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Abstract 

 
Fast evaluation of multiple-output Boolean 

functions with the smallest memory footprint is often 
required in embedded systems. The paper describes a 
novel method of linked tables for representation and 
evaluation of Boolean functions and compares it with 
traditional methods; PLAs from the MCS-51 micro-
controller are used for comparison. Traditional 
methods use masks to emulate PLA one way or 
another. The suggested method of linked tables is 
based on iterative disjunctive decomposition and leads 
only to a series of table look-ups. Linked tables are 
also shown to be equivalent to specific “in-line” 
decision diagrams. They proved to be most flexible in 
making trade-offs between performance and memory 
space. The method of linked tables may be quite useful 
for embedded microprocessor or microcontroller 
software as well as   for digital system simulation. 

 
Keywords: Boolean function evaluation in software, 
PLA in software, decision diagrams, linked tables, 
iterative disjunctive decomposition. 

 
1. Introduction 
 
Efficient evaluation of Boolean functions is an 

important part of many embedded software systems. 
Simultaneous evaluation of several Boolean functions 
of many variables, that we are going to focus at, can be 
either compiled or interpretive. Compiled evaluation is 
targeted to a specific set of functions and if a new 
function set is to be used, re-writing a program and re-
compilation are necessary. On the other hand, 
interpretive techniques use a general-purpose program 
that operates on application-specific data structures and 
on the input vector. Changing Boolean functions 
means that data structures representing them must be 
changed, not the program itself. We are interested only 
in the latter class of techniques. In embedded systems 
the size of the code/data structure and speed of 
evaluation are usually of concern.  

If the interpretive program implements a virtual 
logic processor, then the description of Boolean 
functions in a form of Boolean expressions (or Binary 
Decision Diagrams, BDD) is appropriate. An 
evaluating algorithm uses either logic operations or (in 
case of BDD) branching. In both cases redundant 
reading/testing of input variables is used and multiple 
Boolean functions are evaluated sequentially one after 
another, which is not too efficient. This was all right 
for PLCs [1] or specialized event processing [2]. 

On the contrary, in embedded systems we do care 
for performance and memory space, as well as for 
power consumption, and alternative approaches are 
needed. For example, the techniques that utilize bit-
wise operations on computer words (1 or more bytes in 
size) perform much better. However, when we have to   
trade-off speed and memory size, these techniques will 
not help. That is why the evaluation problem is studied 
anew in this paper.   

The paper is structured as follows. In the following 
Section 2 we will take a look at traditional methods of 
evaluation and their complexity. Our approach of 
obtaining a description of Boolean functions in a form 
of M-ary decision diagrams or linked tables is 
explained in Section 3 and 4. In Section 5 we compare 
traditional and novel techniques with respect to size of 
required data structures and speed of evaluation on the 
sample set of Boolean functions (control PLAs from 
MCS-51 microcontroller family). Results are 
commented on in Conclusion. 

 
2.  Evaluation of Boolean functions with 

bit-wise logical instructions 
 
To begin our discussion, we define the following 

terminology. A system of m Boolean functions of n 
Boolean variables (also known as a multiple-output 
Boolean function), 

              fn
(i)

 : Z2
n → Z2 ,  i = 1, 2, ..., m                          (1)                                              

will be simply referred to as Boolean  function Fn  with 
output values from ZR = {0, 1, 2, …, R-1}, R = 2m, 

Fn: Z2
n → ZR .                                                              (2) 



Function Fn is incomplete if it is defined only on set  
X ⊂ Z2

n ;   Z2
n \ X = D is then the don’t care set. 

Representation of Boolean functions by means of 
Boolean expressions can follow either eq. (1) or (2). In 
the first case, several non-disjunctive Boolean terms 
add up to generate a single binary output value, 
whereas in the second case they describe sub-domains 
mapped into one R-ary output value. Let us note, that 
the transition between both forms is not trivial. 

 Alternative representation of Boolean functions by 
means of binary decision diagram (BDD) can have 
similarly two forms, either m BDDs, one for each of m 
Boolean functions, or one BDD with R terminal values. 
The latter form is more concise, but to obtain it from 
form 1 is not easy. 

