
Time- and Space-Efficient Evaluation of Sparse Boolean Functions in
Embedded Software

Václav Dvořák

Brno University of Technology
dvorak@fit.vutbr.cz

Abstract

The paper addresses software implementation of
large sparse systems of Boolean functions. Fast
evaluation of such functions with the smallest memory
consumption is often required in embedded systems. A
new heuristic method of obtaining compact
representation of sparse Boolean functions in a form of
linked tables is described that can be used for BDD
minimization as well. Evaluation of Boolean functions
reduces to multiple indirect memory accesses. The
method is compared to other techniques like a walk
through a BDD or a list search and is illustrated on
examples. The presented method is flexible in making
trade-offs between performance and memory
consumption and may be thus useful for embedded
microprocessor or microcontroller software.

1. Introduction

Efficient evaluation of Boolean functions is an
important part of many embedded software systems.
Some applications include: search and optimization,
modeling, simulation and verification of digital circuits
in CAD, extracting routing information from packets,
etc. We will restrict ourselves to sparse systems of
Boolean functions, as these are most frequent in
practice. Also we will address Boolean functions of
large numbers (tens) of variables because small size
systems can be implemented directly in hardware, e.g.
in PLA, ROM or TCAM (Ternary Content
Addressable Memory).

Software implementation of Boolean functions will
be assumed in a form of a data structure describing the
function and of a compiled program that reads the
input vector and evaluates the function with the use of
this data structure. The size of the code and of the data
structure is one figure of merit, the other is the
evaluation time from reading the input to generating
the output. Sometimes the evaluation time per one
input may get reduced if many inputs follow one

another.
Hereafter we will use three compact

representations: a TCAM-like table, linked tables and
binary decision diagrams (BDDs). The BDDs are well
known, especially the reduced ordered BDDs
(ROBDDs), [1]. On the base of ROBDDs we will
develop a more practical representation - linked tables.

Software implementation of Boolean functions has
been up to now studied especially in connection with
PLCs (“ladder diagrams”) [2], digital system
simulation, formal verification and testing [1], or
specialized event processing [3], where either a speed
(PLC) or a required memory were not that important.
On the contrary, in embedded systems we do care for
performance and memory space as well as for power
consumption. We will demonstrate that presently used
algorithms are generally too slow (TCAM emulation,
BDDs); the use of linked tables enables faster
evaluation with similar (selectable) size data structures
which can be minimized by utilizing don’t cares
directly.

The paper is structured as follows. In the following
Section 2 we define sparse Boolean functions and
show their description by data structures, a relation
among various representations and their complexity.
Our novel heuristic approach for minimizing the
relevant data structures is explained in Section 3. In
Section 4 we exemplify creation of data structures on a
sample Boolean function and give ways how to trade
speed of evaluation against required memory space in
Section 5 and 6. Results obtained with selected
functions of 8 to 64 variables are commented on in
Conclusions.

2. Representation of sparse systems of
Boolean functions

To begin our discussion, we define the following

terminology. Multiple-output Boolean functions of n
Boolean variables will be simply referred to as
Boolean functions Fn with output values from

 ZR = {0, 1, 2, …, R-1},

Fn : Z2
n → ZR . (1)

Under a sparse Boolean function we will understand
function Fn: Z2

n → ZR with the domain split into two
parts X and D, Z2

n = X ∪ D, | X | << 2n, and specified in
one of two ways:
1) Z2

n \ X = D is the don’t care set (Fn is an incomplete
function in Z2

n, Fn: X → ZR)
2) Mapping of the don’t care set Z2

n \ X = D into ZR is
artificially defined to make implementation as easy as
possible, Fn: X ∪ D → ZR.
 A binary decision diagram (BDD) is a directed
acyclic graph in which each decision node is labeled by
a control variable tested in this node. Two edges
coming out from the decision node, leading to the
nodes in the subsequent levels, correspond to the
values of control variable. Beside decision nodes there
are terminal nodes (leaves) labeled by the value of the
function that is being evaluated by the diagram. A
BDD is ordered, if the order of control variables tested
along every path in the BDD is the same. All the nodes
of the ordered BDD (OBDD) labeled by the same
variable make up a level of this diagram. An ordered
BDD is reduced (ROBDD) if [1]
1. no two distinct nodes have the same control variable
name and the same 0- and 1-successor node.
2. no node has the identical successor for both values
of a control variable.
ROBDD is canonical (unique) representation for any
given function [1]. Any pair of functions will have
different ROBDDs unless the functions themselves are
equivalent. In the rest of the paper, we will consider
OBDDs or ROBDDs , even if the term BDD is used.

