
Towards Verification of Systems of Asynchronous
Concurrent Processes

Marek Rychlý *

rychly@fit.vutbr.cz

Abstract: Distributed information systems as applications of networked information technology
systems create needs for reliable architectures with emphasis on formal specification, verification
and validation. In fact, software confederations and global software systems connect many con-
current processes into asynchronous network systems, e.g. via service-oriented architecture or
multiple agent architecture. A reusable object-oriented software framework for systems of asyn-
chronous concurrent processes based on the modified asynchronous network model provides a
framework for implementation of asynchronous distributed systems and their translation into the
process algebra. This paper is about a formal specification and verification of systems implemented
using the framework by means of the calculus of mobile processes (π-calculus).

Keywords: Asynchronous Network Model, System of Asynchronous Concurrent Processes, π-
Calculus, Formal Specification, Verification, Validation

1 Introduction

Distributed systems can be found in many present information technology systems. Extensive
information systems create needs for distributed architectures consisting of many nearly inde-
pendent and spread subsystems. A definition of networked information technology (NIT) systems
[1] as information technology systems, which are responsible for processing data into information
over geographically dispersed regions, sets new challenges to formal specification and verific-
ation. Indeed, NIT system, which is a distributed system of concurrent processes can be found
in every physical, natural or social process where subsystems possess independence, autonomy,
and their own sense of timing. In practice, this type of system architecture leads to service ori-
ented architectures or multi-agents systems, but there is missing an abstract simple object-oriented
model, which is independent of concrete implementation of infrastructure parts.

In this paper, there is shortly described an object-oriented reusable framework for systems
of asynchronous concurrent processes based on a modified asynchronous network model. The
goal of the framework is to provide an abstract object-oriented model to separate parts of a
distributed system by means of interfaces, and to reduce time and effort involved in implement-
ation. After a brief description of the modified asynchronous network model and the mentioned
framework, this paper will describe a formal specification of framework-based systems using
π-calculus and way to their verification.

* Department of Information Systems, Faculty of Information Technology, Brno University of Technology, Boz-
etechova 2, Brno 612 66, Czech Republic

2 Modified Asynchronous Network Model

An asynchronous network model (ANM) is a formal model of asynchronous communicating
concurrent processes [2]. ANM consists of a N-node directed graph G=(V,E), where V is set of
nodes and E is set of edges. Each node vi ∈ V is associated with a process Pi and has in-neighbors
and out-neighbors. Each directed edge ej ∈ E of the graph is associated with a communication
channel, which connects its neighbor nodes in a given direction. Both processes and channels
can be modelled as an arbitrary I/O automaton, connected using operations (input and output
actions):
• send(m)i,j to send message m from process i to process j (an out-neighbor in the graph G),
• receive(m)j,i to receive message m from process i (an in-neighbor) by process j.

There are many kinds of channels (channels with failures, reliable reordering channels,
etc.) that support usability of ANM for asynchronous systems of real word. An extension [3]
of the universal reliable FIFO channel (see [2]) supplemented with some multicast features
will be used in this paper. In fact, we split a channel into two components, named “port” and
“link”, where the link is a network buffer able to receive a message from many processes
(senders) and deliver it to at most one of many listening processes (receivers). The port is an
interface between a process and link, implementing operations send and receive and being able
to deliver sent messages to only one link, but accept a message from many links while receiving
(see Figure 1).

link 1

link 2
process

port

Figure 1. An example of the modified asynchronous network model

The translation of this modified ANM (with process, port and link) into original one (with
process and channel, as in [2]) is obvious, because the process connected with neighbours using
classic channels can emulate a link. Therefore the extension is a conservative extension.

3 Framework for Systems of Asynchronous Concurrent Processes

This part of the paper will shortly introduce an object-oriented reusable framework for systems
of asynchronous concurrent processes based on the modified ANM [3]. The goal of the frame-
work is to provide an abstract object-oriented model to separate parts of a distributed system
by means of interfaces, to reduce time and effort involved in implementation, and allow describ-
ing formal specification of such system and verify it.