Hardware implementation of Boolean functions in 
Programmable Logic Array (PLA) can serve as an 
initial prototype for software implementation. PLA 
consists of AND-matrix and OR-matrix. Rows of the 
AND-matrix define terms and OR-matrix serves for 
accumulation of their contributions to the binary 
outputs. 

 The set of p terms produced by AND-matrix (a 
term vector) can be generated in parallel, each term in 
one bit of the computer word. If the capacity w bits in a 
single word are not enough, p/w computer words can 
be used to accommodate all the terms. The terms are 
evaluated in n steps – one input Boolean variable at a 
time. Two masks m0(x) and m1(x) are maintained for 
each variable x. The masking bit in a position of term t 
is denoted m0(x, t) or m1(x, t). Given the value v of 
input variable x, two masks are generated (only once, 
at the beginning) using the following rules:   

if x occurs in t,   then m0(x, t) = m1(x, t) = v 
if !x occurs in t,   then m0(x, t) = m1(x, t) = !v 
if x does not occur in t, m0(x, t) = m1(x, t) = 1. 

The term vector is initialized to all ones and then a 
sequence of masks is applied to it using logical AND 
operation. For variable x either mask m0(x) or m1(x) is 
used according to the input value x = v. All the terms 
are thus updated in parallel and the (full) width of 
computer word is utilized. 

As soon as all terms are ready, we have to emulate 
OR-matrix – apply OR operation selectively to certain 
bits. Another set of r masks will be used for r outputs. 
Unused terms in the term vector are masked out and if 
at least single 1 remains, we have the result TRUE. 
The memory size for storing all sets of masks is 

               space = (2n + r) p/w  words                 (3) 
and time complexity is   

               time = C1n + C2 r,                                   (4) 
where C1 and C2 are  execution times in clock cycles 
related to mask applications.  

If the number of terms p is less than the number of 
variables n, a dual evaluation method may be more 
advantageous. The relevant terms are generated one 
after another from the input vector using again two sets 
of masks. As soon as the term vector is assembled, the 
outputs are generated similarly as before. Space and 
time complexities are now 

 
     space = 2p n/w  + r p/w  words                  (5) 
    time = C3p + C4 r   steps.                                 (6) 

 
 
3.  Evaluation of Boolean functions on a 

walk through M-ary Decision Diagram 
(MDD)   

 
Binary decision diagrams (BDD), ordered binary 

decision diagrams (OBDD) and reduced ordered binary 
decision diagrams (ROBDD) are well known 
representation of Boolean functions in a form of a 
directed acyclic graph [3]. Whereas ROBDD is 
canonical (unique) representation for any given 
function, in case of incomplete Boolean functions we 
may have apparently more choices.  

An important parameter is a size of BDD, i.e. the 
total number of decision nodes, as it determines the 
size of data structure needed to store a BDD. The 
construction of minimum-size ROBDDs belongs 
among NP-hard problems: the size of the ROBDD 
depends on variable ordering and there are n! possible 
orderings of n variables. A heuristic approach can be 
used in search for near optimal orderings [4]. Even 
though the upper bounds on the OBDD’s size for 
general Boolean functions are not too encouraging, 
many practical functions do have a reasonable BDD 
size. 

M-ary decision diagrams are straightforward 
generalization of BDDs. They have two types of nodes: 
decision and terminal nodes. Decision node L is testing 
M-ary variable var(L) and its outgoing edges are 
marked  by its values 0, 1, …, M-1.  The terminal node 
assigns a single value from ZM (generally  ZR , R≠M) to 
output y = Fn(x1, x2,…, xn). Ordered MDDs are better 
suited to evaluation of Boolean functions as the walk 
through them can be much shorter than through 
OBDDs, depending on the value of M. If the M-ary 
variable is coded in m bits, we have to visit at most 
n/m nodes in the same number of steps, so that in the 
worst case  

          time = n/m   steps.                                    (7) 
 
Each of N nodes in OMDD is described by a table 

with M ≤ 2m items. Each item has a format indicator 
(decision/ terminal node) and then either a pointer to a 



successor node log2 N bits wide or the output value r 
= log2 R bits. The size of the data structure is 
therefore  

 space = NM [1+ max ( log2 N  + r)]  bits.          (8) 
 
