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Abstract

In the paper, a methodology of developing checkers for communication protocol testing is pre-
sented. It was used to develop checker to test IP cores communication protocol implemented in
Xilinx FPGA based designs. A formal language enabling to describe the protocol was created for
this purpose together with a generator of the formal description into VHDL code. The VHDL code
can be then used for the synthesis of the checker structure and used in applications with Xilinx
FPGAs.

1 Introduction

With the lower hardware reliability possibly appearing in future technologies, concurrent on-
line testing becomes a strong feature in the design of fault-tolerant systems. Concurrent on-line
testing implies that testing occurs when the circuit-under-test (CUT) is running in its functional
operation mode. One of the ways how to provide on-line testing is through comparing output
values produced by CUT with reference values produced by identical circuit operating under the
same input vectors, or by a logic block synthesized to produce the same output values as the CUT.
In [8], it is demonstrated how checking functions can be used to increase fault coverage and reduce
fault detection times. The problem of fault latency is discussed as well. The fault latency is seen
as the time it takes to detect a fault after it occurs. In some applications it is important to provide
on-line checking of a certain type of communication, e. g. asynchronous handshakes [9].

As mentioned above, fault-tolerant systems design is one of the areas where on-line testing can be
possibly used. Fault-tolerance is an important system metric for many operating environments. A
possible technique for improving system reliability is through component replication, which usually
comes at significant cost: increased design time, testing, power consumption, volume, and weight.
Reconfigurable systems implemented using user-programmable logic elements such as FPGA are
well suited for applications where high dependability is required [5]. For these applications the
problem of radiation effects on SRAM-based FPGAs must be studied [2]. The problems combined
with the design of dependable systems include error detection during system operation, fast fault
location, quick recovery from temporary failures, and fast permanent-fault repair.

In [3] the method of highly reliable digital circuit design method based on totally self checking
blocks implemented in FPGAs is described. The bases of the self checking blocks are parity pre-
dictors. The parity predictor design method based on multiple parity groups is proposed. Proper



parity groups are chosen in order to obtain minimal area overhead and to decrease the number of
undetectable faults.

The features of fault-tolerance can be implemented in different levels and applications. In [10],
a fault-tolerant approach to reliable microprocessor design is proposed. The approach, based on
the use of an on-line checker component in the processor pipeline, provides significant resistance
to core processor design errors and operational faults such as supply voltage noise and energetic
particle strikes [10].

The problem of on-line testing is widely discussed in numerous papers. In [4], it is presented
how path (min) delay faults when designing on-line testable circuits should be considered. The
challenges that this poses to the existing on-line testing strategies are discussed. Examples showing
the possible incorrect behaviour of a self-checking circuit as a result of this kind of faults are given.
In [1], the idea of combining self-test technology for production test and for online self test is
presented. The reduction of overall overhead for testing is the goal of the activity.

2 Motivation for the Research

Hardware units can be implemented on various platforms. From among those which are widely
used in many applications, Xilinx FPGA can be mentioned. For the purpose of interconnecting
FPGA components, Xilinx company developed a Local Link (LL) protocol which has been inte-
grated to many IP cores.

Very often it is reported that FPGA based designs are constructed as fault tolerant designs with
the possibility of recovering from errors by means of reconfiguration procedures. In our opinion,
testing proper function of communication protocol can increase significantly the diagnostic qual-
ity of the design. Therefore, we have decided to develop a methodology for automatic design of
Local Link communication protocol checker. In the first phase of our research we decided to de-
velop a checker which will operate on different levels of detecting communication protocol faults:
1.a checker detecting an incorrect combination of output signals 2. a checker detecting a correct
sequence of signals 3. a checker constructed as a FSM whose state reflects the combination of
signals.

The complexity of the checker will be different based on the type of communication protocol
fault supposed to be detected by the checker. The complexity of the checker will influence the
area required on the chip and communication speed. As an important aspect of the methodology
we saw that the alternative of automated design of the checker should be available to a designer.
For this purpose, we felt the need for a language by means of which the conditions supposed to be
checked will be described together with the need for core generator to compile checker description
into VHDL code.

The paper is organized in the following way: in Section 3 the definition of the language for
the description of possible communication protocol faults is given. Section 4 devotes to the core
generator which was developed for the automated checker design from the definition language,
while the results are evaluated in Section 5. In Section 6 the results are recapitulated and in Section
7 our goals for future research in this area are summarized.

