
Component Model with Support of Mobile
Architectures

Marek Rychlý

Department of Information Systems,
Faculty of Information Technology, Brno University of Technology,

Božetěchova 2, 612 66 Brno, Czech Republic,
rychly@fit.vutbr.cz

Abstract. Common features of current information systems have sig-
nificant impact on software architectures of the systems. The systems
can not be realised as monoliths, formal specification of behaviour and
interfaces of the systems’ parts are necessary, as well as specification
of their interaction. Moreover, the systems have to deal with many
problems including the ability to clone components and to move the
copies across a network (component mobility), creation, destruction and
updating of components and connections during the systems’ runtime
(dynamic reconfiguration), maintaining components’ compatibility, etc.
In this paper, we present the component model with support of mobile
architectures and outline its formal basis. We also review the related
research on the current theory and practice of formal component-based
development of software systems.

Keywords: Software Architecture, Component-Based Development, Com-
ponent Model, Formal Specification

1 Introduction

Increasing globalisation of information society and its progression create needs
for extensive and reliable information technology solutions. Common require-
ments for current information systems include adaptability to variable structure
of organisation, support of distributed activities, integration of well-established
(third party) software products, connection to a variable set of external systems,
etc. Those features have significant impact on software architectures of the
systems. The systems can not be realised as monoliths, exact specification of
functions and interfaces of the systems’ parts are necessary, as well as spec-
ification of their communication and deployment. Therefore, the information
systems of organisations are realised as networks of quite autonomous, but
cooperative, units communicating asynchronously via messages of appropriate
format. Unfortunately, design and implementation of the systems have to deal
with many problems including the ability to clone components and to move the
copies across a network (i.e. component mobility), creation, destruction and up-
dating of components and connections during the systems’ runtime (i.e. dynamic
reconfiguration), maintaining components’ compatibility, etc. [4]



Moreover, those distributed information systems are getting involved. Their
architectures are evolving during runtime and formal specifications are necessary,
particularly in critical applications. Design of the systems with dynamic architec-
tures (i.e. architectures with dynamic reconfigurations) and mobile architectures
(i.e. dynamic architectures with component mobility) can not be done by means
of conventional software design methods. In most cases, these methods are able
to describe semi-formally only sequential processing or simple concurrent pro-
cessing bounded to one component without advanced features such as dynamic
reconfiguration.

The component-based development (CBD, see [10]) is a software development
methodology, which is strongly oriented to composability and re-usability in a
software system’s architecture. In the CBD, from a structural point of view, a
software system is composed of components, which are self contained entities
accessible through well-defined interfaces. Connection of compatible interfaces
of cooperating components is realised via connectors. Actual organisation of
components interconnected via connectors is called configuration. Component
models are specific meta-models of software architectures supporting the CBD,
which define syntax, semantics and composition of components.

Although the CBD can be the right way to cope with the problems of the
distributed information systems, it has some limitations in formal description,
which restrict the full support for the mobile architectures. Those restrictions
can be delimited by usage of formal bases that do not consider dynamic recon-
figurations and component mobility, strict isolation of control and business logic
of components that does not allow full integration of dynamic reconfigurations
into the components, etc.

In this paper, we propose the component model with support of mobile
architectures and review the related current formal approaches to the CBD. The
remainder of this paper is organised as follows. In Section 2, we introduce our
proposed approach in more detail. In Section 3, we review the main approaches
that are relevant to our subject. In Section 4, we discuss advantages and disad-
vantages compared with the reviewed approaches. To conclude, in Section 5, we
summarise our approach, current results and briefly outline the future work.

2 Component Model

In this section, we describe our approach to the component model with support of
mobile architectures. The Figure 1 describes an outline of the component model’s
meta-model. Three basic entities represent the core entities of a component based
architecture: a component, an interface and a connector.

The component is an active communicating entity in a component based soft-
ware system. In our approach, the component consists of component abstraction
and component implementation. The component abstraction (CompAbstraction in
the meta-model) represents the component’s specification and behaviour given
by the component’s formal description (semantics of services provided by the
component). The component implementation (CompImplementation) represents



Fig. 1. Diagram of the meta-model (an outline).

specific implementation of the component’s behaviour (implementation of the
services). The implementation can be primitive or composite. The primitive
implementation (PrimitiveCompImpl) is realised directly, beyond the scope of
architecture description (it is “a black-box”). The composite implementation
(CompositeCompImpl) is decomposable on a system of subcomponents at the lower
level of architecture description (it is “a grey-box”). The subcomponents are
represented by component abstractions (CompAbstraction).