         
4.  Iterative disjunctive decomposition, 

BDDs, and linked tables 
 
Evaluation of Boolean functions in software could 

rely on the full map stored in the memory. In 
embedded systems is this approach acceptable for 
about less than 10 variables. For several tens of 
variables we have to use more compact data structures 
and one way how to obtain them makes use a 
disjunctive decomposition of original functions. The 
basic idea is shown at Fig.1. 
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Fig.1. Disjunctive decomposition of multiple 
output Boolean function F of n variables 

  
 The original function F is split into two functions H 

and G, so that F = G(Y, H(X)), where multi-valued 
variables X, Y, H and G are binary coded using h, n-
h+k, k and r bits, respectively: 

X∈Z2
h, Y∈Z2

n-h+k, H∈Z2
k, and G∈Z2

r,          (9) 
Fig.1. Of course, we are interested only in non-trivial 
decompositions for which k < h, such that descriptions 
of functions H and G are more thrifty in memory space 
than the description of original function F, i.e. 

                      k 2h + r 2n-h+k ≤ r 2n.                       (10) 
We prefer tables describing H and G to have the 

same size, to be stored in the same memory area (e.g. 
two table items in one word). This requirement 
translates to  

                 h = k + n – h                                      (11) 
and eq. (10) is then rewritten into 

                 2k ≤ r2h /(r + k).                                  (12) 
The lower a value of k (with values n, h, r fixed), the 
better. In a special case k=r, eq.(12) turns to  k ≤ h – 1. 

The value of k cannot be selected at will, it is given 
by complexity of the function under consideration. The 
minimum value of k is given by decomposition 
Theorem 1 [5], which under notation (9) and according 
to Fig.1 says: 
Theorem 1.    
Function F is decomposable into 

                F = G(Y, H(X)) 
if and only if  the value of 2k is equal or greater than 
the number of distinct sub-functions of n-h variables. 
(Note: A sub-function fn-h of n-h variables is an 
instance of function Fn with h remaining variables 
fixed at certain values, [6]). 

 In the following sections we will use a technique 
based on bottom-up heuristic construction of BDDs, 
which uses a concept of sub-function, namely 
enumeration and counting distinct sub-functions in the 
set of all 2h possible sub-functions. Then we will also 
need to count separately distinct non-constant sub-
functions.    

Decomposition shown at Fig.1 can be repeated 
iteratively with functions H and G.  The result will be a 
cascade of four function blocks (cells). If we go on, the 
cascade will be ultimately composed of n cells, each 
cell with one vertical input and cells interconnected 
horizontally to one another. The procedure of obtaining 
this cascade will be referred to as iterative disjunctive 
decomposition. We will illustrate it on a small 
example. 

The map of 2 Boolean functions of 4 variables is 
specified by the leftmost map at Fig.2. Four function 
values can be considered as sub-functions of 0 
variables. Counting sub-functions of a single variable 
gives the result 

   [x1] = 5/4, [x2] = 5/5,  [x3] = 6/6, [x4] = 6/2, 
where [x] is the number of all/non-constant distinct 
sub-functions of variable x. The first parameter will be 
also denoted later by an {integer}. According to 
previous consideration, we should select a variable x4 
in the first step as there are only two (non-constant) 
sub-functions. (As we will see later, constant sub-
functions do not count in software evaluation 
methods.) Sub-functions of variable x4 defined as 

F | x3 x2 x1 ∈ {000, 001, …, 111} 
are 00, 11, 22, 33, 30, 12. E.g. sub-function “30”means 

 
                                                                                (13)                               

 
Enumeration of sub-functions is carried out next: 
00 := 0, 11 := 1, 22 := 2, 33 := 3, 30 := 4, 12 := 5  (14) 

and using the new sub-functions’ IDs, the map of a 
residual function of  3 remaining variables is obtained. 
The similar decomposition step is carried out with this 
residual function, variable x1 is selected, [x1] = 4/3 
sub-functions are identified, etc. Finally we end up 
with 1 sub-function of four variables – the original 
function: 

                   [x4, x1, x3, x2] = 1/1.  
The whole procedure and the resulting cascade are 

illustrated in Fig.2. The cascade is constructed from the 
end to the beginning and the process will be clarified 
further at the discussion of a related BDD. 

f(x4) = {  3    if x4 = 0 
0    if x4 = 1. 