The modified ANM splits a system into three parts (processes, ports and links), where each
part has its own role in the process of communication. The framework can use these parts in
the vertical view as nearly independent layers (see Figure 2):
1. Process Layer (Application Layer) — The top layer of the architecture, which is aware of

needs of the application. Objects in this layer represent processes. There are atomic pro-
cesses and composite processes.

2. Port Layer (Presentation Layer) — The middle layer, which provides an interface between
the process layer and the link layer. Operations send and receive are implemented at this
layer and are used by processes from process layer. We suppose an asynchronous send and
a synchronous receive.

3. Link Layer (Transport Layer) — The bottom layer is responsible for connecting commu-
nicating processes. It implements universal reliable FIFO channel, or in general some of
other channel type. This layer provides an abstraction of an underlying network, realized
for example using an inter-process communication or a service-oriented architecture.

pr
oc

es
s
la
ye

r
po

rt
la
ye

r
lin
k
la
ye

r

Process

Atomic
Process

Composite
Process

Port
Atomic

Process
Port

Composite
Process
Port

ExternalPort

Link

Figure 2. Vertical and horizontal view of framework architecture

In the horizontal view, the process layer consists of two entities: AtomicProcess and
CompositeProcess. The first one represents indivisible functional entity at the level of an ab-
straction, which is used (such as services, library functions, calls of objects' methods, etc.). A
composite process, as the second entity of the process layer, represents a subsystem of commu-
nicating processes designed using this framework with the interface for input messages. Subpro-
cesses contained in the composite process can be both types, atomic and composite.

The port layer is divided similarly to the previous layer. It contains AtomicProcessPort,
which makes an interface of atomic process (implements send and receive operations), and
CompositeProcessPort, which is used to send messages from processes outside a composite
process towards processes inside a composite process. In fact, a composite process port should
be the only connection (a proxy) for sending messages to a port of some inner process.

The link layer is presented to higher layers as a black-box accessible through interface
Link, which connects process ports using interface ExternalPort and design pattern “observer”.
For our purpose, the implementation of this layer in the framework is not important. Suffice it
to know that the link layer acts as a (buffered) reliable link, which transports a message from
each of processes connected to the link as senders to one of receiving processes (the choice of
a group of processes listening on such link is in an unspecified order).

The Figure 3 shows a schematic view of class hierarchy and relations in the framework
for systems of asynchronous concurrent processes. Implementation details of the framework
are out of scope of this paper, but a full description of the framework can be found in [3].

4 Semantics of Systems of Asynchronous Concurrent Processes

The framework for systems of asynchronous concurrent processes described in this paper uses
a modified asynchronous network model to catch communication structure and hierarchy of

0..*

10..*

0..*

notify

1

0..*

builder

1

proxy

0..*

observed by

0..10..*

0..1

ready to pass on

to pass on

<<process layer>>
interface
Process

+startReceiving:void
+startAll:void
+stop:void

running:boolean
onlyReceiving:boolean
ports:Port[]

<<process layer>>
interface

AtomicProcess

+build:void

<<port layer>>
interface

ExternalPort

<<link layer>>
Link

-observers:ObservingPort[]

+attach:void
+detach:void
+notify:void
<<synchronized>>
+obtainInput:ReadyPort

<<link layer>>
BufferedDirectLink

-readyPorts:ReadyPort[]

+notify:void
<<synchronized>>
+obtainInput:ReadyPort

<<process layer>>
CompositeProcess

-ports:CompositeProcessPort[]

+addProcess:void
+delProcess:void
+publishPort:CompositeProcessPort
+unpublishPort:void

processes:Process[]

<<port layer>>
CompositeProcessPort

-port:ExternalPort

+CompositeProcessPort
+update:void
+passSended:Data

<<link layer>>
interface
ReadyPort

+passSended:Data

<<link layer>>
interface

ObservingPort

+update:void

<<port layer>>
Port

-sendBuffer:Data[]

+receive:Data
+send:void
+update:void
+passSended:Data

link:Link

<<port layer>>
interface

AtomicProcessPort

+receive:Data
+send:void

link:Link

<<port layer>>
interface
Data

Figure 3. A schematic view of class hierarchy and relations in the framework (from [3])

processes. The semantics of a system implemented using the framework can be formally described
in a process algebra (more specifically in a π-calculus), as it will be shown in the next paragraphs.

