
Distributed Information System as a System of
Asynchronous Concurrent Processes

Marek Rychlý and Jaroslav Zendulka

Faculty of Information Technology
Brno University of Technology

Department of Information Systems
{rychly, zendulka}@fit.vutbr.cz

Abstract. Nowadays enterprise information systems are designed as
distributed network systems, where existing information systems and
new components are connected together via a middleware. In most cases,
architectures of the systems can be described informally or semiformally
by means of common design tools. But there are also critical applications
where an information system is getting involved, and a formal architec-
ture specification is necessary. This paper describes a design of a frame-
work for distributed information systems with a mobile architecture and
an outline of its implementation. The framework provides an automatic
derivation of a formal specification from an implementation of system,
without an explicit formal description in a design phase of project. The
derived specification can be used for a quick formal proof of correctness
after radical changes in an implementation phase, without a maintenance
of a formal design.

1 Introduction

Nowadays information systems are in most cases designed as distributed network
systems. A globalisation in a sphere of business creates need for decentralised
systems with a correct data distribution, distributed processing, reservation of
resources and a reliable communication infrastructure. The distributed informa-
tion systems are designed as a network of communicating and partially indepen-
dent components where each component performs its specific task, by itself or
with help of other components. In this view, a process in the information system
represents a group of components and a scheme of their interaction.
An architecture design of a distributed information system and its imple-

mentation can be very complex and difficult. Formal approaches can eliminate
most failures by model checking, but they require a formal specification of archi-
tecture in a design phase of project. Unfortunately, many enterprise information
systems aren’t build “from scratch”, they are developed as confederations of ex-
isting information systems reusing a well-established software products. In this
case, a designer of a distributed information system hasn’t a full control over
an architecture design and a formal model often doesn’t correspond to the real
implementation of information system.



In this paper, there is described a framework for distributed information
systems with a mobile architecture, which can be formally represented as asyn-
chronous network models. The goal of this work is the abstract object-oriented
architectural model, which is compatible with a calculus of mobile processes,
known as the π-calculus. The framework is an implementation of the architec-
tural model with the formal base and it represents an universal middleware
to separate parts of a distributed system by interfaces with the preservation
of formal properties. A distributed information system implemented using the
framework can be formally verified by means of π-calculus model checker.

2 Formal Base

A typical distributed information system is designed as a group of partially
independent components, where each component performs its specific task and
all components are connected by a middleware. The communication between
components is realised using a message passing mechanism (MPM). The MPM
can be “hidden” on a higher level of abstraction, e.g. behind a shared memory
model or a shared persistent object, but in fact, on a base level, components
asynchronously send messages by means of a middleware (i.e. it is the MPM).

Fig. 1. Modified asynchronous network model (MANM).

This scheme of communication, on a simplified level, is very similar to a
formal asynchronous network model (ANM) with some modifications. The
original ANM [1] consists of a directed graph of processes (nodes) connected by
communication channels (edges of the graph). Both, processes and channels, can
be described as an arbitrary I/O automaton, connected using operations send
and receive. The modified ANM (MANM, see [2]) introduces two new entities
(see Figure 1):

a port — an interface between a process and a connector in given direction, in
the MANM denoted by an oriented edge,

a connector — a communication buffer1, in the MANM denoted by a special
kind of process (presented as a line), which receives messages from ports
leading to the connector and forwards messages towards ports leading from
the connector (but one message can be forwarded to one port only).

1 the connector is titled as “a link” in [2]



The described MANM model is translatable into the original ANM, where
connectors are simple processes forwarding messages according to the previous
definition of connector, and ports are communication channels identical to the
channels of original ANM.
While the MANM model describes a conceptual framework for the simplified

architecture of a distributed information system as a network of communicating
processes (for detailed description see [2]), a real architecture of contemporary
information systems has strong dynamic properties. The dynamic architecture
allows creating and destructing processes and a formation of new communication
scheme in a system runtime. On a higher level, there is a mobile architecture,
which is a dynamic architecture with ability to pass entities of architecture (i.e.
processes and connections) as ordinary messages. The mobile architecture of
system can be described formally by means of process algebra π-calculus,
known also as “the calculus of mobile processes” (see [3]). The π-calculus uses
only two concepts2:

a process — an active communicating entity in the system, atomic or expressed
in π-calculus (denoted by uppercase letters in expressions),

a name — anything else, e.g. channel, variable, data, or also a process in a high
level view (denoted by lowercase letters in expressions).