An important parameter is a size of BDD, i.e. the
total number of decision nodes, as it determines the
size of data structure needed to store a BDD. The
construction of minimum-size BDDs belongs among
NP-hard problems [9]. Upper bounds on the OBDD’s
size for general Boolean functions are not too
encouraging, but many practical functions do have a
reasonable BDD size. The upper bound on the size of
the related BDD belonging to a function with L literals
in its DNF can be obtained as [4]

 { } LkkL k
n
L

k
,...,2,1,12min =−+− (2)

As the first approximation to (2) we can use L only.
Traditional description of a Boolean function by the

Boolean expression (expressions in case of multiple
outputs) may sometimes be the best for evaluation
purposes, especially if the function of many variables
is defined only in a few points. Another possibility is a
list of ternary input vectors (composed of 0, 1 and
don’t care elements) that can specify a relevant output
value for each input vector in the list. Ternary vectors

can be stored as two binary vectors, the vector of
values and a mask indicating don´t cares.
 Efficiency of evaluation techniques strongly
depends on the used description of the Boolean
function. Let us illustrate above possibilities on the N
queens problem. We are to compare possible
representations of a Boolean function of N×N variables
that returns 1 for every configuration of 1’s (queens)
on the N×N chessboard, such that no queen attacks
another one. For example if N = 4, there are 2 solutions
that can be generated by Boolean function F16 (used
notation is required by the applet [5], but variables in
the diagram are enumerated from 0 to 15):

Fig.1. ROBDD for 4 queens problem

In our case L = 32, n = 16 and the upper bound
according to eq. (2) is 31 nodes. The real ROBDD
generated by the applet [5] has 29 nodes and is shown
in Fig.1. The most efficient representation and
evaluation of F16 is thus clear: two memory words are

F16 = !a11*!a12*a13*!a14*a21*!a22*!a23*!a24*!a31*!a32*
!a33*a34*!a41*a42*!a43*!a44 + !a11*a12*!a13*!a14*!a21*
!a22*!a23*a24*a31*!a32*!a33*!a34*!a41*!a42*a43*!a44 (3)

sufficient to store two min-terms in (3) and two bitwise
comparisons will do for the quickest evaluation. A
BDD representation is no good in this case.
 Now if we move to 8 queens problem, there will be
92 solutions described by F64. Solutions can be found
by the known algorithm [6], [1]. To store 92 binary
vectors of length 64 is still acceptable, but instead of
linear search we can order solutions and do better with
the logarithmic search in log2 92 = 7 steps at most.
 The BDD size is upper-bounded by 5535 nodes
according to eq. (2), so that storing of such BDD
would not be space efficient at all. A pass through this
BDD would need 64 steps in the worst case, what is
bad as well.

3. Heuristic construction of BDDs and
linked tables

We did not see too much use for BDDs in the
former example. However, in this section we will give
a method of construction of linked tables which are
much more useful for the purpose of function
evaluation. The method is based on bottom-up
heuristic construction of BDDs, which uses a concept
of sub-function [7].

Informally, the sub-function f of Fn is a function of s
variables obtained from Fn by setting n− s variables to
fixed constant values. The number of distinct sub-
functions of s variables, s = 1, 2, …, n-1, characterizes
the Boolean function and its complexity. Sub-functions
themselves may also be incomplete (don’t care values
for some binary s-tuples). A compatibility relation can
be defined on the co-domain of such sub-functions:
don’t care (denoted by “x”) is compatible with any
value from ZR .

Using the concept of sub-functions, we will now
decompose iteratively the given sparse function of 8
variables, see Fig.2. The map of the function at the top
is sparsely populated by 16 function values (0 to F).
For clarity don’t care cells are left empty in tables, but
otherwise are denoted by symbol “x” in the text.
Single-variable sub-functions can be created with
respect to any variable. E.g. two vertically adjacent
cells correspond to a sub-function of the first variable
that attains alternate values 0 and 1 at even and odd
rows (see e.g. [F,8] in Fig.2). Using compatibility
relation we can combine pairs [α,x] and [x,β] into a
single sub-function [α,β]. Altogether nine sub-
functions of the first variable are detected in the
topmost table. The first decomposition step is
described below the table; each sub-function is given a
new symbol ([1,0]→0, [2,7]→1,[F,8]→3, etc.), thereby

