

© EUROSIS-ETI

TOWARDS DEVS META LANGUAGE

Vladimír Janoušek
Petr Polášek

Pavel Slavíček
Faculty of Information Technology,

Brno University of Technology
Božetěchova 2

612 66 Brno, Czech Republic
E-mail: {janousek|polasek|slavicek}@fit.vutbr.cz

KEYWORDS

DEVS formalism, simulation model, meta-model, model
specification, XML, XSL transformation

ABSTRACT

The aim of this article is to present DEVSML (DEVS Meta
Language) that is intended for implementation of simulation
models based on the DEVS formalism. A model
implemented by DEVSML is independent of the concrete
simulation environment implementation. Furthermore, a
model can be simply and automatically transformed and
used by potentially whatever DEVS-based simulation
environment, such as DEVS/C++, DEVSJava, etc. Since
models are generally not portable between different
simulation environments, it is necessary to implement
models for every framework, which costs a lot of time and
resources. DEVSML eliminates this annoyance and enables
creation of models, which can be shared between different
simulation environments. DEVSML defines model's
structure as well as behavior by XML (eXtensible Markup
Language). Transformation of models is based on the XSL
transformation. For every simulation environment, an XSL
template needs to be created and used for the
transformation.

INTRODUCTION

The interest in modeling and simulation is still increasing,
since modeling and simulation is used in many areas of
human activity and cannot be substituted during design and
analysis of complex systems. Actually, there is a
pragmatical trend to group models and simulators into
tightly linked packages. While creating a new simulation
environment, basic models are reconstructed and
reimplemented, since they cannot be shared among different
frameworks. It seems to be desirable to specify a standard
for implementations of models, which will put away this
annoyance and allow migration of models between different
environments, saving time and effort spent on
implementation. Then the creation of libraries consisting of
commonly used components and models will be possible.

The article is focused on the DEVS formalism (Discrete
EVent System specification) (Zeigler et al. 2000)

representing a formal basis for specification of discrete
event systems. In theory, the DEVS models are independent
of the chosen simulator as well as of the experimental
frame. Actually, many implementations of this formalism
exist, such as DEVS/C++, DEVSJava, etc. Their main
disadvantage is impossibility of sharing models between
them because the models are usually implemented in the
same language as simulator itself.

The aim of this article is to present our approach trying to
solve this problem. We are developing a meta-language for
description of DEVS models that is based on XML. Models
described by this language can be simply transformed to
different simulation environments and frameworks without
needs of their changes. Furthermore, to simplify the
implementation, we are developing a prototype of a
modeling tool, based on this language, which enables us to
graphically specify a model with the definition of transition
and transformation functions of atomic models

The paper is organized as follows. The first section shortly
reviews basic components and terms of DEVS formalism.
Next section delimitates the areas of our work with respect
to the DEVS standardization group. It deals with existing
tools and discusses their advantages and disadvantages. The
main parts of the article are the last two sections, describing
the DEVSML and shortly reviewing our modeling tool
based on this meta-language. The advantages our approach
gives and future plans are discussed in the conclusion.

THE DEVS FORMALISM

The DEVS formalism specifies discrete event systems
hierarchically. We start from the atomic models, from
which larger coupled models are built. An atomic model M
is defined as:

λδδ ,,,,,, int YXtaSM ext=

where
S is the sequential state set,

ta:
+

∞→ ,0RS is the time advance function,

intδ : SS → is the internal transition function,

X is the set of external input event types,

extδ : SXQ →× is the external transition function

© EUROSIS-ETI

where (){ })(0,, staeSsesQ ≤≤∈= ,

Y is the set of external event types generated as output,
λ : YS → is the output function.

The coupled model can contain atomic models and also
coupled models, connected together. This model can be
inserted as a component in another coupled model, forming
a hierarchical structure. A coupled model C is defined as:

selectICEOCEICDYXC selfself ,,,,,,=

where

selfX is the set of external input events,

selfY is the set of output events,

D is a set of DEVS component models,
EIC is the external input coupling relation,
EOC is the external output coupling relation,
IC is the internal coupling relation,
selectis a function, the tie-breaking selector.

More detailed descriptions for the definitions of DEVS
models, their variants and abstract simulators can be found
in (Zeigler et al. 2000).

EXISTING SYSTEMS AND TOOLS

There exist many implementations of DEVS formalism.
Some of the most known are DEVSC++ (Zeigler et al.
1996), DEVSJava (Sarjoughhian and Zeigler 1998; Zeigler
1997) and we can also mention PythonDEVS (Bolduc and
Vangheluwe 2001) among others. DEVSJava is considered
as a reference implementation among them.