A process is formally defined in π-calculus using induction. At first, the pro-
cess 0 is a π-calculus process (null process). If processes P and Q are π-calculus
processes following expressions are also π-calculus processes with given syntax
and semantics (the operational semantics of the π-calculus is described and ex-
plained in [3]):

– x〈y〉.P sends name y via port x and continues as process P ,
– x(y).P receives name y via port x and continues as process P ,
– τ.P does an internal (silent) action and continues as process P ,
– (x)P creates new name x in a context of process P and continues as P ,
– [x = y]P proceeds as P if names x and y are identical, else behaves like a
null process,

– P |Q proceeds as parallel composition of processes P and Q,
– P+Q proceeds as either process P or process Q (a non-deterministic choice),
– P (y1, . . . , yn) behaves as process P with substitution P{y1/x1, . . . , yn/xn}
(the parametric process) where names x1, . . . , xn occur free in process P .

In the process algebra, an interaction between two processes is formally de-
fined as a reduction of symbol of input and output channel by an operation, which
symbolises a communication. In a system of processes, the reduction means also
a transition between two states. For example, the system which is defined in
the π-calculus as process x〈y〉.P |x(z).Q (a parallel composition of the process,
which sends name y via port x and continues as process P , and the process,
which receives name z via port x and continues as process Q) can perform a

2 a parametric process is also title as “a agent” and the names can be titled according
to their meanings (e.g. port/channel, message, etc.)



communication step (via port x from an inside view and as an internal action
τ from an outside view of the system). After this communication, the system is
in a new state, defined as process P |Q{y/z} (all free occurrences of z in Q are
replaced by y).

3 Design and Implementation of the Framework

The framework for implementation of distributed information systems as systems
of asynchronous concurrent processes is grounded in the formal base, which is
described in the previous chapter. The framework uses the MANM model to
catch a communication structure (a vertical view) and a hierarchy of processes
(a horizontal view), and the process algebra π-calculus for a formal description of
system behaviour. After a short description of the vertical and horizontal views,
this part of the paper will aim at analysing several important properties, which
are specific to mobile architectures and which the framework has to deal with.

3.1 Vertical View = Modified Asynchronous Network Model

The framework uses the modified ANM model for decomposing a component
interaction into three layers in a vertical view: a process layer, port layer and
a connector layer. In this view, behaviour of the process layer is implemented
locally in components of the system, without an explicit communication sup-
port of the framework. The port layer is an interface, which is provided by the
framework to a component of the system. The connector layer is a low-level
communication support, a middleware, fully handled by the framework (a more
detailed description of the three-layer vertical view is in [2]).

3.2 Horizontal View = Atomic and Composite Process

In a horizontal view, there are designed two types of processes: an atomic pro-
cess and a composite process. The atomic process is a component of a distributed
information system, which isn’t implemented by means of the framework – i.e.
from the framework view, the atomic process is “a blackbox”, which uses the
framework only for a communication with another processes. For this purpose,
the framework provides the atomic process an interface for a transmission of
messages of specified type. According to MANM model, the atomic process is
an indivisible process, ports are its interfaces and the framework provides a con-
nector for the communication. Because the atomic process is “a blackbox”, the
framework isn’t able to derive a formal description of communication behaviour
of the atomic process and the description has to be done manually.
The composite process represents a group of processes, connected together by

the framework (by connectors) by provided interfaces (ports). A purpose of the
composite process design is to allow a hierarchical composition of a distributed
information system. The framework fully implements a composite process man-
agement and behaviour – it provides a mechanism for attaching and detaching



Fig. 2. An outline of class diagram with the process, port and connector.

of processes into a composite process, an interface (ports) for processes out-
side of the composite process and execution support for inside processes. The
framework supports also an automatic generation of a composite process formal
specification in the π-calculus, which is based on a formal specification of inter-
nal processes and communication behaviour of the composite process provided
by the framework.

