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Abstract 
 

The paper addresses software implementation of 
large sparse systems of Boolean functions. Fast 
evaluation of such functions with the smallest memory 
consumption is often required in embedded systems. A 
new heuristic method of obtaining compact 
representation of sparse Boolean functions in a form of 
linked tables is described that can be used for BDD 
minimization as well. Evaluation of Boolean functions 
reduces to multiple indirect memory accesses. The 
method is compared to other techniques like a walk 
through a BDD or a list search and is illustrated on 
examples. The presented method is flexible in making 
trade-offs between performance and memory 
consumption and may be thus useful for embedded 
microprocessor or microcontroller software.  

 
 

1. Introduction 
 

Efficient evaluation of Boolean functions is an 
important part of many embedded software systems. 
Some applications include: search and optimization, 
modeling, simulation and verification of digital circuits 
in CAD, extracting routing information from packets, 
etc. We will restrict ourselves to sparse systems of 
Boolean functions, as these are most frequent in 
practice. Also we will address Boolean functions of 
large numbers (tens) of variables because small size 
systems can be implemented directly in hardware, e.g. 
in PLA, ROM or TCAM (Ternary Content 
Addressable Memory). 

Software implementation of Boolean functions will 
be assumed in a form of a data structure describing the 
function and of a compiled program that reads the 
input vector and evaluates the function with the use of 
this data structure. The size of the code and of the data 
structure is one figure of merit, the other is the 
evaluation time from reading the input to generating 
the output. Sometimes the evaluation time per one 
input may get reduced if many inputs follow one 

another. 
Hereafter we will use three compact 

representations: a TCAM-like table, linked tables and 
binary decision diagrams (BDDs). The BDDs are well 
known, especially the reduced ordered BDDs 
(ROBDDs), [1]. On the base of ROBDDs we will 
develop a more practical representation - linked tables. 

Software implementation of Boolean functions has 
been up to now studied especially in connection with 
PLCs (“ladder diagrams”) [2], digital system 
simulation, formal verification and testing [1], or 
specialized event processing [3], where either a speed 
(PLC) or a required memory were not that important. 
On the contrary, in embedded systems we do care for 
performance and memory space as well as for power 
consumption. We will demonstrate that presently used 
algorithms are generally too slow (TCAM emulation, 
BDDs); the use of linked tables enables faster 
evaluation with similar (selectable) size data structures 
which can be minimized by utilizing don’t cares 
directly.  

The paper is structured as follows. In the following 
Section 2 we define sparse Boolean functions and 
show their description by data structures, a relation 
among various representations and their complexity. 
Our novel heuristic approach for minimizing the 
relevant data structures is explained in Section 3. In 
Section 4 we exemplify creation of data structures on a 
sample Boolean function and give ways how to trade 
speed of evaluation against required memory space in 
Section 5 and 6. Results obtained with selected 
functions of 8 to 64 variables are commented on in 
Conclusions. 

 
2.  Representation of sparse systems of 
Boolean functions 

 
To begin our discussion, we define the following 

terminology. Multiple-output Boolean functions of n 
Boolean variables will be simply referred to as 
Boolean functions Fn with output values from 

                 ZR = {0, 1, 2, …, R-1}, 



Fn : Z2
n → ZR .                                                              (1) 

