
A Core Generator for Multi-ALU Processors
Utilized in Genetic Parallel Programming

Zbyšek Gajda
Faculty of Information Technology, Brno University of Technology

Božetěchova 2, 612 66 Brno, Czech Republic
gajda@fit.vutbr.cz

Abstract— Genetic Parallel Programming (GPP) evolves par-
allel programs for MIMD architectures with multiple arith-
metic/logic processors (MAPs). This paper describes a tool
intended for rapid development of GPP applications. A new
software tool is proposed which is able to generate a simulator
(in C language) of the MAP and a VHDL implementation of
the MAP whose structure and parameters are specified in an
input xml file. The proposed tool is intended to serve as first
version of the core generator for MAPs utilized in GPP. Typical
MAPs are synthetized and their performance is compared against
the simulation running on a common PC for a typical task – a
symbolic regression.

I. INTRODUCTION

Linear Genetic programming is a widely used evolution-
ary computation method in which candidate programs are
represented as a list of machine code instructions [1]. In
Genetic Parallel Programming (GPP) a program consists of
a sequence of parallel instructions [3]. GPP is based on multi-
ALU processors (MAP) that execute, in parallel, several sub-
instructions in one clock cycle. In contrast to the experience
of a human designer, it was shown that evolutionary approach
is more successful in the design of parallel programs than
sequential programs [4]. Hence the GPP approach has been
applied to various domains, including symbolic regression,
data classification and circuit design [3], [4], [2]. In order
to speed up the evolutionary design of parallel programs,
an FPGA implementation of MAP utilizing 16 ALUs was
proposed [2]. However, in this implementation, ALUs could
perform only logic functions.

The objective of this paper is to provide a tool for rapid
development of GPP applications. A new software tool is
proposed which is able to generate a simulator (in C language)
of MAP and a VHDL implementation of MAP whose structure
and parameters are specified in an input xml file. Typical
MAPs are synthetized and their performance is compared
against the SW simulator on a typical task – a symbolic
regression.

II. GPP AND MULTI-ALU PROCESSORS

A. Genetic Parallel Programming

GPP is a variant of linear GP that evolves parallel codes
for MIMD architecture with multiple arithmetic/logic units
(ALUs). Figure 1 shows overall architecture of GPP system
which consists of a special multi-ALU processor and an
evolution engine (EE).

genetic operationstraining set

populationfitness 
function

problem 
specification

solution

registers + controller

ALU

ALU

program

Multi-ALU processor

Evolution Engine

Fig. 1. Architecture of GPP system

Various test problems have indicated that parallel programs
are more evolvable than sequential programs, i.e. that it is more
efficient to evolve parallel programs (using multiple ALUs)
than sequential programs (using one ALU). This phenomenon
is called the GPP accelerating phenomenon.

B. Multi-ALU Processors

MAP is a kind of VLIW processors. As Figure 2 shows,
MAP consists of ALUs, registers, ports, crossbar switching
network and a controller. Multiple ALUs access a shared
register file through a crossbar switching network. ALUs can
be either identical or specific and may maintain status flags.
Registers are used to store results of ALUs or constants.
ALUs receive register values through a programmable crossbar
network and ports. Each port can be connected to the output
of any one register. A port’s value can be shared by more
than one ALU input. In order to prevent multiple ALUs from
writing to the same register concurrently, each ALU can write
only to some registers assigned beforehand.

Every MAP instruction constists of a branch-ctrl sub-
instruction, ALU-ctrl sub-instructions and reg-sel sub-
instructions. The branch-ctrl sub-instruction controls a pro-
gram flow. The ALU-ctrl sub-instruction selects an arith-
metic/logic operation, input ports and an output register. The
reg-sel sub-instruction selects a register which is connected to
a port. As all possible bit combinations in every instruction



ALU

ALU

registers

R0

R1

Ri-2

Ri-1

Ri

Rn-1

ports

constants

crossbar network

...

... ...

...

Fig. 2. Structure of MAP

are legal, programs can be generated by EE without any
repairs. The genotype of an individual contains control codes
of parallel instructions.

III. THE PROPOSED CORE GENERATOR

The core generator modifies generically written C code and
VHDL description of MAP and automatically generates the
required structures.

A. Specification of MAPs

The XML language was used for specification of MAPs
generated by the core generator. An XML file describes MAP
parameters such as the number of ALUs, registers, output reg-
isters per ALU, ports and size of a datapath, program memory.
The file also defines constant registers, branch operations and
ALU operations. The number of bits for each field of the
instruction is given in a report which is generated by the core
generator according to the XML specification.

B. Simulator in C

It is important to have a simulator of MAP running on
PC because many experiments have to be performed in order
to “tune” effectiveness of the evolutionary design process.
Furthermore, programs evolved either in SW or in FPGA have
to be analyzed. The simulator can do this job in an effective
and easy way (a dis-assembler was also created). The proposed
simulator only simulates the execution of concurrent sub-
instructions; it does not simulate a real HW. The performance
of the simulator will be discussed in Section IV-D.

C. VHDL implementation

In order customize MAP according to user specification,
MAP is composed of parameterizable modules controlled by
FSM. Figure 3 shows the generic architecture of MAP.

The architecture includes: an ALU unit, a decoders unit, a
registers unit, multiplexers units and a control unit. The ALU
unit (alus block) consists of the predefined number of ALUs.
The decoders unit (alus regs decoders block) is utilized to se-
lect registers designated to store results of ALUs. The registers

unit (regs block) consists of the store registers and the constant
registers. The multplexers unit #1 (regs port muxes block)
consists of multiplexers which connect the register outputs
to ports. The multiplexers unit #2 (ports alus muxes block)
implements the crossbar-network.

