical report No 3050, Nov. 1996.

[23] Ellis, M.A., Stroustrup, B.: The Annotated C++ Reference Manual , AT&T
Bell Laboratories, 1990, ISBN 0-201-51459-1.

[24] Finne, S., Burn, G.: Assessing the Evaluation Transformer Model of Re-
duction on the Spineless G-Machine, Functional Programming Languages
and Computer Architecture 1993, pages 331-339.

[25] Fradet, P.: Compilation of Head and Strong Reduction, In Porc. of the
5th European Symposium on Programming, LNCS, vol. 788, pp. 211-224.
Springer-Verlag, Edinburg, UK, April 1994.

BIBLIOGRAPHY 73

[26] Georgeff M.: Transformations and Reduction Strategies for Typed Lambda
Expressions , ACM Transactions on Programming Languages and Systems,
Vol. 6, No. 4, October 1984, pages 603–631.

[27] Gordon, M.J.C.: Programming Language Theory and its Implementation,
Prentice Hall, 1988, ISBN 0-13-730417-X, ISBN 0-13-730409-9 Pbk.

[28] Gray, P.M.D., Kulkarni, K.G., Paton, N.W.: Object-Oriented Databases ,
Prentice Hall, 1992.

[29] Greibach, S., Hopcroft, J.: Scattered Context Grammars, Journal of Com-
puter and System Sciences, Vol: 3, pp. 233–247, Academia Press, Inc.,
1969.

[30] Harrison, M.: Introduction to Formal Language Theory , Addison Wesley,
Reading, 1978.

[31] Hruška, T., Beneš, M.: Jazyk pro popis údaj̊u objektově orientovaného data-
bázového modelu, In: Sborńık konference Některé nové př́ıstupy při tvorbě
informačńıch systémů, ÚIVT FEI VUT Brno 1995, pp. 28–32.

[32] Hruška, T., Beneš, M., Máčel, M.: Database System G2 , In: Proceeding of
COFAX Conference of Database Systems, House of Technology Bratislava
1995, pp. 13–19.

[33] Issarny, V.: Configuration-Based Programming Systems, In: Proc. of SOF-
SEM’97: Theory and Practise of Informatics, Milovy, Czech Republic,
Novemeber 22-29, 1997, ISBN 0302-9743, pp. 183-200.

[34] Jensen, K.: Coloured Petri Nets, Springer-Verlag Berlin Heidelberg, 1992.

[35] Jeuring, J., Meijer, E.: Advanced Functional Programming , Springer-
Verlag, 1995.

[36] Jones, M.P.: A system of constructor classes: overloading and implicit
higher-order polymorphism, In FPCA ’93: Conference on Functional Pro-
gramming Languages and Computer Architecture, Copenhagen, Denmark,
June 1993.

[37] Jones, M.P.: Dictionary-free Overloading by Partial Evaluation, ACM SIG-
PLAN Workshop on Partial Evaluation and Semantics-Based Program Ma-
nipulation, Orlando, Florida, June 1994.

[38] Jones, M.P.: Functional Programming with Overloading and Higher-Order
Polymorphism, First International Spring School on Advanced Functional
Programming Techniques, B̊astad, Sweden, Springer-Verlag Lecture Notes
in Computer Science 925, May 1995.

74 BIBLIOGRAPHY

[39] Jones, M.P.: GOFER, Functional programming environment, Version 2.20 ,
mpj@prg.ox.ac.uk, 1991.

[40] Jones, M.P.: ML typing, explicit polymorphism and qualified types, In TACS
’94: Conference on theoretical aspects of computer software, Sendai, Japan,
Springer-Verlag Lecture Notes in Computer Science, 789, April, 1994.

[41] Jones, M.P.: A theory of qualified types, In proc. of ESOP’92, 4th European
Symposium on Programming, Rennes, France, February 1992, Springer-
Verlag, pp. 287-306.

[42] Jones, S.L.P.: The Implementation of Functional Programming Languages ,
Prentice-Hall, 1987.

[43] Jones, S.L.P., Lester, D.: Implementing Functional Languages., Prentice-
Hall, 1992.

[44] Kleijn, H.C.M., Rozenberg, G.: On the Generative Power of Regular Pat-
tern Grammars, Acta Informatica, Vol. 20, pp. 391–411, 1983.

[45] Khoshafian, S., Abnous, R.: Object Orientation. Concepts, Languages,
Databases, User Interfaces, John Wiley & Sons, 1990, ISBN 0-471-51802-6.

[46] Kolář, D.: Compilation of Functional Languages To Efficient Sequential
Code, Diploma Thesis, TU Brno, 1994.

[47] Kolář, D.: Overloading in Object-Oriented Data Models, Proceedings of
MOSIS’97 Conference Volume 1, April 28–30, 1997, Hradec nad Moravićı,
Czech Republic, pp. 86–91, ISBN 80-85988-16-X.