Under a sparse Boolean function we will understand 
function Fn: Z2

n → ZR with the domain split into two 
parts X and D, Z2

n = X ∪ D, | X | << 2n, and specified in 
one of two ways: 
1) Z2

n \ X = D is the don’t care set (Fn is an incomplete 
function in Z2

n, Fn: X → ZR) 
2) Mapping of the don’t care set Z2

n \ X = D into ZR is 
artificially defined to make implementation as easy as 
possible, Fn: X ∪ D → ZR. 
     A binary decision diagram (BDD) is a directed 
acyclic graph in which each decision node is labeled by 
a control variable tested in this node. Two edges 
coming out from the decision node, leading to the 
nodes in the subsequent levels, correspond to the 
values of control variable. Beside decision nodes there 
are terminal nodes (leaves) labeled by the value of the 
function that is being evaluated by the diagram. A 
BDD is ordered, if the order of control variables tested 
along every path in the BDD is the same. All the nodes 
of the ordered BDD (OBDD) labeled by the same 
variable make up a level of this diagram. An ordered 
BDD is reduced (ROBDD) if [1] 
1. no two distinct nodes have the same control variable 
name and the same 0- and 1-successor node. 
2. no node has the identical successor for both values 
of a control variable. 
ROBDD is canonical (unique) representation for any 
given function [1]. Any pair of functions will have 
different ROBDDs unless the functions themselves are 
equivalent. In the rest of the paper, we will consider 
OBDDs or ROBDDs , even if the term BDD is used. 

An important parameter is a size of BDD, i.e. the 
total number of decision nodes, as it determines the 
size of data structure needed to store a BDD. The 
construction of minimum-size BDDs belongs among 
NP-hard problems [9]. Upper bounds on the OBDD’s 
size for general Boolean functions are not too 
encouraging, but many practical functions do have a 
reasonable BDD size. The upper bound on the size of 
the related BDD belonging to a function with L literals 
in its DNF can be obtained as [4] 

 { } LkkL k
n
L

k
,...,2,1,12min =−+−       (2) 

As the first approximation to (2) we can use L only. 
Traditional description of a Boolean function by the 

Boolean expression (expressions in case of multiple 
outputs) may sometimes be the best for evaluation 
purposes, especially if the function of many variables 
is defined only in a few points. Another possibility is a 
list of ternary input vectors (composed of 0, 1 and 
don’t care elements) that can specify a relevant output 
value for each input vector in the list. Ternary vectors 

can be stored as two binary vectors, the vector of 
values and a mask indicating don´t cares.  
     Efficiency of evaluation techniques strongly 
depends on the used description of the Boolean 
function. Let us illustrate above possibilities on the N 
queens problem. We are to compare possible 
representations of a Boolean function of N×N variables 
that returns 1 for every configuration of 1’s (queens) 
on the N×N chessboard, such that no queen attacks 
another one. For example if N = 4, there are 2 solutions 
that can be generated by Boolean function F16 (used 
notation is required by the applet [5], but variables in 
the diagram are enumerated from 0 to 15): 

 

 
 

Fig.1. ROBDD for 4 queens problem 
 

In our case L = 32, n = 16 and the upper bound 
according to eq. (2) is 31 nodes. The real ROBDD 
generated by the applet [5] has 29 nodes and is shown 
in Fig.1. The most efficient representation and 
evaluation of F16  is thus clear: two memory words are 

F16 =  !a11*!a12*a13*!a14*a21*!a22*!a23*!a24*!a31*!a32* 
!a33*a34*!a41*a42*!a43*!a44 + !a11*a12*!a13*!a14*!a21* 
!a22*!a23*a24*a31*!a32*!a33*!a34*!a41*!a42*a43*!a44       (3)    



sufficient to store two min-terms in (3) and two bitwise 
comparisons will do for the quickest evaluation. A 
BDD representation is no good in this case. 
      Now if we move to 8 queens problem, there will be 
92 solutions described by F64. Solutions can be found 
by the known algorithm [6], [1]. To store 92 binary 
vectors of length 64 is still acceptable, but instead of 
linear search we can order solutions and do better with 
the logarithmic search in log2 92 = 7 steps at most. 
     The BDD size is upper-bounded by 5535 nodes 
according to eq. (2), so that storing of such BDD 
would not be space efficient at all. A pass through this 
BDD would need 64 steps in the worst case, what is 
bad as well. 
 
3. Heuristic construction of BDDs and 
linked tables 
 

We did not see too much use for BDDs in the 
former example. However, in this section we will give 
a method of construction of linked tables which are 
much more useful for the purpose of function 
evaluation. The method is based on bottom-up 
heuristic construction of BDDs, which uses a concept 
of sub-function [7].    