There exist many successful models formulated using process algebra, but one of the most
spread algebraic frameworks is Calculus of Communicating Systems (CCS). The π-calculus
(known as “calculus of mobile processes”, see [4]) is an extension of CCS, which allows mod-
elling of systems with dynamic communication structures (i.e. mobile processes). The π-calculus
uses only two concepts:
• a process (agent) — an active communicating entity in the system, atomic or expressed in

π-calculus (denoted by uppercase letters in expressions),
• a name (port) — anything else, e.g. channel, variable, data, or also process in high level

view (denoted by lowercase letters in expressions).

A process is formally defined in π-calculus using induction. At first, the process 0 is a π-
calculus process (null process). If processes P and Q are π-calculus processes, following expres-
sions are also π-calculus processes with given syntax and semantics (the operational semantics
of the π-calculus is described and explained in [4]):
1. x̄ y .P sends name y via port x and continues as process P,
2. x(y).P receives name y via port x and continues as process P,
3. τ.P does an internal (silent) action and continues as process P,
4. (x)P creates new name x in a context of process P and continues as process P,

5. [x = y]P proceeds as P if names x and y are identical, else behaves like a null process,
6. P | Q proceeds as parallel composition of processes P and Q,
7. P + Q proceeds as either process P or process Q (a non-deterministic choice),
8. A(y1, …, yn) behaves as process with substitution P{y1 / x1, …, yn / xn} where (the parametric

process) agent A is defined as process P and names x1, …, xn occur free in process P.

The interaction between two processes is done through ports, which are identical in their
context, according to the previous semantics. For example, the system, which is defined as
process x̄ y .P | x(z).Q (a parallel composition of the process, which sends name y via port x and
continues as process P, and the process, which receives name z via port x and continues as
process Q), can perform a communication step (via port x), resulting an internal action τ. After
this communication, the system is defined as process P | Q{y / z} (all free occurrence of z in Q
are replaced by y).

In this paper, the π-calculus will be used for description of an asynchronous network
model and its implementation in the framework for systems of asynchronous concurrent pro-
cesses. The main reason for using the π-calculus is its ability to catch dynamic communication
structure of systems implemented using the framework.

Now, suppose we have a system implemented using the framework. At first, for each
atomic process (instance of AtomicProcess) there is given semantics in π-calculus. This is
necessary because behaviour of a process is hidden at the level of abstraction, which is used in
the framework. However, the framework specifies an interface of each process using the port
and so the designer of a system in the framework is forced to use this communication interface
and to design process interface compatible with earlier or later specification in π-calculus.

A port p (instance of AtomicProcessPort) of a process in the framework is expressed as
two channels in π-calculus: pin for receiving and pout for sending. A link (instance of Link) in
the framework, which transmits messages from ports represented in π-calculus as q1out, …,
qmout to ports represented as p1in, …, pnin, can be expressed as a process in π-calculus (the re-
peated non-deterministic choice of two opposite channels and a communication between them):

link(p1in, …, pnin, q1out, …, qmout) = ∑
i=1

n
∑
j=1

m
qjout(x).piin̄ x .link(p1in, …, pnin, q1out, …, qmout)

It is necessary to remark, that if one port in the framework is expressed as one channel in
π-calculus, a message would be transferred incorrectly from one link to another one without the
action of a process, which owns the port. For that reason, a port cannot be expressed as one
channel in π-calculus. Also the definition of a link cannot be created without a non-deterministic
choice, because otherwise a message would be sent to the incorrect channel of an inactive process,
while another process is ready to receive it.

The last two entities of the framework are the composite process (instance of Composite-
Process) and the port of a composite process (instance of CompositeProcessPort), which
acts as a proxy transferring messages from processes outside towards processes inside composite
process. The purpose of composite process is to hide processes inside it from outside views. In
the π-calculus, the composite process can be defined as a parallel composition of its internal
processes, where ports of a composite process act as its public names — the composite process
is a parametric process with the ports of a composite process as its parameters, according to the
last part of the definition of π-calculus process from the beginning of this chapter.