[48] Kolář, D.: Functional Technology for Object-Oriented Modeling and
Databases , PhD Thesis, TU Brno, 1998.

[49] Kolář, D.: Simulation of LLk Parsers with Wide Context by Automa-
ton with One-Symbol Reading Head , Proceedings of 38th International
Conference MOSIS ’04—Modelling and Simulation of Systems, April
19–21, 2004, Rožnov pod Radhoštěm, Czech Republic, pp. 347–354,
ISBN 80-85988-98-4.

[50] Latteux, M., Leguy, B., Ratoandromanana, B.: The family of one-counter
languages is closed under quotient, Acta Informatica, 22 (1985), 579–588.

[51] Leroy, X.: The Objective Caml system, documentation and user’s guide,
1997, Institut National de Recherche en Informatique et Automatique,
Francie, Release 1.05, http://pauillac.inria.fr/ocaml/htmlman/.

[52] Martin, J.C.: Introduction To Languages and The Theory of Computation,
McGraw-Hill, Inc., USA, 1991, ISBN 0-07-040659-6.

BIBLIOGRAPHY 75

[53] Meduna, A.: Automata and Languages: Theory and Applications. Springer,
London, 2000.

[54] Meduna, A., Kolář, D.: Regulated Pushdown Automata, Acta Cybernetica,
Vol. 14, pp. 653–664, 2000.

[55] Meduna, A., Kolář, D.: One-Turn Regulated Pushdown Automata and
Their Reduction, In: Fundamenta Informaticae, 2002, Vol. 16, Amsterdam,
NL, pp. 399–405, ISSN 0169-2968.

[56] Mens, T., Mens, K., Steyaert, P.: OPUS: a Formal Approach to Object-
Orientation, Published in FME ’94 Proceedingss, LNCS 873, Springer-
Verlag, 1994, pp. 326-345.

[57] Mens, T., Mens, K., Steyaert, P.: OPUS: a Calculus for Modelling Object-
Oriented Concepts, Published in OOIS ’94 Proceedings, Springer-Verlag,
1994, pp. 152-165.

[58] Milner, R.: A Theory of Type Polymorphism In Programming, Journal of
Computer and System Sciences, 17, 3, 1978.

[59] Mycroft, A.: Abstract Interpretation and Optimising Transformations for
Applicative Programs, PhD Thesis, Department of computer Science, Uni-
versity of Edinburgh, Scotland, 1981. 180 pages. Also report CST-15-81.

[60] Okawa, S., Hirose, S.: Homomorphic characterizations of recursively enu-
merable languages with very small language classes, Theor. Computer Sci.,
250, 1 (2001), 55–69.

[61] Păun, Gh., Rozenberg, G., Salomaa, A.: DNA Computing, Springer-Verlag,
Berlin, 1998.

[62] Rozenberg, G., Salomaa, A. — eds.: Handbook of Formal Languages; Vol-
umes 1 through 3 , Springer, Berlin/Heidelberg, 1997.

[63] Salomaa, A.: Formal Languages , Academic Press, New York, 1973.

[64] Schmidt, D.A.: The Structure of Typed Programming Languages, MIT
Press, 1994.

[65] Odersky, M., Wadler, P.: Pizza into Java: Translating theory into practice,
Proc. 24th ACM Symposium on Principles of Programming Languages,
January 1997.

[66] Odersky, M., Wadler, P., Wehr, M.: A Second Look at Overloading , Proc.
of FPCA’95 Conf. on Functional Programming Languages and Computer
Architecture, 1995.

76 BIBLIOGRAPHY

[67] Reisig, W.: A Primer in Petri Net Design, Springer-Verlag Berlin Heidel-
berg, 1992.

[68] Tofte, M., Talpin, J.-P.: Implementation of the Typed Call-by-Value λ-
calculus using a Stack of Regions , POPL ’94: 21st ACM Symposium on
Principles of Programming Languages, January 17–21, 1994, Portland, OR
USA, pages 188–201.

[69] Traub, K.R.: Implementation of Non-Strict Functional Programming Lan-
guages , Pitman, 1991.

[70] Volpano, D.M., Smith, G.S.: On the Complexity of ML Typability with
Overloading , Proc. of FPCA’91 Conf. on Functional Programming Lan-
guages and Computer Architecture, 1991.

[71] Wikström, Å.: Functional Programming Using Standard ML, Prentice Hall,
1987.

[72] Williams, M.H., Paton, N.W.: From OO Through Deduction to Active
Databases - ROCK, ROLL & RAP , In: Proc. of SOFSEM’97: Theory and
Practise of Informatics, Milovy, Czech Republic, Novemeber 22-29, 1997,
ISBN 0302-9743, pp. 313-330.

[73] Lindholm, T., Yellin, F.: The Java Virtual Machine Specification, Addison-
Wesley, 1996, ISBN 0-201-63452-X.