Informally, the sub-function f of Fn is a function of s 
variables obtained from Fn by setting n− s variables to 
fixed constant values. The number of distinct sub-
functions of s variables, s = 1, 2, …, n-1, characterizes 
the Boolean function and its complexity. Sub-functions 
themselves may also be incomplete (don’t care values 
for some binary s-tuples). A compatibility relation can 
be defined on the co-domain of such sub-functions: 
don’t care (denoted by “x”) is compatible with any 
value from ZR . 

Using the concept of sub-functions, we will now 
decompose iteratively the given sparse function of 8 
variables, see Fig.2. The map of the function at the top 
is sparsely populated by 16 function values (0 to F). 
For clarity don’t care cells are left empty in tables, but 
otherwise are denoted by symbol “x” in the text. 
Single-variable sub-functions can be created with 
respect to any variable. E.g. two vertically adjacent 
cells correspond to a sub-function of the first variable 
that attains alternate values 0 and 1 at even and odd 
rows (see e.g. [F,8] in Fig.2). Using compatibility 
relation we can combine pairs [α,x] and [x,β] into a 
single sub-function [α,β]. Altogether nine sub-
functions of the first variable are detected in the 
topmost table. The first decomposition step is 
described below the table; each sub-function is given a 
new symbol ([1,0]→0, [2,7]→1,[F,8]→3, etc.), thereby 
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      Fig. 2. Iterative decomposition (8 variables) 



removing the first variable from the function. A map of 
the new intermediate Boolean function of 7 variables is 
now created replacing sub-functions by new values 
(symbols, IDs). This process repeats 8 times. 
       The OBDD can now be created starting from root 
0. Every assignment [a,b]→ c, when reversed, specifies 
one decision node  with  input c  and  two outputs  a  
and  b controlled by the relevant variable. Assignments 
of the type [a,a]→b, [a,x]→c, [x,a]→d do not represent 
decision nodes because the outputs are the same (or 
compatible); such a decision node degenerates to a 
wire. Going up from the root (a map of  0 variables) to 
the original map of 8 variables, the OBDD in Fig.3 is 
created. Usually BDDs have a root at the top, but we 
displayed the BDD upside down in order to keep the 
BDD structure in correlation with the sequence of map 
transformations in Fig.2. Nodes are labeled by 
intermediate function values. Out of 46 assignments 34 
correspond to decision nodes and 12 to wires only.  
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Fig.3. OBDD of the sample function of 8 

variables ( 0 = - - - - - , 1 =  ) 
 
       In our example we did not care about variable 
ordering; the ordering was chosen more or less 
randomly.  However, it is known, that the size of the 
BDD is determined both by the function being 
represented and the chosen ordering of the variables 

[8].  For some functions, the size of a BDD may vary 
between a linear to an exponential range depending 
upon the ordering of the variables. The problem of 
optimal variable ordering is unfortunately NP hard [9].  
      If we want to minimize the size of a BDD, the 
following heuristics can be used: do sub-function 
counting for all variables in each decomposition step 
and use for this step the variable with the minimum 
sub-function count. By intuition, the minimum count 
of symbols may hopefully produce a minimum count 
of their pairs. 
     Note also that the above small example with maps 
of the original and intermediate functions was done 
only for illustration. When we have sparse functions 
with several tens of variables represented by a list of 
defined points, all the processing is done on these lists. 
The case with don´t cares already defined for the 
purpose of minimization is given in Section 6. 
 
4. Linked tables and OBDDs 
 

In this Section we first introduce the technique of 
linked tables, programs for interpreting OBDDs as well  
as linked tables and then compare both techniques on 
examples.  