There exists an effort to develop a standard of the DEVS
formalism. One team that is concerned with the
standardization is the DEVS standardization group. Their
research (Wainer 2005) can be divided into three basic
areas: interoperability of existing DEVS tools (1),
specification of the minimal 'kernel' for a tool to be DEVS
compliant (2), definition and implementation of a language
for atomic and coupled model definition and broadening the
models between the community of users (3).

There exist some articles (Fishwick 2002) concerning the
area (2) and proposing the manners of simulation models
description. The description or model's structure is based on
XML, the translation functions are dismissed or are
described with a pseudo code.

There also exists a general modeling tool ATOM3 (Lara
and Vangheluwe 2002) focused on meta-modeling and
model-transforming. Meta-modeling refers to description or
modeling different kinds of formalisms used to model
systems. Model-transforming refers to the automatic process
of transforming a model in a given formalism to another one
(in the same or different formalism). The tool is based on

graph grammars and uses graph rewriting for model
transformation.

Our focus is the area (3). At least two similar projects are
connected with this area. The first is DEVSW (Yung-Hsin
and Lung-Hsiung 1998). In this project, the model's
structure description is based on XML and the description
of behavior of atomic models is specified by a pseudo code.
An elegant solution represents the second project (Schäfer
2003) that uses XML only. The description of the functions
is done by rules with a finite set of states so only finite state
automata can be specified by this approach.

DEVSML

The primary motivation to develop the DEVSML was to
enable portability of a model between our experimental
simulation tools and other DEVS-based simulation
frameworks. The portability of a DEVS model allows us to
use advantages of complementary features of the other
frameworks. However, portability is a general problem and
its solution can introduce interesting possibilities and
facilitate the modeler's effort.

Structure of a Model in DEVSML

DEVSML (DEVS formalism Meta Language) is based on
XML (extensible Markup Language). An XML document
has a hierarchical structure so that the hierarchical structure
of DEVS model can be mapped to XML easily. An XML
document defining a coupled DEVS component comprises
an input and output ports specification, a list of names of
the inner components (i.e. atomic DEVS models) - with
links to the documents containing their definitions - and a
description of couplings of the components. Every DEVS
component is defined in a separate (possibly detached)
XML document, which can be stored in local files as well as
anywhere on the internet. This way it is possible to create
publicly available libraries of reusable components. An
example of a coupled component defined by DEVSML is
shown in Figure 1.

Figure 1 depicts also a definition of an atomic model. The
definition of input and output ports of an atomic component
is similar to the ones of a coupled component. A concept of
a super model can be applied here to simplify the
implementation by means of inheritance - the definition of
ports, state variables, and functions can be inherited from a
super-model.

As the definition of an atomic and a coupled DEVS model
structure is quite simple, the definition of the atomic DEVS
behavior (specified by the internal transition, the external
transition, the output function and the time advance
function) is a bit more problematic. We have got inspired
by JavaML project (Badros 2000), which defines an XML
representation of Java code. This way, the Java code is
available for optimization, verification, and/or
transformation. JavaML features perfectly fit to our needs
here. That is why our notation for basic programming

© EUROSIS-ETI

constructs and expressions usable in DEVS functions
specification came out directly from JavaML.

Figure 1: A DEVSML Description of a Coupled and
Atomic DEVS Model

In JavaML as well as in DEVSML there are defined basic
elements of expressions such as integer values and unary
and binary operators (such as greater than, equal, etc.).
Basic syntax elements comprise getting and setting the
value of state variable (getStateVar, setStateVar), the
element which gets and sets value of local variable (getVar,
setVar), conditional branch of program (if-then-else) and a
cycle with condition on the beginning (while), at the end
(until) and cycle with known number of passes (for).

Source Languages for DEVSML

The implementation of DEVS models directly in DEVSML
is possible but not very handy. A more user-friendly
language has to be chosen for modeling.

The hierarchical structure of a model and the coupling of
the components can be specified graphically. This is shown
in Figure 1. Such a visual language can be transformed to
DEVSML quite simply. The graphical specification of
models and their transformation is one of the main features
of our experimental modeling tool we are developing. This
is discussed in the next section.

What is more difficult is the behavior specification of the
atomic DEVS. Some simple language or a pseudo code can
be used for specification of the functions. Currently, we are
experimenting with a Lisp-like language, which is shown in
Figure 2.