The Figure 2 shows a part of a class diagram of the framework design.
The Process, AtomicProc, CompositeProc and ProcessImpl are in the pro-
cess layer. In ProcessImpl interface, there are provided “hooks” for an ini-
tialisation of a process (i.e. building ports and an establishment of an initial
connection between the process and its environment; the method build) and for
implementation of the process (a main implementation of an atomic process and
an additional3 implementation of a composite process; the method run). The
AtomicProcPort, CompositeProcRelay and RelayPort are in the port layer.
The RelayPort acts as a relay/proxy between processes inside and outside of
a composite process in both directions. The Connector and the auxiliary class
ConnectedPort are in the connector layer, where a port and connector commu-
nicate according to a design patter observer.

3 besides of a communication support, which is implicitly provided by the framework



3.3 Behaviour = Typed π-Calculus

As it was mentioned in the previous paragraphs, behaviour of a system imple-
mented using the framework can be formally described by means of the process
algebra π-calculus (in fact, it is a typed π-calculus, see [4]). A basic process
of translation from an implementation of distributed information system in the
framework to a process of π-calculus was described in [2]. In this paper we will
deal with an application of specific properties of the mobile architecture, i.e.
forwarding of communication channels and processes as ordinary messages.
The passing of communication channels is available directly in the basic π-

calculus as a transition (see “a scope extrusion example” in [3]):

(a)(

P︷ ︸︸ ︷
a(x).P ′ |(b)(

Q︷ ︸︸ ︷
a〈b〉.0 |

R︷ ︸︸ ︷
b(z).R′))

a→ (b)(P ′{b/x}|

R︷ ︸︸ ︷
b(z).R′) (1)

In this transition a π-calculus port b is passed from subprocess (b)(Q|R) (where
b is hidden and therefore not accessible from an outside of this subprocess) to
the process P ′ via channel a between Q and P .
The passing of π-calculus processes isn’t directly possible in the basic π-

calculus formalism, but it is available as an indirect representation by means
of a passing of communication channel, where the channel is linked to the
“passed process” (see “an executor example” in [3]). The indirect representation
is demonstrated in transition (1) with process P ′ = z.0, where a communication
via z executes process R, which is located in a different part of the system (i.e. R
is executed “instead of” process P ). A critical part of the passing of π-calculus
processes is a preservation of a process environment (i.e. communication chan-
nels, which are connected to the process). The framework has to cope with this
“environment corruption”, as it will be shown in the rest of the chapter.

Fig. 3. Passing of port b from composite process Q|R to process P in the framework.

The Figure 3 describes implementation of the transition (1) in the framework.
In this example, process Q, which is inside of a composite process together with
process R (i.e. the composite process represents subprocess (b)(Q|R)), is con-
nected via port b to process R. The processes Q and R are interconnected via



their ports b and connector W . In addition, the process Q is connected to a
composite process boundary (a port “relay”, which forwards messages between
inside and outside processes) via connector V . The external process P is con-
nected to an outside of the composite process boundary to the same port as
process Q.
Now, suppose that process Q sends its port b towards process P via port a

– in fact, it sends “a connection from port b” (see step (1) on the Figure 3).
This connection is passed via connector V to the composite process boundary
(step (2)) and in the next step, it comes via connector U to process P (steps (3)
and (4)). Because the received connection has corrupted a relation to the original
environment, the process P makes a query to a component manager (step (5)) to
resolve a scope of the received connection. The component manager recreates the
environment of the connection, which results in a new connection from process
P towards connectorW (step (6)). The framework provides a local synchronised
instance of connector W , although it is enclosed into the composite process.