Linked tables and OBDD are equivalent 
descriptions of a Boolean function; one layer of the 
OBDD or more layers combined can be described by a 
table. For example linked table 4 is constructed (Fig. 4) 
from the top layer of the OBDD in Fig. 3. 
Transformation of 9 symbols to 16 symbols is 
described by reversed assignments under the topmost 
map in Fig.2. 
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                 6 6 9  
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                 8 C C  
                 x x x  
                     

 
 

 
Fig.4. Construction of one of linked tables 

 
     The whole BDD (Fig. 3) is then described by 4 
tables as shown in Fig. 5. The chain of tables is 
homogeneous, but generally the tables may have 
different size. However, sparse functions are typically 
implementable by homogeneous cascades, since the 

0/1

0 - 8 0 - F 

Linked 
table 4 

Linked 
table 4 



number of sub-functions (and therefore decision nodes) 
follows a pattern: rising – constant – dropping, [4]. 
 
 

Linked
table 4  

Fig.5.  A chain of linked tables for the Boolean 
function at Fig. 2. 

 
 As can be seen, the difference between OBDD and 

linked tables is in communication among the layers or 
tables: in OBDD each symbol requires an individual 
edge (”wire”), whereas the symbols being sent between 
tables are binary coded. Another way to look at linked 
tables is to consider each table as an M-ary decision 
node and the chain of tables as a special “in-line” 
decision diagram. 

This difference of two representations reflects itself 
in the way how the program interprets a certain 
application-specific OBDD or a table chain. In case of 
the OBDD we may use for each node a record with 3 
fields. A format indicator is one-bit field specifying the 
leaf node. Two other fields of the leaf node are then 
used for output. If the node is not a leaf, two fields 
(adjacent words) contain pointers to the base addresses 
of other nodes. The base address is modified by the 
value of a current control variable(s) and is used to 
extract the correct field with the pointer to the next 
node. The program walks through a certain path in the 
ROBDD from the root to a leaf in at most n steps. 
      Linked tables are interpreted similarly, only the 
pointer to the next table is obtained from the current 
output by concatenating it with the control variable 
value and adding to the next table base address. As 
seen from Fig.5, only few steps will do. If suitable, 
some linked tables can be combined to provide even 
faster access. E.g. 4 tables in Fig.5 can be reduced to 
two with 6 inputs each.  
 
5.  Linked tables versus other methods 
 

 On the example of 4 queens and 16 queens we have 
already seen that Boolean expressions may support 
very fast evaluation and take up minimum memory 
space. 

Let us now analyze 4 functions of 8 variables in 
Fig.2. Had we used an ordered list of defined points 
with function values, there would be 39 items, 8 
(input) + 4 bits (output) per item, 468 bits in total, i.e. 
half of the full function table with size 256 × 4 bits. To 
look up the item in the table we would need log 39 = 
6 steps in the worst case. 

      On the other hand, if we use a chain of linked 
tables according to Fig.5, the capacity of all tables will 
be 4×(32×4) = 512 bits and only 4 steps (composed of 
read, append a value of a selected variable, add to the 
base address of the table to create a pointer) will do. 
This seems to be the best in speed and memory 
efficiency. Four tables may be implemented in memory 
as one table 32 × 16 bit with the correct output 
extracted from 16-bit word as needed. Additional 
flexibility is obtained with linked tables as they are 
combined together. For example with 2 tables 64 × 4 
bits, the response will be 2-times faster. The size of 2 
and 4 linked tables remains the same, but 2 tables 
combined need 64 words in memory, 8 bits per word.   
     As the last example we shall consider the following 
sparse Boolean function of 32 variables: it attains the 
value 1 if the given 6-bit string is detected anywhere 
within an input string of 32 Boolean values; otherwise 
the function has the value 0. 
      As the string of 6 consecutive values of variables 
may be located in 27 positions (we do not assume that 
the pattern wraps around), we can specify the function 
by 27 words of 32 ternary digits (0, 1, x). The 
logarithmic search is now not possible and we have to 
step through these words sequentially. In the worst 
case it may take 27 steps.  
      We can do much faster with linked tables, though. 
First the ROBDD of this function may be obtained 
using the applet [4], since the Boolean expression with 
27 min-terms, each with 6 literals, is easy to write. The 
ROBDD is too large (162 nodes in total) to display, but 
its shape can be described like this (from the root): the 
number of decision nodes per level linearly increases 
from 1 to 6, then stays at 6 for 22 levels and finally 
drops from 6 to 1.  From this shape of the ROBDD an 
optimal size and count of linked tables can be 
determined, Fig.6. We can keep 6 tables in 256 words 
of memory, 3+3+3+3+2+1= 15 bits per word. The 
table items can also have 1-bit format indicator 
“continue/end” (6 additional bits in total) and the 
length of processing may vary between 1 to 6 steps. 
 