Figure 2: Lisp-like Code and Corresponding Representation
in DEVSML

Besides a translator from such a source language to the
DEVSML code it is essential to have a possibility to
translate the DEVSML code to the source code as well.
Then we can use DEVSML code as the only code, which
have to be stored and maintained. We also suppose that
there can be even more languages used as the user-friendly
views on DEVSML-specified model.

To be more consistent with the graphical specification of
DEVS components structure, one of the possibilities we are
going to investigate comprise visual languages for
expressing the DEVS functions. We have slightly
experimented with a visual language based on the UML
(France et al. 1997), especially the diagram of activity. An
example of this approach is showed in Figure 3 (code from
Figure 2 is used). Nevertheless we consider this approach to
be very experimental.

© EUROSIS-ETI

Figure 3: Graphical Language for Definition of DEVSML
Functions

Transformation to Target Simulation Environment

DEVSML describes the structure of DEVS components and
the semantics of functions describing the behavior of atomic
components. It represents a basis for the transformation to
the chosen simulation environment. The transformation is
based on an XSL transformation with an appropriate XSL
template that contains rules for the transformation. Such a
transformation is illustrated in Figure 4. To add a support
for a new environment, it is necessary to implement only a
new XSL template, the models remain unchanged.

Figure 4: XSL Transformation

A MODELING TOOL

The prototype implementation of a DEVSML-based
modeling tool is being implemented in the Java. The whole
system has two main parts. The first part represents a
graphical user interface used to create the structure of a
model and a definition of its atomic models behavior. The
second part of the system supports transformation of a
model defined in DEVSML into an equivalent
implementation for some simulation tool or environment.

The model structure editor allows for insertion of
components whose definition can be stored in some local
files, or somewhere on the internet. Furthermore it allows
for the creation of new atomic components with the use of
inherited properties of other atomic components. Among
the atomic DEVS functions, the tool supports also user-
defined functions that can be called from the atomic DEVS
component's functions specifying its behavior. User defined
functions are included as properties of atomic components.

The transformer is not just an implementation of XSL
transformations. Its task is also to retrieve from internet or
from files the necessary DEVSML definitions needed for
the transformation and after that to link and to sort the
results of the XSL transformation in a form acceptable by
the chosen target simulation framework.

CONCLUSION

The article deals with sharing of simulation models among
different DEVS-based simulation frameworks. We have
presented a proposal of our solution - DEVSML. A model
defined by DEVSML is independent of the particular
implementation of the DEVS simulator. DEVSML specifies
the hierarchical structure of model as well as the structure
and the behavior of the atomic components by XML. The
creation of models is simplified with the use of our
modeling tool prototype. This experimental tool allows us
to graphically specify the model structure and its behavior.
As a future work, we are planning to extend it by support
for more simulators and to implement new data types useful
for implementation of atomic models behavior.

DEVSML puts away the dependence between the
implementation of a model and a simulation environment. A
model specified by DEVSML is portable to theoretically
whatever DEVS-based simulation framework which is the
main gain of this project. The benefits of portable models
are very important. For example, the development of a
model can be done in a sequential framework where testing
is often easier. Afterwards, the model can be ported and
simulated in a distributed or real-time simulation framework
that could be more appropriate for some particular
simulation studies. DEVSML can be used also for creating
libraries of commonly used reusable models.

The next benefit of DEVSML is the possibility of
automatical verification of new simulation environments, as
suggested in (Wainer 2005). A verification can be done
through a formal proof, which is obviously difficult. The

© EUROSIS-ETI

other method of verification is to simulate model in a
reference simulation environment and than compare the
results with simulation in the tested environment. DEVSML
offers sharing of models between the tested and reference
environment.

ACKNOWLEDGEMENT

This work has been supported by the Grant Agency of
Czech Republic grant No. 102/04/0780 "Automated
Methods and Tools Supporting Development of Reliable
Concurrent and Distributed Systems''.

REFERENCES

Badros, G. 2000. “JavaML: A Markup Language for Java
Source Code.” Proceedings of the 9th International
World Wide Web Conference (Amsterdam, Netherlands,
May. 15-19), 159-77.

Bolduc, J. and H. Vangheluwe. 2001. “The Modelling and
Simulation Package PythonDEVS for Classical
Hierarchical DEVS.” MSDL Technical Report MSDL-
TR-2001-01. Modelling, Simulation & Design Lab,
McGill University. (Feb).