 C F
 0 0 C 8 0
 C 3 F
 8 A
 5 C
 7 7 7 7 7 7
 F
 8
 4 4 3
 E E
 1
 D
 B 2 C

 6 3 3
 7 7 A 9

 1 2 3 F 4 5 6 B C
 0 7 A 8 E D 9 A C
 ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
 0 1 2 3 4 5 6 7 8

 0 0 8 3 0
 8 2 3 2
 1 1 1 1 5 8 1 1
 3 3
 4 4 2 4
 5 0
 7 1 8
 6 1 1 2 2 6

 0 2 3 8 5 1 4 1 7
 0 2 3 8 5 3 6 2 1
 ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
 0 1 2 3 4 5 6 7 8

 0 0 3 1 2 1 0
 5 5 5 5 4 3 5 5
 6 6 4 1 6 0
 6 8 8 8 7 1 3 6

 0 1 2 3 0 6 x 4
 5 4 6 3 1 6 7 8
 ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
 0 1 2 3 4 5 6 7

 0 0 0 0 0 1 3 1 2 1 0 0
 5 7 5 7 7 1 6 5 4 3 5

 0 0 2 3 x 1
 5 3 4 1 6 7
 ↓ ↓ ↓ ↓ ↓ ↓
 0 1 3 5 2 4

 0 0 0 4 0 0 4 4 5 2 4 0 3 4 1 0

 0 0 → 0 0 4 → 1 4 4 → 2
 5 2 → 3 4 0 → 4 3 4 → 5
 1 0 → 6

 0 1 0 2 3 4 5 6

 0 1 → 0 0 2 → 1 3 4 → 2
 5 6 → 3

 0 1 2 3 0 1 0

 0 1 → 0 0 1 → 0
 2 3 → 1

 Fig. 2. Iterative decomposition (8 variables)

removing the first variable from the function. A map of
the new intermediate Boolean function of 7 variables is
now created replacing sub-functions by new values
(symbols, IDs). This process repeats 8 times.
 The OBDD can now be created starting from root
0. Every assignment [a,b]→ c, when reversed, specifies
one decision node with input c and two outputs a
and b controlled by the relevant variable. Assignments
of the type [a,a]→b, [a,x]→c, [x,a]→d do not represent
decision nodes because the outputs are the same (or
compatible); such a decision node degenerates to a
wire. Going up from the root (a map of 0 variables) to
the original map of 8 variables, the OBDD in Fig.3 is
created. Usually BDDs have a root at the top, but we
displayed the BDD upside down in order to keep the
BDD structure in correlation with the sequence of map
transformations in Fig.2. Nodes are labeled by
intermediate function values. Out of 46 assignments 34
correspond to decision nodes and 12 to wires only.

 7 5 2 6 4 3 8 1 0

 B D 5 A 3 9 6 E 4 8 F C 7 2 0 1

 8 4 7 1 6 2 3 5 0

 7 1 6 4 2 3 5 0

 5 4 3 2 1 0

 3 2 1 0

 1 0

 0

 6 5 4 3 2 1 0

Fig.3. OBDD of the sample function of 8

variables (0 = - - - - - , 1 =)

 In our example we did not care about variable
ordering; the ordering was chosen more or less
randomly. However, it is known, that the size of the
BDD is determined both by the function being
represented and the chosen ordering of the variables

[8]. For some functions, the size of a BDD may vary
between a linear to an exponential range depending
upon the ordering of the variables. The problem of
optimal variable ordering is unfortunately NP hard [9].
 If we want to minimize the size of a BDD, the
following heuristics can be used: do sub-function
counting for all variables in each decomposition step
and use for this step the variable with the minimum
sub-function count. By intuition, the minimum count
of symbols may hopefully produce a minimum count
of their pairs.
 Note also that the above small example with maps
of the original and intermediate functions was done
only for illustration. When we have sparse functions
with several tens of variables represented by a list of
defined points, all the processing is done on these lists.
The case with don´t cares already defined for the
purpose of minimization is given in Section 6.

4. Linked tables and OBDDs

In this Section we first introduce the technique of
linked tables, programs for interpreting OBDDs as well
as linked tables and then compare both techniques on
examples.