 
 

 3                 3                 3                3                3                 2                 1

 5                 5                 5                5                5                 4                  
 

 
Fig. 6.  Linked tables detecting 6-bit string in 

32-bits  
  

      On the other hand, we could use the ROBDD 
implementation directly. Since there are 162 nodes, 8-
bit address is needed. With format indicator (1 bit) we 



will not be able to map one decision node to a single 
16-bit word. Anyway, we can use 2 × 162 = 324 
words, 16 bit each or 162 words, 32 bit each. The pass 
through the ROBDD may take from 1 to 32 steps. 
Apparently, this solution is worse than the linked 
tables.  
       Returning to the first example in Fig.1, we can 
also use linked tables here. Two sub-function symbols 
plus two constants 0 and 1 are transferred between 
BDD layers, so that 2-bit code will do. Possible 
configurations of linked tables are in Fig.7. 
 
 

  2                 2                 2                2                2                 1        

  3                 3                 3                3                2            

  2                     2                      1                  

  7                       7                    
 

Fig. 7.  Linked tables for 4 queens problem  
 
Two table look-ups are sufficient in the shorter version, 
the same speed as with two comparisons suggested 
earlier. However, memory consumption is worse, 512 
× (2+1) bits is incomparable to 2 words, 32 bits each.  
 
6. A case study - MCS-51 microcontroller 
family: PLA1 and PLA2 in software   
 
      Space and time efficiency of various configurations 
of linked tables obtained by computer-aided iterative 
decomposition have been tested on two PLAs used in 
the core of MCS-51 family of microcontrollers,  
              PLA: X → R, X ⊂ Z2

n, R ⊂ Z2
r, 

with parameters in the following Table 1. 
 

Table 1. Parameters of PLA1 and PLA2 
 

          

n r p |X| size [B]
PLA1 13 8 31 175 8192
PLA2 11 8 53 632 2048  

 
Both PLAs implement sparse (incomplete) Boolean 

functions, which are after minimization described by 
Boolean expression in Appendix. The number of terms 
in AND arrays are p = 31 and 53. The size in bytes      
The size in bytes gives memory space r2n  required for 
storing full function tables. Iterative decomposition    
yyIterative decomposition used the selection of those 
two variables at a time that produced the minimum 
number of sub-functions. Not too large size of the 

problem allowed still an exhaustive search – on the 
Pentium-based PC it took tens of seconds. The PLA1 
was implemented by the cascade of 6 cells, Fig. 8a, 
with the total size of cell tables (ROMs) only 1792 
bits. That is reduction by factor of 36. The size of 
tables is not uniform and evaluation would take 6 table 
look-ups. We can make it faster and more uniform by 
combining 6 cells into 3 as shown in Fig.8b. All sub-
functions are counted (results given in {integer}), 
coded and communicated between cells, so that 
function values are outputs from the last cell only. The 
total size of linked (cell) tables is then 2816 bits; if the 
size of computer word w is known, further 
optimization can be done to minimize the total memory 
space in bytes occupied by all 3 (or possibly 4) tables. 
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Fig. 8. Two cellular cascade implementations 

of PLA1 
 
    As far as PLA2 is concerned, computer-generated 
cascades are shown in Fig. 9. The cascade at Fig. 9b is 
obtained from the cascade a) by merging first two 
cells. The capacity of linked tables is 3264 and 3456 
bits, respectively. The evaluation speed is given by 4 or 
3 table look-ups. 
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Fig. 9. Cascade of 4 or 3 cells for PLA2 
 
     We can also split output variables into two halves 
and then decompose them separately. The result for 
PLA2 is shown at Fig. 10.  The size of linked tables is 
reduced to 1200 bits only, but the speed is reduced 
also. Eight table look-ups are needed and can be done 



on one CPU core in 8 steps sequentially or on a 2-core 
processor concurrently in 4 steps.  
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Fig. 10. Two parallel cascades implementing 
PLA2. 