Filippi, J. B.; F. Bernardi; and M. Delhom. 2002. “The
JDEVS Modelling and Simulation Environment.”
Proceedings of the 1st Biennial Meeting of the iEMSs
(Lugano, Switzerland, Jun. 24-27). International
Environmental Modelling and Software Society, 283-
288.

Fishwick, P. 2002. “XML Based Modeling and Simulation:
Using XML For Simulation Modeling.” Proceedings of
the 2002 Winter Simulation Conference: Exploring New
Frontiers 2002 (San Diego, California, Dec. 8-11), 616-
622.

France, R.; A. Evans; K. Lano; and B. Rumpe. 1997. “The
UML as a Formal Modeling Notation.” Proceedings
OOPSLA'97 Workshop on Object-oriented Behavioral
Semantics (Atlanta, Georgia, Oct. 6). Munich
University of Technology, 75-81.

Lara, J. and H. Vangheluwe. 2002. “Using AToM3 as a
Meta-CASE Tool.” The 4th International Conference
on Enterprise Information Systems (Ciudad Real,
Spain, Apr.), 642-649.

Sarjoughhian, H. S. and B. P. Zeigler. 1998. “DEVSJAVA:
Basis for a DEVS-Based Collaborative M&S
Environment.” Proceedings of the 1998 SCS
International Conference on Web-Based Modeling and
Simulation (San Diego, CA, Jan. 11-14), 29-36.

Schäfer, A. 2003. “Visualisierung und XML-Darstellung
von DEVS-Modellen.” M.S. Thesis. Fakultät für
Informatik, Universität der Bundeswehr München.

Vangheluwe, H.; J. Bolduc; and E. Posse. 2001. “DEVS
Standardization: Some Thoughts.“ DEVS Standards
Group meeting, Winter Simulation Conference 2001
(Washington, DC, Dec. 11).

Vangheluwe, H. and J. Lara. 2002. “Meta-Models are
Models too.” Proceedings of the 2002 Winter
Simulation Conference, 597-605.

Wainer, G. 2005. “DEVS Standardization Study Group.“
Interim Final Report (Seattle, WA, Apr. 26). The SISO
Standards Activities Committee (SAC).

Yung-Hsin, W. and W. Lung-Hsiung. 1998. “A Modeling
and Simulation Example Using DEVSW.” The 31st
Annual Simulation Symposium (Boston, MA, Apr. 5-
9). IEEE Computer Society, 210.

Yung-Hsin, W. and L. Yao-Chung. 2002. “An XML-based
DEVS Modeling Tool to Enhance Simulation
Interoperability.” The 14th European Simulation
Symposium and Exhibition (Dresden, Germany, Oct.
23-26), SCS Europe, 406-410.

Zeigler, B. P. and V. Sankait. 1993. “DEVS Formalism and
Methodology: Unity of Conception/Diversity of
Application.” Proceedings of the 1993 Winter
simulation conference. ACM Press, New York, NY,
USA, 573-579.

Zeigler, B. P.; Y. Moon; D. Kim; J.G. Kim. 1996.
“ DEVS/C++ A High Performance Modelling and
Simulation Environment.“ 29th Annual Hawaii
International Conference on System Sciences (Maui,
Hawaii, Jan. 3-6). IEEE Computer Society, 350-359.

Zeigler, B.P. 1997. “DEVS-JAVA User’s Guide.”
Technical Report. AI & Simulation Lab. Department of
Electrical and Computer Engineering. University of
Arizona, Tucson. (Feb).

Zeigler, B. P.; H. Praehofer; and T. Kim. 2000. “Theory of
Modeling and Simulation.” 2nd edition. Academic
Press. ISBN 0-12-778455-1.

BIOGRAPHY

VLADIMÍR JANOUŠEK received the Ph.D. degree from
the Faculty of Information Technology, Brno University of
Technology in 1999. He is an assistant professor in the
Department of Intelligent Systems at the Faculty of
Information Technology, Brno University of Technology.
His research focuses on simulation-driven developlement,
pure object orientation and reflective architectures.

PETR POLÁŠEK received the M.S. degree from Faculty
of Information Technology, Brno University of Technology
in 2005. He is a Ph.D. student in the Department of
Intelligent Systems at the Faculty of Information
Technology, Brno University of Technology. His research
focuses on meta-modeling.

PAVEL SLAVÍ ČEK received the M.S. degree from
Faculty of Information Technology, Brno University of
Technology in 2003. He is a last year Ph.D. student in the
Department of Intelligent Systems at the Faculty of
Information Technology, Brno University of Technology.
His research focuses on meta-modeling, distributed
simulations and multiagent systems.