The interface of a component (descendants of entity Interface) can be sorted
according to its relative location compared with the component into public and
private interfaces. The public interfaces (PubFuncInterface and PubCtrlInter-

face) are required or provided (attribute type of the entity) by a component
to its neighbouring components at the same level of the architecture descrip-
tion (i.e. not to subcomponents of a neighbouring component, for example).
The private interfaces (PrivFuncInterface and PrivCtrlInterface), which exist
only in composite components, are the components’ public interfaces delegated
into the components’ composite implementation where they are available for
the components’ subcomponents. According to functionality of interfaces, we
distinguish functional interfaces and control interfaces. The functional interfaces
(PubFuncInterface and PrivFuncInterface) represent business oriented services.
The control interfaces (PubCtrlInterface and PrivCtrlInterface) provide ser-
vices for components’ introspection (e.g. getFuncInterfaces()) and changes of
an architecture and behaviour (start() and stop()). The services for changes of
an architecture are, for example, packComponent() and unpackComponent() for a
component’s transformation into and from a transmittable message, respectively.

The connector is responsible for a reliable communication between required
and provided interfaces. It consists of connector abstraction and connector imple-
mentation. The connector abstraction (ConnAbstraction) represents an abstract
connection of a pair of compatible interfaces. The connector implementation
(ConnImplementation) represents specific implementation of the connector, which
depends e.g. on communication style (buffered and unbuffered connection) or a
type of synchronisation (blocking and output non-blocking).



2.1 Behaviour and Support of Mobile Architectures

We focus on behaviour particularly related to the features of mobile architectures,
i.e. on creation and destruction of components and connections and on passing of
components. Evolution of an architecture begins in the state where initialisation
of the architecture is finished. Then, a new component can be created by means of
duplication of an existing component1 where the new component can be placed as
a subcomponent of a parent component or sent via its outgoing connections (via
provided interfaces). Destruction of a component can be done automatically after
releasing of its provided interfaces (the component is forgotten when there are
no outgoing connections). Creation of new connections between two interfaces
can be done also by means of passing of components. A component, which
is creating a new connection, receives a component with a target interface
and obtains the interface via the component’s control interface. This enables
a connection to interconnect subcomponents of two different parent components
if one of the subcomponent is accessible via passing of components, i.e. to
share one subcomponent between many parent components. Destruction of a
connection can be done directly via connected interface (actually, the connection
is forgotten, so no destruction is needed). The passing of a component is realised
by means of its control interface (the component is “packed” into a message)
and control interface of target component (the message is “unpacked” and the
component will become a subcomponent of the target component).

As it follows from the description of behaviour, the connections can inter-
connect required functional interfaces with (provided2) control interfaces. This
allows to build systems where functional (business) requirements imply changes
of the systems’ architectures.

2.2 Formal Description

The component model’s formal description can be realised by means of the
process algebra π-calculus, known as the calculus of mobile processes [6], which
allows modelling of systems with dynamic communication structures (i.e. mobile
processes). The description is based on our previous research on distributed
information systems as systems of asynchronous concurrent processes [8] and
the mobile architecture’s features in such systems [9].

Formal description of a C component’s behaviour can be expressed as the
π-calculus process C = (Cf |Cc) + stop.start.C. It is a non-deterministic choice
between a parallel composition of processes, which represent its functional part
Cf and control part Cc, and the process that waits for “start” after it receives
“stop” via names start and stop, respectively. Interfaces of the component C
are represented by free names in the process C, by its parameters, if the C is
denoted as a parametric process C(p1, . . . , pm).

For component abstraction C, the definition of the process Cf is given by
a designer of a system or a component, which contains the component C as its
1 by means of packComponent() and unpackComponent()
2 in our approach, the control interfaces are only provided (they provide a control)



subcomponent. It represents required functional behaviour of the system’s or
component’s part. For component primitive implementation C, the definition
of the process Cf is given by description of functional behaviour of the C
component’s implementation according to its specification (the implementation
is “a blackbox”). For component composite implementation, the definition of
the process Cf is a parallel composition of n processes C1(p1,1, . . . , p1,m1), . . . ,
Cn(pn,1, . . . , pn,mn) that represent component abstractions of the C component’s
subcomponents, and their interconnections. For each connection between pro-
vided interfaces represented by names p1, . . . , pu and required interfaces rep-
resented by names q1, . . . , qv of the subcomponents, we can define parametric
π-calculus process for binding the interfaces

B(p1, . . . , pu, q1, . . . , qv) =
u∑

i=1

v∑
j=1

qj(x).pi〈x〉.B(p1, . . . , pu, q1, . . . , qv) (1)