4.1 Semantics of Sample System

Suppose we have a simple system with client-server architecture implemented using the
framework, which contains one atomic process (representing a client) and one composite process
(representing a server). In this system, operations send and receive (listening) are implement
using ports as process interfaces. The system works as follows (see Figure 4):
1. the server listens for requests on link l,
2. the client sends a request (with a pointer to private link k, where it listens) into link l,
3. when the server receives the request, it creates another concurrent process P to handle the

request,
4. then process P creates link j, where it listens, and sends pointer to this link into link k,
5. at the end of the scenario process P and the client process communicate through link k

(form process P towards the client process) and link j (form the client process towards
process P).

l
proxy

k

j
P

server
client

(1) (2)

(3) (4)

Figure 4. The client-server scenario in modified asynchronous network model1

The client-server system can be described in π-calculus as a parallel composition of pro-
cesses Client(lout), Server(lin) and link(lin, lout) as follows (where the link is defined, as it was
shown before, and Clientconnected and Serverconnected are some processes in π-calculus, which
communicate together using two channels):

Client(lout) = (kin).lout̄ kin .kin(jout).Clientconnected(kin, jout)
Server(lin) = Server(lin) | lin(kout).P(kout)
P(kout) = (jin).kout̄ jin .Serverconnected(jin, kout)

The first line defines the parametric process of a client (with parametr lout), which creates
new port kin, sends it via port lout (the second step in the scenario), and receives a name from
port kin as jout. Finally, the client process continues as the process representing a connected client
(the last step in the scenario). The definition of the server process (the second and third line) is
a recursive parallel composition, where the first part ensures permanency of the server process
and the second part is similar to the definition of the client process (the first, third and the next
steps in the scenario).

5 Verification of Systems of Asynchronous Concurrent Processes

Formal semantic of systems implemented using the framework described in this paper can be
used to formal validation, testing equivalence or verifying general temporal and functional

1In the schema of the client-server scenario (Figure 4) links are used as simple point-to-point channels. But in real
applications there will be many ports connected to every public link (e.g. many clients connected to one server).

properties. There are many papers about verification of systems of mobile processes expressed
in π-calculus, such as [5], [6] or [7]. The next paragraphs will focus on using The Mobility
Workbench (MWB, see [5]) for validation and verification of a system implemented in the
framework.

Suppose we have a system implemented in the framework and its formal specification ac-
cording to previous section of this paper. Using MWB we can for example:
• verify if processes are strong and weak open bisimulation equivalent — this is useful, e.g.

after optimization or extension of a system implemented using the framework or its parts,
when a proof of equivalence is needed,

• verify if a process contains deadlocks and obtain their descriptions — i.e. to check, if it is
always possible to move the process under communication action to another state,

• simulate each step of system execution and communicate with the system using system in-
terface (free channels) and interfaces of processes inside the system (non-free channels) —
this can be used to debug a system, for fault finding in a given environment, and for black-
box testing of a system, which is implemented using the framework.

5.1 Verification of Sample System

We use the outcome of Section 4.1 and express processes in π-calculus as input data for MWB
(see Example 1). At first, the recursion in the parallel composition in process Server(lin) has to
be eliminated in some way, because MWB couldn't handle it. In practice, the recursive parallel
composition in Server(lin) can be simply replaced with a finite number of concurrent processes
(and improved with some recycling mechanism). For demonstrating purpose, the server from
the example needs only one server process (no concurrency) for a communication with one
client process (in the example, it is denoted by the comment “reduced”). Furthermore, processes
Clientconnected and Serverconnected have to be defined and therefore, for demonstrating purpose,
both of these processes will be specified as null processes.

agent Client(lout) = (^kin)'lout<kin>.kin(jout).ClientConn<kin,jout>
agent Server(lin) = lin(kout).P<kout> (*reduced*)
agent P(kout) = (^jin)'kout<jin>.ServerConn<jin,kout>
agent System = (^lin,lout)(Server<lin> | Client<lout> | Link<lin,lout>)
agent Link(in,out) = out(x).'in<x>.Link<in,out>
agent ClientConn(kin,jout) = 0
agent ServerConn(jin,kout) = 0

Example 1. Source code of the client-server system in MWB

The first three lines in Example 1 are only the transcription of π-calculus processes from
Section 4.1. The fourth line defines the main process, i.e. the enclosed system containing the
server, client and the link between them. The next line defines the link process, according to
Section 4. The last two lines define connected versions of the client and server processes as null
processes.