3 Language Definition

If a digital system is expected to be fault-tolerant, then not only an erroneous operation of all
components must be guaranteed but also the correctness of communication protocols becomes a



strong aspects of the system reliability. Thus the need for the development of automatic checkers of
communication protocols must be reflected during fault-tolerant system design. Usually, to describe
errors in communication protocols, formal models such as grammars, FSMs, or formal languages
are used. As a result of our research a language was developed which allows to describe possible
failures in communication protocol. The description is then used as an input to automatic generator
which develops checker description in VHDL language.The main advantage of this approach is such
that based on the language the checker can be generated automatically without the intervention of
experienced designer.

When a communication protocol is checked, then not only the combinations of signals must be
monitored but also their sequences. The checker behavior must therefore have features of sequential
behavior which can be described by means of FSM. The definition of language for communication
protocol errors detection therefore arises from the formal description of FSM.

The language description is composed of two parts. The first one defines the input alphabet
symbols that uniquely specify the transitions between automata states. Each input symbol is defined
as the set of conditions over the communication protocol signals. The second part of the language
defines the transition function of automata. For each state and input symbol, the transition to the
next state is defined, as show in Figure 1.

Figure 1. Phases of core generator processing

The initial state is labeled as S0, it must be as the initial state in the transition function of au-
tomata. The error during the communication protocol is detected by the transition to Serr state. If
the automata is not completely defined, then it remains in the previous state for uncovered input
signal combinations.

The input automata symbols are defined as conjunction of conditions cond1, cond2, ..., condN

separated by and, or, (, ) symbols and ended by semicolon. Each condition contains single com-
parison operators (<, >, <=, >=, == and <>) between signal and numeric constant. Syntactic
structure is shown in the following example:

The conditions are defined in the following way:

cond0 → Name signal == 1
cond1 → Name signal >= 0

Expression defined in such manner is assigned to new input symbol.

p0 = cond0 and cond1 or (cond2 or cond3) and ... and condn;

The automata behaviour is described using transition function which is represented by a set of
transitions in the form:

(S0, p0) : S1;
(Serr) : S0;



Based on the set of input characters and transition function, it is possible to construct formally
the finite state machine and design the checker. An example of the simple checker behavioral
description is shown here:

p0 = sigA == 1 and sigB <> 0 and ... and sigC <> 0;
p1 = (sigC >= 0 or sigA < 1) and ... and sigD == 0;
(S0, p0) : S1; (S1, p1) : S3;
(S3, p0) : S0; (S3, p1) : Serr;
(Serr) : S0;

A = (Q,T, P, S0, Serr)

where Sn ∈ Q is the set of the all states, Pn ∈ T is the set of input symbols, P is the function
which for each state and input symbol defines the following state. S0 ∈ Q is the starting state and
Serr ∈ Q is the error state of the checker.

The proposed language is able to describe any automata that reacts to communication protocol
signals. Other operators extend the ability of checker to detect more types of errors at the functional
level. For example, it is possible to detect, if the appropriate input values fall into the required
ranges.

4 Core Generator

Core generator is a program for automated development of checker structure based on the de-
scription provided in formal language. By means of the formal language the conditions of commu-
nication protocol are described. The process of generating checker consists of two phases, Figure 2:

1. PHASE: The input file is analyzed, the conditions which must be satisfied together with
transition functions are transformed into FSM description.

2. PHASE: The transitions reflected by FSM description are mapped into VHDL processes.

As the first step of the input file analysis, the symbols of the files are analyzed together with
conditions assigned to them. The set containing all input symbols is created and the syntax analysis
of conditional statements is performed. For each conditional statement a syntax tree is formed
which is then used during mapping the conditions onto the description in VHDL language.

Figure 2. Phasis of core generator processing



As the result of the analysis, an FSM is constructed, A = (Q,T,P,S0,Serr), where Q is the set of
all states, T is the set of input symbols, P is the set of transition conditions, S0 is the initial state and
the Serr is the error state indicating error in communication.