As it has been described in the previous section, the most of the features
of mobile architectures can be reduced to the component mobility feature. In
the π-calculus, this feature can be described as passing of π-calculus processes:
directly by means of higher order π-calculus or indirectly by means of passing of
names (“an executor example” in [6]). The indirect method in terms of systems
of asynchronous concurrent processes has been described in [9]. We can define
processes that realises pack and unpack control interfaces. Let C(p1, . . . , pm) be
a π-calculus process representing behaviour of a component C with m interfaces.
Then, we define parametric process PC to send (export) all interfaces p1, . . . , pm

of the component C via name p, and process UC to receive (import) the interfaces
via name p into a context of another process, as follows

PC(p, p1, . . . , pm) = p(x)(x〈p1〉 . . . x〈pn〉)
UC(p, p1, . . . , pm) = (x)(p〈x〉.x(p1) . . . x(pn))

(2)

Those processes implement interfaces pack() and unpack(), respectively. The
control part of the component C is defined as Cc =!PC . The process UC is used
by a component, which is a destination of passing of the C’s interfaces.

3 Related Work

There have been proposed several component models [5]. In this section, we focus
on two contemporary component models supporting some features of dynamic
architectures and formal descriptions.

The component model Fractal [2] is a general component composition
framework with support for dynamic architectures. A Fractal component is
formed out of two parts: a controller and a content. The content of a com-
posite component is composed of a finite number of nested components. Those
subcomponents are controlled by the controller (“a membrane”) of the enclosing
component. A component can be shared as a subcomponent by several distinct
components. A component with empty content is called a primitive component.



Every component can interact with its environment via operations at external
interfaces of the component’s controller, while internal interfaces are accessible
only from the component’s subcomponents. The interfaces can be of two sorts:
client (required) and server (provided). Besides, a functional interface requires
or provides functionalities of a component, while a control interface is a server
interface with operations for introspection of the component and to control its
configuration. There are two types of directed connections between compatible
interfaces of components: primitive bindings between a pair of components and
composite bindings, which can interconnect several components via a connector.

Behaviour of Fractal components can be formally described by means of
parametrised networks of communicating automata language [1]. Behaviour of
each primitive component is modelled as a finite state parametrised labelled tran-
sition system (pLTS) – a labelled transition system with parametrised actions,
a set of parameters of the system and variables for each state. Behaviour of
a composed Fractal component is defined using a parametrised synchronisation
network (pNet). It is a pLTS computed as a product of subcomponents’ pLTSs
and a transducer. The transducer is a pLTS, which synchronises actions of the
corresponding LTSs of the subcomponents. When synchronisation of the actions
occurs, the transducer changes its state, which means reconfiguration of the
component’s architecture. Also behaviour of a Fractal component’s controller
can be formally described by means of pLTS/pNet. The result is composition of
pLTSs for binding and unbinding of each of the component’s functional interfaces
(one pLTS per one interface) and pLTS for starting and stopping the component.

In the component model SOFA [7], a part of SOFA project (SOFtware
Appliances), a software system is described as a hierarchical composition of
primitive and composite components. A component is an instance of a template,
which is described by its frame and architecture. The frame is a “black-box”
specification view of the component defining its provided and required interfaces.
Primitive components are directly implemented by described software system –
they have a primitive architecture. The architecture of a composed component
is a “grey-box” implementation view, which defines first level of nesting in the
component. It describes direct subcomponents and their interconnections via
interfaces. The connections of the interfaces can be realised via connectors,
implicitly for simple connections or explicitly. Explicit connectors are described
in a similar way as the components, by a frame and architecture. The connector
frame is a set of roles, i.e. interfaces, which are compatible with interfaces of com-
ponents. The connector architecture can be simple (for primitive connectors), i.e.
directly implemented by described software system, or compound (for composite
connectors), which contains instances of other connectors and components.

The SOFA uses a component definition language (CDL) for specification of
components and behaviour protocols (BPs) for formal description of their be-
haviours. The BPs are regular-like expressions on the alphabet of event tokens
representing emitting and accepting method calls. Behaviour of a component (its
interface, frame and architecture) can be described by a BP (interface, frame
and architecture protocol, respectively) as the set of all traces of event tokens



generated by the BP. The architecture protocols can be generated automati-
cally from architecture description by a CDL compiler. A protocol conformance
relation ensures the architecture protocol generates only traces allowed by the
frame protocol. From dynamic architectures, the SOFA allows only a dynamic
update of components during a system’s runtime. The update consists in change
of implementation (i.e. an architecture) of the component by a new one. Com-
patibility of the implementations is guaranteed by the conformance relation of
a protocol of the new architecture and the component’s frame protocol.