 
     The case study of PLA1 and PLA2 offered the size 
of data structures and speed of evaluation as given in 
Table 2. The data in the table are valid under the 
assumptions: 
- size is in bits, the length of a computer word is not 
considered;  
- steps may have different duration in the left and the 
right part of the table (mask load + bitwise logical 
operation vs table look-ups). 
 

Table 2. Software implementations of PLA1 
and PLA2 

    
        PLA emulation        linked tables
    AND + OR matrix
size bits steps size bits steps

PLA1 1054 13 + 8 1792 6
PLA1 1054 31 + 8 2816 3
PLA2 1590 11 + 8 3456 3
PLA2 1590 53 + 8 1200 8  

 
7. Conclusions 
 

There is no single software evaluation method 
optimal for all Boolean functions. Complexity of 
functions that can appear in embedded systems varies a 
great deal and so do their space and time requirements 
in various evaluation techniques.  

Even though the very narrow analysis done above 
cannot be taken as convincing, certain conclusions for 
engineering practice can be drawn from it, if the fast 
and memory efficient evaluation of sparse Boolean 
functions Fn : X → ZR  of several tens of variables is the 
main concern.   

1. If the set X ⊂ Z2
n contains only a small number of 

elements, e.g. when the function is specified by DNF 

with few tens of minterms, the search in the ordered 
list of minterms can be very effective solution.  

2. If X ⊂{0,1,x}n , sequential TCAM emulation 
may be too slow as it takes | X | steps. 

3. OBDDs or ROBDDs may be useful for checking 
equivalence between two implementations or for 
formal verification [1], but they are less useful for 
evaluation purposes in both speed as well as memory 
consumption. 

4. Linked tables obtained from ROBDDs seem to be 
a very good and effective data structure and should 
always be considered for evaluation of Boolean 
functions. They are flexible in making trade-offs 
between response time and memory consumption. If 
implemented as special hardware (a cascade of 
ROMs), they can support pipeline processing with one 
evaluation in each ROM cycle. Otherwise, in case of 
software implementation, several linked tables can be 
compacted into one table and stored in memory. The 
evaluation then reduces to a short chain of indirect 
memory accesses. Generally speaking, every sparse 
function can be implemented as a chain of linked tables 
or equivalently as a special “in-line” multi-valued 
decision diagram [4].   
       Future research will be oriented to study of 
evolutionary techniques for iterative decomposition of 
sparse Boolean functions of many variables where the 
exhaustive search is out of question. Large systems 
specified by expressions (such as those in Appendix) 
will be tackled either by parallel processing or by 
hardware acceleration.  
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Appendix 
 
Programmable logic arrays PLA1 and PLA2 in MCS-
51 microcontroller family 
 
Legend: ! = logical negation, * = logical AND,  

 + = logical OR 
PLA1 
Inputs:  A, B, C, D, E, F, G, H, I, J, K, L, M 
Outputs: SO, CS, BL, NL, V1, V3, V4, V5 
 
SO = !A*!G*!I*J*M+A*!B*!I*J*M+A*F*!I*M 
 
CS = !A*!B*D*!E*!F*!G*!H*!I*!K*!L*M + 

A*B*!E*!F*!G*!H*!I*!J!K*!L*!M + 
!A*!E*!I*M + !E*!I*J*M+!D*!I*M 

 
BL = !B*E*!F*!G*!H*!I*!J*!K*!L + 

!B*C*!D*!H*!I*!J*M + !B*D*E*!H*!I*!J*M + 
!D*!I*!J*K*M + !A*!G*!I*J*M + E*H*!I*!L*M 
+C*!D*G*!I*M + !A*F*!I*M + G*!I*K*M + 
E*G*!I*M 