4 Related Work

There are many different approaches to a formal architecture design, which are
based on different formalisms (e.g. on Petri-nets, temporal logics or process al-
gebras). Overall, all these approaches define some kind of an architecture de-
scription languages (ADLs, see [5]), which allows a formal specification of the
system architecture using a textual or graphical description in a design phase
of a project. For that reason, the ADLs may require some variant of a water-
fall development method and in specific cases, they can’t be suitable for agile
development methods.
Most of the up-to-date ADLs are designed for the dynamic architecture,

but in many cases, a direct application of an ADL can bring an unreasonable
complexity for a simple system architecture. In the mobile architecture, the
complexity of a distributed system is higher by several orders and a formal
model can be the best way to catch the system complexity. In the ArchWare
European Project, there was realised an ADL for mobile architectures, a π-ADL
(see [6]), which is based on the process algebra π-calculus. A design of the π-
ADL is similar4 to our framework due to the same formalism, in spite of the
fully independent development of these approaches.
Our framework approaches a formal architecture specification in a different

way. Unlike ADLs that provide tools for a formal specification during design
phase, the framework provides an implementation toolkit, which allows an au-
tomatic derivation5 of a formal specification in an implementation phase of a
project. Such approach probably hasn’t been described in the literature yet.
A merit of our approach is the independence from a design phase of a project,

which can be used for a preservation of a correct formal description of a system

4 the similarity can be utilised, e.g. for sharing of verification tools
5 from a manual formal description of atomic processes and implementation by means
of the framework



after radical changes in an implementation phase. This can decrease costs of the
changes, which are critical, especially in final phases of projects.

5 Conclusion and Future Work

This paper describes a design of the framework for distributed information sys-
tems with a strong formal base. A goal of the framework isn’t an outline of some
formal approach or a new tool for an architecture design, but the design and im-
plementation of mechanism for an automatic derivation of a formal architecture
specification from an implemented system.
The framework acts as a middleware, i.e. it splits a distributed information

system into components (processes), provides an interface of components (ports)
and an implementation of a communication layer (connectors). The resulting
formal specification of the system architecture can be used in a model checking
(a verification of correctness), a simulation of many concurrent runs of a system
components, etc. (an example can be found in [2]).
An ongoing work is related to completing design and to implementation of

the framework. There are technically difficult parts, which include correct im-
plementation of component behaviour with a concurrency, passing of ports and
processes with a preservation of their state and context and a transparent pres-
ence of connectors in extensive networks (i.e. on many locations). Future work is
mainly related with an application of the framework to practical case studies, a
development of supporting tools and connection to another formal approaches.

This work has been supported by the Grant Agency of Czech Republic grants
No. 102/05/0723 “A Framework for Formal Specifications and Prototyping of
Information System’s Network Applications”.

References

1. Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann (1996)
2. Rychlý, M.: Towards verification of systems of asynchronous concurrent processes.
In: Proceedings of 9th International Conference ISIM’06. (2006) 123–130

3. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes, part I/II. Journal
of Information and Computation 100 (1992) 41–77

4. Pierce, B.C., Sangiorgi, D.: Typing and subtyping for mobile processes. Mathemat-
ical Structures in Computer Science 6(5) (1996) 409–454 An extract appeared in
Proceedings of LICS ’93: 376–385.

5. Medvidovic, N., Taylor, R.N.: A framework for classifying and comparing architec-
ture description languages. In: Proceedings of the 6th European conference held
jointly with the 5th ACM SIGSOFT international symposium on Foundations of
software engineering, Springer-Verlag New York, Inc. (1997) 60–76

6. Oquendo, F.: π-ADL: an architecture description language based on the higher-
order typed π-calculus for specifying dynamic and mobile software architectures.
ACM SIGSOFT Software Engineering Notes 29 (2004) 1–14