Recently, the SOFA team is working on a new version of the component
model. The component model SOFA 2.0 [3] aims at removing several limi-
tations of the original version of SOFA – mainly the lack of support of dynamic
reconfigurations of an architecture, well-structured and extensible control parts
of components, and multiple communication styles among components.

4 Discussion

The component model proposed in this paper is able to handle mobile architec-
tures, unlike the SOFA that supports only a subset of dynamic architectures
or the Fractal/Fractive, which does not support components mobility. As is
described in Section 2.2, the π-calculus provides fitting formalism.

Moreover, the proposed semantics permits to combine provided control and
required functional interfaces, e.g. in comparison with the Fractal/Fractive that
also provides control and functional interfaces. Regardless, in some cases, it sepa-
ration description and verification of control and functional parts is needed. The
possible solution can be an application of typed π-calculus, which distinguishes a
type of names, and replacing of some communication patterns that use control-
functional bindings by special π-calculus constructions (e.g. a special stop/start
processes recursively controlling also subcomponents of a component, which is
stopped/started). Regardless, for mobile architectures, the ability to combine
control and functional interfaces is necessary.

The next feature of the component model is partially independence of a
component’s specification from its implementation. This feature is similar to the
SOFA’s component-template relationship. It allows to control behaviour of a
primary component’s implementation, define a composite component’s border
that isolates its subcomponents, which is called “a membrane” in the Fractal,
etc. Our goal is to expand the specification-implementation relationship of com-
ponents so it allows runtime replacements of the components’ implementations
without need to stop a component during replacement, in comparison with the
SOFA. We believe it can be achieved by means of component mobility.

However, all above mentioned features will be parts of an ongoing work.

5 Conclusion and Future Work

This paper describes the component model with support of mobile architectures.
The component model splits a distributed information system into primitive and



composite components according of decomposability of the system’s parts, the
components’ functional and control interfaces according to types of required
or provided services, and connectors realising a communication layer between
the components. The components and the connectors are described at different
levels, as their specifications and implementations. Semantics of the entities can
be described by means of π-calculus processes.

An ongoing work is related to completing exact description of the compo-
nent model’s formal semantics. Future work is mainly related to realisation of a
supporting environment, which allows integration of the model into a software
development process, including integration of verification tools and implemen-
tation support.

This research has been supported by the Grant Agency of Czech Republic grants
No. 102/05/0723 “A Framework for Formal Specifications and Prototyping of
Information System’s Network Applications” and by the Research Plan No. MSM
0021630528 “Security-Oriented Research in Information Technology”.

References

1. T. Barros. Formal specification and verification of distributed component systems.
PhD thesis, Université de Nice – INRIA Sophia Antipolis, Nov. 2005.

2. E. Bruneton, T. Coupaye, and J.-B. Stefani. The Fractal component model. Draft
of specification, version 2.0-3, The ObjectWeb Consortium, Feb. 2004.

3. T. Bureš, P. Hnětynka, and F. Plášil. SOFA 2.0: Balancing advanced features in a
hierarchical component model. In Proceedings of SERA 2006, pages 40–48, Seattle,
USA, Aug. 2006. IEEE Computer Society.

4. J. Král and M. Žemlička. Autonomous components. In SOFSEM 2000: Theory
and Practice of Informatics, volume 1963 of Lecture Notes in Computer Science,
pages 375–383. Springer, 2000.

5. K.-K. Lau and Z. Wang. A survey of software component models (second edition).
Pre-print CSPP-38, School of Computer Science, The University of Manchester,
Manchester M13 9PL, UK, May 2006.

6. R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, part I/II.
Journal of Information and Computation, 100:41–77, Sept. 1992.

7. F. Plášil, D. B́ılek, and R. Janeček. SOFA/DCUP: Architecture for component
trading and dynamic updating. In 4th International Conference on Configurable
Distributed Systems, pages 43–51, Los Alamitos, CA, USA, May 1998. IEEE Com-
puter Society.

8. M. Rychlý. Towards verification of systems of asynchronous concurrent processes.
In Proceedings of 9th International Conference Information Systems Implementa-
tion and Modelling (ISIM’06), pages 123–130. MARQ, Apr. 2006.

9. M. Rychlý and J. Zendulka. Distributed information system as a system of
asynchronous concurrent processes. In MEMICS 2006 Second Doctoral Workshop
on Mathematical and Engineering Methods in Computer Science, pages 206–213.
Faculty of Information Technology BUT, Oct. 2006.

10. C. Szyperski. Component Software: Beyond Object-Oriented Programming. Addi-
son Wesley Professional, second edition, Nov. 2002.


	Component Model with Support of Mobile Architectures 
	Marek Rychlý 