The control unit (ctrl block) controls a data flow of MAP
which includes: a program memory, an instruction register
(IR), a branch unit and a Finitive State Machine (FSM). The
program memory stores a parallel program. The IR stores a
single parallel instrucion. The branch unit controls a program
flow. The FSM controls an instruction fetching, decoding,
executing and writing-back.

IV. RESULTS

A. Specification

In order to evaluate the SW simulator and the imple-
mentation in FPGA, three different MAPs (MA, MB, MC)
were specified (see Table I). The core generator was used
to generate corresponding simulators and VHDL implemen-
tations. It was specified for all the MAPs to utilize branch
operations next, end, jump-if-equal-zero and jump-if-greater-
than-zero and ALU operations r=a+b, r=a-b, r=a and no-
operation.

TABLE I
PARAMETERS OF MAPS

MAP MA MB MC

ALUs 4 4 8
data path 4 16 16
ports 4 4 8
output registers per ALU 4 4 2
registers 32 32 32
program size 32 32 32

B. Results of synthesis

All the MAPs were synthesized using Xilinx ISE 6 to Xilinx
Virtex 2 FPGA (device=xc2v250). Results of the synthesis are
summarized in Table II.

TABLE II
RESULTS OF SYNTHESIS

MAP MA MB MC

Slices 265 853 1534
Slice Registers 163 403 536
4 input LUTs 258 976 2429
fmax[MHz] 211.33 197.37 186.1

C. Symbolic Regression Using GPP

In order to verify that the simulator of MAP works correctly,
MAP and EE were utilized to solve a simple problem. The
objective was to find the formula x6−2x4+x2 using symbolic
regression in case that the training set consists of 20 samples
(see [4]). The MAP was specified as MB (see Tab.I) withtwo
branch-ctrl instructions: next and end. The constant registers
were set to the values 1 and −1. Each ALU was programmed



Fig. 3. Multi-ALU processor architecture

to perform one of the following operations: r=a, r=b, r=neg a,
r=neg b, r=a+b, r=a-b, r=a*b and no-operation. Parameters
of EE: the population size = 2000, the crossover probability
= 1.0, the instruction bit mutation probability = 0.02, the
selection method = a tournament (size=10) and the maximum
number of generations = 20000. Seven out of ten independent
runs were successful. A valid solution was found in the
generation 3220 on avarage.

D. Performance Analysis

It is important to note that the evolution has not been
performed in the FPGA yet. Hence it is impossible to compare
the results presented here and in [2].

The objective herein was to compare the performance of
the simulator of MAP (running at Athlon64@3.2GHz) and
the HW implementation of MAP (in the Virtex2 FPGA) for
a given parallel program. In order to do that we have used
randomly generated benchmark programs and measured their
performance (in MIPS). Table III shows that the FPGA imple-
mentation is k times faster (in average) than the simulator. In
our case the value of k roughly corresponds to the number of
ALUs divided by 2. The obtained speedup is not impressive;
however, one has to consider that the simulator does not
simulate real MAP (i.e. all multiplexers, decoders etc.) but
it only simulates the execution of MAP’s instructions.

TABLE III
COMPARSION OF PERFORMANCE

MAP MA MB MC

MIPSfpga 35.22 33,06 31.02
MIPSsim 14 14 7.9
speedup 2.52 2.36 3.93
ALUs 4 4 8
fmax[MHz] 211.33 197.37 186.1

In comparison to [2], our implementation of MAP in FPGA
supports arithmetic as well as logic functions. The experiments

have shown that the implementation of MAP is at least as
powerful as the implementation presented in [2] (although our
design is generated automatically from a specification).

V. CONCLUSIONS

In this paper, a new CAD tool was introduced to support de-
velopment of applications of GPP that utilize MAPs. Accord-
ing to the specification, this tool is able to generate software
simulator of MAP and its VHDL implementation. Results of
synthesis of a typical MAP and simulations performed indicate
that the FPGA implementation would be more powerful than
a software simulation even if the simulator were running on
a very powerful PC. In order to perform a complete GPP
with the MAP implemented in hardware, an interface has to
be created between EE and MAP. This interface could be a
performance bottleneck of the whole system. Future research
will deal with this problem.

ACKNOWLEDGMENT

The research was performed with the Grant Agency of the
Czech Republic under contract No. 102/06/0599 Methods of
polymorphic digital circuit design.

REFERENCES

[1] W. Banzhaf, P. Nordin, R. Keller, and F. Francone. Genetic Programming
– An Introduction. Morgan Kaufmann Publishers, San Francisco, CA,
1998.

[2] W. S. Lau, G. Li, K.-H. Lee, K.-S. Leung, and S. M. Cheang. Multi-logic-
unit processor: A combinational logic circuit evaluation engine for genetic
parallel programming. In Proceedings of the 8th European Conference on
Genetic Programming, volume 3447 of LNCS, pages 167–177, Lausanne,
Switzerland, 2005. Springer.

[3] K. S. Leung, K. H. Lee, and S. M. Cheang. Evolving parallel machine pro-
grams for a Multi-ALU processor. In Proceedings of the 2002 Congress
on Evolutionary Computation CEC2002, pages 1703–1708. IEEE Press,
2002.

[4] K. S. Leung, K. H. Lee, and S. M. Cheang. Parallel programs are
more evolvable than sequential programs. In Genetic Programming,
Proceedings of EuroGP’2003, volume 2610 of LNCS, pages 107–118,
Essex, 2003. Springer-Verlag.