Linked tables and OBDD are equivalent
descriptions of a Boolean function; one layer of the
OBDD or more layers combined can be described by a
table. For example linked table 4 is constructed (Fig. 4)
from the top layer of the OBDD in Fig. 3.
Transformation of 9 symbols to 16 symbols is
described by reversed assignments under the topmost
map in Fig.2.

 1 2 3 F 4 5 6 B C 0 1
 0 7 A 8 E D 9 A C 0 1 0
 ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ 1 2 7
 0 1 2 3 4 5 6 7 8 2 3 A
 3 F 8
 4 4 E
 5 5 D
 6 6 9
 7 B A
 8 C C
 x x x

Fig.4. Construction of one of linked tables

 The whole BDD (Fig. 3) is then described by 4
tables as shown in Fig. 5. The chain of tables is
homogeneous, but generally the tables may have
different size. However, sparse functions are typically
implementable by homogeneous cascades, since the

0/1

0 - 8 0 - F

Linked
table 4

Linked
table 4

number of sub-functions (and therefore decision nodes)
follows a pattern: rising – constant – dropping, [4].

Linked
table 4

Fig.5. A chain of linked tables for the Boolean
function at Fig. 2.

 As can be seen, the difference between OBDD and

linked tables is in communication among the layers or
tables: in OBDD each symbol requires an individual
edge (”wire”), whereas the symbols being sent between
tables are binary coded. Another way to look at linked
tables is to consider each table as an M-ary decision
node and the chain of tables as a special “in-line”
decision diagram.

This difference of two representations reflects itself
in the way how the program interprets a certain
application-specific OBDD or a table chain. In case of
the OBDD we may use for each node a record with 3
fields. A format indicator is one-bit field specifying the
leaf node. Two other fields of the leaf node are then
used for output. If the node is not a leaf, two fields
(adjacent words) contain pointers to the base addresses
of other nodes. The base address is modified by the
value of a current control variable(s) and is used to
extract the correct field with the pointer to the next
node. The program walks through a certain path in the
ROBDD from the root to a leaf in at most n steps.
 Linked tables are interpreted similarly, only the
pointer to the next table is obtained from the current
output by concatenating it with the control variable
value and adding to the next table base address. As
seen from Fig.5, only few steps will do. If suitable,
some linked tables can be combined to provide even
faster access. E.g. 4 tables in Fig.5 can be reduced to
two with 6 inputs each.

5. Linked tables versus other methods

 On the example of 4 queens and 16 queens we have
already seen that Boolean expressions may support
very fast evaluation and take up minimum memory
space.

Let us now analyze 4 functions of 8 variables in
Fig.2. Had we used an ordered list of defined points
with function values, there would be 39 items, 8
(input) + 4 bits (output) per item, 468 bits in total, i.e.
half of the full function table with size 256 × 4 bits. To
look up the item in the table we would need log 39 =
6 steps in the worst case.

 On the other hand, if we use a chain of linked
tables according to Fig.5, the capacity of all tables will
be 4×(32×4) = 512 bits and only 4 steps (composed of
read, append a value of a selected variable, add to the
base address of the table to create a pointer) will do.
This seems to be the best in speed and memory
efficiency. Four tables may be implemented in memory
as one table 32 × 16 bit with the correct output
extracted from 16-bit word as needed. Additional
flexibility is obtained with linked tables as they are
combined together. For example with 2 tables 64 × 4
bits, the response will be 2-times faster. The size of 2
and 4 linked tables remains the same, but 2 tables
combined need 64 words in memory, 8 bits per word.
 As the last example we shall consider the following
sparse Boolean function of 32 variables: it attains the
value 1 if the given 6-bit string is detected anywhere
within an input string of 32 Boolean values; otherwise
the function has the value 0.
 As the string of 6 consecutive values of variables
may be located in 27 positions (we do not assume that
the pattern wraps around), we can specify the function
by 27 words of 32 ternary digits (0, 1, x). The
logarithmic search is now not possible and we have to
step through these words sequentially. In the worst
case it may take 27 steps.
 We can do much faster with linked tables, though.
First the ROBDD of this function may be obtained
using the applet [4], since the Boolean expression with
27 min-terms, each with 6 literals, is easy to write. The
ROBDD is too large (162 nodes in total) to display, but
its shape can be described like this (from the root): the
number of decision nodes per level linearly increases
from 1 to 6, then stays at 6 for 22 levels and finally
drops from 6 to 1. From this shape of the ROBDD an
optimal size and count of linked tables can be
determined, Fig.6. We can keep 6 tables in 256 words
of memory, 3+3+3+3+2+1= 15 bits per word. The
table items can also have 1-bit format indicator
“continue/end” (6 additional bits in total) and the
length of processing may vary between 1 to 6 steps.