 
NL = !B*E*!F*!G*!H*!I*!J*!K*!L + 

C*!D*!H*!I*L*M + !D*!I*!J*K*M + 
!A*!G*!I*J*M + D*E*!N*!I*M + !A*F*!I*M + 
E*!I*!L*M + G*!I*K*M 

 
V1 = !A*!G*!I*J*M + C*!D*F*!I*M + A*!B*!I*J*M 

+ !A*F*!I*M + F*!I*K*M + E*F*!I*M 
 
V3 = !B*!C*!D*E*!F*!G*!H*!I*!J*!K*!L + 

!B*!G*!I*J*K*M + !D*!I*!J*K*M + 
B*C*!I*K*M 

 

V4 = !B*C*!D*E*!F*!G*!H*!I*!J*!K*!L + 
!B*D*E*!F*!G*!H*I*!J*!K*!L*M + 
!A*!G*!I*J*L*M + C*!D*!H*!I*L*M + 
!A*F*!I*L*M + C*!D*H*!I*M +D*E*!I*L*M 

 
V5 = !B*D*E*!F*!G*!H*I*!J*!K*!L*M + 

!B*E*!F*!G*!H*!I*!J*!K*!L + C*!D*!H*!I*L*M 
+!D*!I*!J*K*M + !A*!G*!I*J*M + 
C*!D*H*!I*M + A*!B*!I*J*M + D*E*!I*L*M + 
!A*F*!I*M + E*!I*!L*M 

 
PLA2 
Inputs: A, B, C, D, E, F, G, H, I, J, K 
Outputs: Q1, Q2, Q3, Q4, Q5, Q6, Q7, Q8 
 
Q1 = !A*!B*!C*!D*E*!G*I*!J + A*D*!E*F*!G*I*!J 
+ A*!B*!E*F*I*!J + C*D*E*F*I*!J + A*C*G*!H + 
A*!C*!F + A*!C*!D + A*!B*!D +A*E*G + A*!I + 
A*J 
 
Q2 = A*D*!E*F*!G*I*!J + !A*D*E*!G*I*!J + 
C*D*E*F*I*!J A*B*!D*F + F*G*!H*I + D*!F*H*I + 
!A*B*F*J + F*G*!H*J + D*!F*H*J + B*!I*!J + 
B*!E*!H + B*!C*H + B*C*E + B*E*G + B*D 
 
Q3 =  A*D*!E*F*!G*I*!J + !B*C*!D*F + A*C*G*!H 
+ F*G*!H*I + F*G*!H*J + C*!I*!J + !B*C*!E + 
B*C*E C*F*J + !A*C 
 
Q4 = !A*!B*!C*!D*E*!G*I*!J  + !A*B*C*!G*I*!J + 
B*C*!E*H*I + F*G*!H*I + D 
 
Q5 = A*D*!E*F*!G*I*!J + !A*B*C*!G*I*!J + 
!A*C*D*!G*I*!J + B*D*F*!G*I*!J + A*B*C*D*F*J 
+ F*G*!H*I + F*G*!H*J + E*F*!I + E*F*H + E*F*J 
+ E*!F 
 
Q6 = !B*!C*D*G*!I*!J*!K + !A*B*D*E*!I*!J*!K + 
A*B*D*E*G*I*!J + !E*G*!H*!I*!J*!K + 
!A*C*D*!G*I*!J + B*D*F*!G*I*!J + 
!D*!H*!I*!J*!K + C*D*E*I*!J + !B*!C*F*!J + 
C*F*!I*!J + !B*C*!D*F + A*B*!D*F + !A*B*F*J + 
!B*D*F*J + E*F*!I + C*F*G + E*F*H + E*F*J 
 
Q7 = A*!B*!E*F*I*!J + !A*B*E*I*!J + C*F*G + 
G*!J + H 
 
Q8 = H 