Let us note, that incomplete functions can be 
decomposed the same way. However, the enumeration 
process must be done more carefully, because sub-
functions can also be incomplete and can be combined 
with complete constant or non-constant sub-functions 
in different ways to reduce the total count as much as 
possible.  

   
 x2 x1                          x4 x3                         
                                                                x3 

        

00 01 10 11
00 3 2 3 2
01 1 3 1 0
10 0 3 0 3
11 0 1 0 2                 

3 2
1 4
0 3
0 5              

1 2
0 3                

0
1               0  

x2 x1    
x3 

x2 x2 

x4 x1 x3 x2 

 

x4 x1 x3 x2 

#(1,2,3) #(0) 

[ ] = 4/0 [ x4] = 6/2 [x4, x1] = 4/3 [x4, x1, x3] = 2/2 

Cell 
4 

Cell 
3 

 
 
Fig. 2. Iterative disjunctive decomposition 

and an associated non-redundant cascade 
 
 If we realize that a non-constant sub-function of a 

single binary variable corresponds to a switch (see eq. 
13), we can easily convert our decomposition 
procedure to construction of a related BDD. The BDD 
is constructed from the bottom up. The number of 
nodes is given by the number of single-variable sub-
functions in all decomposition steps together, with 
exception of constant sub-functions. The same constant 
value for either value of the test variable does not 
require a decision, and the relevant edge can thus be 
terminated. 

The difference between the BDD on left and the 
cascade of cells on the right side of Fig. 3 is apparent:  
sub-functions IDs are communicated between layers of 
BDD coded in “one-hot” edge style; on the other hand, 
compact code for IDs is used between neighbor cells of 
the cascade. One layer of the BDD is implemented as 
one cell of the cascade. (We assume OBDDs in which 
the same variable controls all the nodes in one layer). 

The cells in the cascade are described by maps that 
can be obtained by reversing the assignments from the 
enumeration process. E.g. the cell 4 implementing 6 
sub-functions (14) 
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Fig. 3. Construction of BDD by means of 
iterative disjunctive decomposition 

 
    00 := 0, 11 := 1, 22 := 2, 33 := 3, 30 := 4, 12 := 5 

is described by the left table 1. We can reduce the size 
of this table by omitting the constant sub-functions (the 
right table 1). The constant sub-functions will be 
identified in previous cell 3 and the evaluation can stop 
right there. The only overhead is a format indicator 
(FI) in every table item, specifying whether the item is 
a final value or an index to an item in the next cell 
table. The immediate function values evaluated earlier 
in the cascade are denoted by “#” in Fig.2. 

 
Table 1. Description of the cell 4 in Fig. 2 

 

         

sub x 4
ID 0 1
0 0 0
1 1 1
2 2 2
3 3 3
4 3 0
5 1 2                 

sub x 4
ID 0 1
4 3 0
5 1 2  

 
The cells in the cascade in Fig.2 can be combined 

together to speed up the evaluation.  The larger cells 
can be controlled by two variables simultaneously. 
Unfortunately the size of cell tables will differ: cell 4 
and 3 will be described by table 16 x 2 bits, other pair 
of cells by table 4 x 2 bits, altogether 40 bits, what is 
more than the size of the original table (16 x 2 bits). 
Thus two “linked tables” obtained by unifying cells do 
no good in this special case. Generally functions used 
in practice are typically sparse – have many don’t cares 
or attain a constant value in large sub-domains. These 
functions do have a space efficient decomposition, 
typically into a homogenous cascade with all the cells 
of the same size, [4]. The cell tables of the same size 
are desirable if the width of a computer word is large 
enough to accommodate table items indexed by the 
same ID in two or more cells. 