 3 3 3 3 3 2 1

 5 5 5 5 5 4

Fig. 6. Linked tables detecting 6-bit string in

32-bits

 On the other hand, we could use the ROBDD
implementation directly. Since there are 162 nodes, 8-
bit address is needed. With format indicator (1 bit) we

will not be able to map one decision node to a single
16-bit word. Anyway, we can use 2 × 162 = 324
words, 16 bit each or 162 words, 32 bit each. The pass
through the ROBDD may take from 1 to 32 steps.
Apparently, this solution is worse than the linked
tables.
 Returning to the first example in Fig.1, we can
also use linked tables here. Two sub-function symbols
plus two constants 0 and 1 are transferred between
BDD layers, so that 2-bit code will do. Possible
configurations of linked tables are in Fig.7.

 2 2 2 2 2 1

 3 3 3 3 2

 2 2 1

 7 7

Fig. 7. Linked tables for 4 queens problem

Two table look-ups are sufficient in the shorter version,
the same speed as with two comparisons suggested
earlier. However, memory consumption is worse, 512
× (2+1) bits is incomparable to 2 words, 32 bits each.

6. A case study - MCS-51 microcontroller
family: PLA1 and PLA2 in software

 Space and time efficiency of various configurations
of linked tables obtained by computer-aided iterative
decomposition have been tested on two PLAs used in
the core of MCS-51 family of microcontrollers,
 PLA: X → R, X ⊂ Z2

n, R ⊂ Z2
r,

with parameters in the following Table 1.

Table 1. Parameters of PLA1 and PLA2

n r p |X| size [B]
PLA1 13 8 31 175 8192
PLA2 11 8 53 632 2048

Both PLAs implement sparse (incomplete) Boolean

functions, which are after minimization described by
Boolean expression in Appendix. The number of terms
in AND arrays are p = 31 and 53. The size in bytes
The size in bytes gives memory space r2n required for
storing full function tables. Iterative decomposition
yyIterative decomposition used the selection of those
two variables at a time that produced the minimum
number of sub-functions. Not too large size of the

problem allowed still an exhaustive search – on the
Pentium-based PC it took tens of seconds. The PLA1
was implemented by the cascade of 6 cells, Fig. 8a,
with the total size of cell tables (ROMs) only 1792
bits. That is reduction by factor of 36. The size of
tables is not uniform and evaluation would take 6 table
look-ups. We can make it faster and more uniform by
combining 6 cells into 3 as shown in Fig.8b. All sub-
functions are counted (results given in {integer}),
coded and communicated between cells, so that
function values are outputs from the last cell only. The
total size of linked (cell) tables is then 2816 bits; if the
size of computer word w is known, further
optimization can be done to minimize the total memory
space in bytes occupied by all 3 (or possibly 4) tables.

 1 8

2

{4}
 2

{7}
 3

{12}
 4

{13}
 4

{17}
 5

2 2 2 2 2

{12}
 4

{17}
 5

4 4 2

3 8

a)

b)
Fig. 8. Two cellular cascade implementations

of PLA1

 As far as PLA2 is concerned, computer-generated
cascades are shown in Fig. 9. The cascade at Fig. 9b is
obtained from the cascade a) by merging first two
cells. The capacity of linked tables is 3264 and 3456
bits, respectively. The evaluation speed is given by 4 or
3 table look-ups.

3

2

{10}
 4

{19}
 5

{46}
 6

 8

2 2 2

 3

4

{19}
 5

{46}
 6

8

2 2

a)

b)

Fig. 9. Cascade of 4 or 3 cells for PLA2

 We can also split output variables into two halves
and then decompose them separately. The result for
PLA2 is shown at Fig. 10. The size of linked tables is
reduced to 1200 bits only, but the speed is reduced
also. Eight table look-ups are needed and can be done

on one CPU core in 8 steps sequentially or on a 2-core
processor concurrently in 4 steps.

3

2

{11}
 4

{14}
 4

{8}
 3

 4

2 2 2
a)

3

2

{4}
 2

{6}
 3

{11}
 4

 4

2 2 2
b)

Fig. 10. Two parallel cascades implementing
PLA2.