MWB finds in the main process System a deadlock reachable by three commitments, when
a connection between the server and client is established and both the server and client finished,
but the link process is ready to another communication (connected versions of client and server
processes were finished, because of their definition as null processes). A real system should
have real processes as connected versions of a client and server (and a server with many concur-
rent processes), which would be verified.

6 Conclusion

In this paper there was described a formal specification and verification of systems of asynchron-
ous concurrent processes implemented using the object-oriented reusable framework for systems
of asynchronous concurrent processes, which is based on a modified asynchronous network
model [3]. Both the network model and the mentioned framework were briefly described with
emphasis on formal specification and verification by means of the calculus of mobile processes
(π-calculus) [4].

The framework for systems of asynchronous concurrent processes keeps specific level of
abstraction, therefore semantics of a system designed using the framework cannot be expressed
in π-calculus automatically, but has to be described during a design of such a system. In spite
of this, the framework specifies design pattern, which a designer of system has to use and which
leads to a system design expressible in π-calculus.

The formal description of a system implemented using the framework can be used to
formal validation, testing equivalence or verifying general temporal and functional system
properties. There exist tools and methods for processing formal specification in process algebras,
such as [5], which is referred in this paper and can be used e.g. to prove strong and weak open
bisimulation equivalence or the absence of deadlocks.

A future research will be aimed at concrete models of framework application to verify the
framework and especially to improve way to formal specification and verification of systems
implemented using this framework.

This work has been supported by the Grant Agency of Czech Republic grants No. 102/05/0723
“A Framework for Formal Specifications and Prototyping of Information System's Network
Applications”.

References
1. Sumit Ghosh. Algorithm Design for Networked Information Technology Systems. Springer. New

York. 2004.
2. Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers. San Francisco, CA, USA.

1996.
3. Marek Rychly. A reusable framework for systems of asynchronous concurrent processes. Available

from http://www.fit.vutbr.cz/rychly/public/docs/reusable-framework-for-acp-systems/reusable-
framework-for-acp-systems.pdf. 2006.

4. Robin Milner, Joachim Parrow, and David J. Walker. A calculus of mobile processes, I and II. In-
formation and Computation, 100(1):1–40 and 41–77, 1992.

5. Victor Björn and Faron Moller. The Mobility Workbench — a tool for the π-calculus. In David Dill,
editor, CAV'94: Computer Aided Verification, volume 818 of Lecture Notes in Computer Science,
pages 428–440. Springer-Verlag, 1994.

6. Ugo Montanari and Marco Pistore. Finite state verification for the asynchronous π-calculus. In
TACAS '99: Proceedings of the 5th International Conference on Tools and Algorithms for Construc-
tion and Analysis of Systems, pages 255–269, London, UK. Springer-Verlag, 1999.

7. Mads Dam. Proof systems for π-calculus logics. In R. de Queiroz, editor, Logic for Concurrency
and Synchronisation, Trends in Logic, Studia Logica Library, pages 145–212. Kluwer, 2003.

http://www.fit.vutbr.cz/rychly/public/docs/reusable-framework-for-acp-systems/reusable-framework-for-acp-systems.pdf
http://www.fit.vutbr.cz/rychly/public/docs/reusable-framework-for-acp-systems/reusable-framework-for-acp-systems.pdf

	Towards Verification of Systems of Asynchronous Concurrent Processes
	1 Introduction
	2 Modified Asynchronous Network Model
	3 Framework for Systems of Asynchronous Concurrent Processes
	4 Semantics of Systems of Asynchronous Concurrent Processes
	4.1 Semantics of Sample System

	5 Verification of Systems of Asynchronous Concurrent Processes
	5.1 Verification of Sample System

	6 Conclusion
	References