 
5.  A case study - MCS-51 microcontroller 
family: PLA1 and PLA2 in software   

 
 Space and time efficiency of various configurations 

of linked tables obtained by computer-aided iterative 
decomposition have been tested on two PLAs used in 
the core of MCS-51 family of microcontrollers,  

              PLA: X → R, X ⊂ Z2
n, R ⊂ Z2

r, 
with parameters in the following Table 2. 

 
Table 2. Parameters of PLA1 and PLA2 

 

          

n r p |X| size [B]
PLA1 13 8 31 175 8192
PLA2 11 8 53 632 2048  

 
Both PLAs implement incomplete Boolean 

functions, which are after minimization described by 
Boolean expressions. The number of terms in AND 
arrays are p = 31 and 53. The size in bytes gives 
memory space r2n required for storing full function 
tables. 

Iterative decomposition (done by an exhaustive 
search) used the selection of those two variables at a 
time that produced the minimum number of sub-
functions. The PLA1 was implemented by the cascade 
of 6 cells, Fig. 4a with the total size of cell tables 
(ROMs) only 1792 bits. That is reduction by factor of 
36. The size of tables is not uniform and evaluation 
would take 6 table look-ups. We can make it faster and 
more uniform by combining 6 cells into 3 as shown in 
Fig.4b. All sub-functions are counted (results given in 
{integer}), coded and communicated between cells, so 
that function values are outputs from the last cell only. 
The total size of linked (cell) tables is then 2816 bits; if 
the size of computer word w is known, further 
optimization can be done to minimize the total memory 
space in bytes occupied by all 3 (or possibly 4) tables. 

As far as PLA2 is concerned, computer-generated 
cascades are shown in Fig. 5 and 6. The cascade at Fig. 
5b is obtained from the cascade a) by merging first two 
cells. The capacity of linked tables is 3264 and 3456 
bits, respectively. The evaluation speed is given by 4 or 
3 table look-ups. 

We can also split output variables into two halves 
and then decompose them separately. The result for 
PLA2 is shown at Fig. 6.  The size of linked tables is 
reduced to 1200 bits only, but the speed is reduced 
also. Eight table look-ups are needed and can be done 
on one CPU core in 8 steps sequentially or on a 2-core 
processor concurrently in 4 steps. 
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Fig. 4. Two cellular cascade 
implementations of PLA1 
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Fig. 5. Cascade of 4 or 3 cells for PLA2 
 
6. Conclusions 
        
There is no single software evaluation method 

optimal for all Boolean functions. Complexity of 
functions that can appear in embedded systems varies a 
great deal and so do their space and time requirements 
in various evaluation techniques.  
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Fig.6. Two parallel cascades implementing 

PLA2. 
 
The case study of PLA1 and PLA2 offered the size 

of data structures and speed of evaluation as given in 



Table 3. The data in the table are valid under the 
assumptions: 

- size is in bits, the length of a computer word is not 
considered;  

- steps may have different duration in the left and 
the right part of the table (mask load + bitwise logical 
operation vs table look-ups). 

Even though we cannot draw general conclusions 
from one case study, the method of linked tables seems 
to be well suitable for trade-offs between speed of 
evaluation and required memory space. It seems to 
have a potential for high performance and 
customization. 

  
Table 3. Software implementations of PLA1 

and PLA2 
    

   PLA emulation     linked tables
       AND + 0R
size bits steps size bits steps

PLA1 1054 13 + 8 1792 6
PLA1 1054 31 + 8 2816 3
PLA2 1590 11 + 8 3456 3
PLA2 1590 53 + 8 1200 8  

 
 
 The method of iterative disjunctive decomposition 

suggested for construction of linked tables can also be 
used for creation of OBDDs or OMDDs. Whereas 
OBDDs would require up to n table look-ups for 
evaluation a single- or multiple-output Boolean 
function, OMDDs could reach similar performance as 
linked tables. Comparison of space requirements is still 
to be done. 

Future research will be oriented to the use of 
evolutionary techniques for iterative decomposition of 
complete as  well  as  incomplete Boolean  functions of  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

many variables and to their hardware acceleration. 
Also an efficient procedure for finding sub-optimal 
OMDDs for a set of Boolean functions given by 
expressions would be very valuable.   
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