 The case study of PLA1 and PLA2 offered the size
of data structures and speed of evaluation as given in
Table 2. The data in the table are valid under the
assumptions:
- size is in bits, the length of a computer word is not
considered;
- steps may have different duration in the left and the
right part of the table (mask load + bitwise logical
operation vs table look-ups).

Table 2. Software implementations of PLA1
and PLA2

 PLA emulation linked tables
 AND + OR matrix
size bits steps size bits steps

PLA1 1054 13 + 8 1792 6
PLA1 1054 31 + 8 2816 3
PLA2 1590 11 + 8 3456 3
PLA2 1590 53 + 8 1200 8

7. Conclusions

There is no single software evaluation method
optimal for all Boolean functions. Complexity of
functions that can appear in embedded systems varies a
great deal and so do their space and time requirements
in various evaluation techniques.

Even though the very narrow analysis done above
cannot be taken as convincing, certain conclusions for
engineering practice can be drawn from it, if the fast
and memory efficient evaluation of sparse Boolean
functions Fn : X → ZR of several tens of variables is the
main concern.

1. If the set X ⊂ Z2
n contains only a small number of

elements, e.g. when the function is specified by DNF

with few tens of minterms, the search in the ordered
list of minterms can be very effective solution.

2. If X ⊂{0,1,x}n , sequential TCAM emulation
may be too slow as it takes | X | steps.

3. OBDDs or ROBDDs may be useful for checking
equivalence between two implementations or for
formal verification [1], but they are less useful for
evaluation purposes in both speed as well as memory
consumption.

4. Linked tables obtained from ROBDDs seem to be
a very good and effective data structure and should
always be considered for evaluation of Boolean
functions. They are flexible in making trade-offs
between response time and memory consumption. If
implemented as special hardware (a cascade of
ROMs), they can support pipeline processing with one
evaluation in each ROM cycle. Otherwise, in case of
software implementation, several linked tables can be
compacted into one table and stored in memory. The
evaluation then reduces to a short chain of indirect
memory accesses. Generally speaking, every sparse
function can be implemented as a chain of linked tables
or equivalently as a special “in-line” multi-valued
decision diagram [4].
 Future research will be oriented to study of
evolutionary techniques for iterative decomposition of
sparse Boolean functions of many variables where the
exhaustive search is out of question. Large systems
specified by expressions (such as those in Appendix)
will be tackled either by parallel processing or by
hardware acceleration.

8. References

[1] H.R.Andersen, Lecture notes for 49285 Advanced
Algorithms E97, www.itu.dk/~hra/notes-index.html

[2] F. D. Petruzella: Programmable Logic Controllers,
McGraw Hill Science/Engineering/Math, 2004.

[3] R. Sosic, J. Gu, and R. Johnson. “The Unison algorithm:
Fast evaluation of Boolean expressions”. ACM Transactions
on Design Automation of Electronic Systems, 1(4): pp. 456--
477, Oct. 1996.

[4] V. Dvořák, “Bounds on Size of Decision Diagrams”,
JUCS - The Journal of Universal Computer Science, Berlin,
Heidelberg, CZ, Springer, 1997, s. 2-22.

 [5] University of Hamburg, Department of Informatics,
http://tams-www.informatik.uni-hamburg.de/applets
 [6] W. Stallings, Computer Organization and Architecture,
Sixth Edition, Prentice Hall, 2005.

[7] I. Wegener, The Complexity of Boolean Functions. John
Wiley & Sons, New York, 1987.

[8] R. Drechsler, B. Becker, Binary Decision Diagrams -
Theory and Implementation. Springer 1998.

[9] B. Bollig, I. Wegener, “Improving the Variable Ordering
of OBDDs Is NP-Complete”. IEEE Transactions on
Computers, 45(9):993––1002, September 1996.

Acknowledgement

This research has been carried out under the
financial support of the research grants “Design and
hardware implementation of a patent-invention
machine”, GACR 102/07/0850, Grant Agency of
Czech Republic, 2007-2009 and “Security-Oriented
Research in Information Technology”, MSM
0021630528..

Appendix

Programmable logic arrays PLA1 and PLA2 in MCS-
51 microcontroller family

Legend: ! = logical negation, * = logical AND,

 + = logical OR
PLA1
Inputs: A, B, C, D, E, F, G, H, I, J, K, L, M
Outputs: SO, CS, BL, NL, V1, V3, V4, V5

SO = !A*!G*!I*J*M+A*!B*!I*J*M+A*F*!I*M

CS = !A*!B*D*!E*!F*!G*!H*!I*!K*!L*M +

A*B*!E*!F*!G*!H*!I*!J!K*!L*!M +
!A*!E*!I*M + !E*!I*J*M+!D*!I*M

BL = !B*E*!F*!G*!H*!I*!J*!K*!L +

!B*C*!D*!H*!I*!J*M + !B*D*E*!H*!I*!J*M +
!D*!I*!J*K*M + !A*!G*!I*J*M + E*H*!I*!L*M
+C*!D*G*!I*M + !A*F*!I*M + G*!I*K*M +
E*G*!I*M

NL = !B*E*!F*!G*!H*!I*!J*!K*!L +

C*!D*!H*!I*L*M + !D*!I*!J*K*M +
!A*!G*!I*J*M + D*E*!N*!I*M + !A*F*!I*M +
E*!I*!L*M + G*!I*K*M

V1 = !A*!G*!I*J*M + C*!D*F*!I*M + A*!B*!I*J*M

+ !A*F*!I*M + F*!I*K*M + E*F*!I*M

V3 = !B*!C*!D*E*!F*!G*!H*!I*!J*!K*!L +

!B*!G*!I*J*K*M + !D*!I*!J*K*M +
B*C*!I*K*M

V4 = !B*C*!D*E*!F*!G*!H*!I*!J*!K*!L +
!B*D*E*!F*!G*!H*I*!J*!K*!L*M +
!A*!G*!I*J*L*M + C*!D*!H*!I*L*M +
!A*F*!I*L*M + C*!D*H*!I*M +D*E*!I*L*M

V5 = !B*D*E*!F*!G*!H*I*!J*!K*!L*M +

!B*E*!F*!G*!H*!I*!J*!K*!L + C*!D*!H*!I*L*M
+!D*!I*!J*K*M + !A*!G*!I*J*M +
C*!D*H*!I*M + A*!B*!I*J*M + D*E*!I*L*M +
!A*F*!I*M + E*!I*!L*M

PLA2
Inputs: A, B, C, D, E, F, G, H, I, J, K
Outputs: Q1, Q2, Q3, Q4, Q5, Q6, Q7, Q8

Q1 = !A*!B*!C*!D*E*!G*I*!J + A*D*!E*F*!G*I*!J
+ A*!B*!E*F*I*!J + C*D*E*F*I*!J + A*C*G*!H +
A*!C*!F + A*!C*!D + A*!B*!D +A*E*G + A*!I +
A*J

Q2 = A*D*!E*F*!G*I*!J + !A*D*E*!G*I*!J +
C*D*E*F*I*!J A*B*!D*F + F*G*!H*I + D*!F*H*I +
!A*B*F*J + F*G*!H*J + D*!F*H*J + B*!I*!J +
B*!E*!H + B*!C*H + B*C*E + B*E*G + B*D

Q3 = A*D*!E*F*!G*I*!J + !B*C*!D*F + A*C*G*!H
+ F*G*!H*I + F*G*!H*J + C*!I*!J + !B*C*!E +
B*C*E C*F*J + !A*C

Q4 = !A*!B*!C*!D*E*!G*I*!J + !A*B*C*!G*I*!J +
B*C*!E*H*I + F*G*!H*I + D

Q5 = A*D*!E*F*!G*I*!J + !A*B*C*!G*I*!J +
!A*C*D*!G*I*!J + B*D*F*!G*I*!J + A*B*C*D*F*J
+ F*G*!H*I + F*G*!H*J + E*F*!I + E*F*H + E*F*J
+ E*!F

Q6 = !B*!C*D*G*!I*!J*!K + !A*B*D*E*!I*!J*!K +
A*B*D*E*G*I*!J + !E*G*!H*!I*!J*!K +
!A*C*D*!G*I*!J + B*D*F*!G*I*!J +
!D*!H*!I*!J*!K + C*D*E*I*!J + !B*!C*F*!J +
C*F*!I*!J + !B*C*!D*F + A*B*!D*F + !A*B*F*J +
!B*D*F*J + E*F*!I + C*F*G + E*F*H + E*F*J

Q7 = A*!B*!E*F*I*!J + !A*B*E*I*!J + C*F*G +
G*!J + H

Q8 = H