The second phase starts with creating the interface of the checker. The names of signals are
extracted from transition conditions. The conditions are then mapped onto VHDL processes. The
interface signals are the input to the process, the output of the process is the only signal, whose
name reflects one of input symbols. The contents of the process is generated from the syntax tree
developed in the first phase of the analysis. The mapping of FSM into VHDL is performed by
means of two processes. One of them operates as a register in which current state is stored and the
second process describes the combinational logic reflecting transition conditions.

5 Evaluation of the Methodology

The proposed approach for generating checker structure was tested on Local Link communica-
tion protocol [11] developed by Xilinx company which is used especially for FPGA components
interconnection. The Local Link protocol has been integrated to many IP Cores. As an example of
the most familiar IP Cores the following designs can be used: Aurora that provide communication
through RocketIO multigigabit transceivers; PCI Express IP Core for communication with PCI in-
terface; GMII/XGMII Cores for packet receiving and transmitting via 1Gbps or 10Gbps Ethernet
and many others. Unfortunately, most of IP Cores do not offer any diagnostics opportunities such
as BIST or other on-line/off-line test. In this case, the solution in the form of hardware component
checking the communication protocol and transferred data can detect the most critical faults.

The Local Link (LL) is based on synchronous point-to-point communication protocol which
transfers data in the form of packets. To the LL advantages generic data width of transferred data
belongs which is a very important aspect for stream processing applications. Additionally, LL of-
fers upstream and downstream flow control, efficient link bandwidth utilization and optional parity
checking. The LL interface contains 6 control signals, data bus and signals identifying the number
of valid bytes available in the last data word (REM).

Two control signals (SRC RDY N and DST RDY N) participate in the flow control, allowing
both communication sides (source and destination component) can stop the communication. Other
four control signals are used for identifying the structure of transferred packet. SOF N specifies the
start of frame, SOP N identifies the end of the header and the beginning of packet payload, EOP N
determines the end of the payload and the start of the footer. Finally, EOF N specifies the end of
the frame. All control signals are active in L level. The example of Local Link communication
protocol is shows in Figure 3. Detailed specification of Local Link protocol is available in [11].

For the purposes of checker evaluation, three different levels of diagnosis were chosen:
(1) As the simplest checker alternative we see the monitoring of control signals and the detection

of correct combinations on the protocol interface, the current status of the communication need not
be identified.

(2) The second level verifies the correct sequences of control signals and evaluates the transitions
between communication protocol states.

(3) At the third level, the content of data is verified whether. It is checked whether specified
conditions and rules are satisfied.

From LL protocol specification the following correct signal combinations (1) can be derived,
SRC RDY N and DST RDY N being active:

1. Every frame must start with SOF N signal and no other signal is allowed to be active.



Figure 3. Local Link Protocol Timing Diagram

2. Each frame must contain a header at the beginning. Thus, if SOP N is active, no other signal
is allowed to be active.

3. Each frame must contain a footer. Thus, if EOP N is active, no other signal is allowed to be
active.

4. Each frame must be accomplished with EOF N signal, no other signal is allowed to be active.

5. If data is transported, no other signal except of SRC RDY N and DSC RDY N signals is
allowed to be active.

This list of rules can be easily rewritten into the language (defined in section 3) as follows:

p0 = SRC RDY N == 0 and DST RDY N == 0 and SOF N == 0
and SO N == 1 and EOP N == 1 and EOF N == 1

p1 = SRC RDY N == 0 and DST RDY N == 0 and SOF N == 1
and SO N == 0 and EOP N == 1 and EOF N == 1

p2 = SRC RDY N == 0 and DST RDY N == 0 and SOF N == 1
and SO N == 1 and EOP N == 0 and EOF N == 1

p3 = SRC RDY N == 0 and DST RDY N == 0 and SOF N == 1
and SO N == 1 and EOP N == 1 and EOF N == 0

p4 = SRC RDY N == 0 and DST RDY N == 0 and SOF N == 1
and SO N == 1 and EOP N == 1 and EOF N == 1

p5 = SRC RDY N == 0 or DST RDY N == 0



This approach is limited and can detect only the basic faults caused by forbidden combinations
of signals in the protocol interface.

The second type of rules considers sequences of control signals. For the Local Link protocol the
following transition rules can be applied:

(S0, p5) : S0; (S0, p0) : S1;
(S1, p5) : S1; (S1, p1) : S2; (S1, p4) : S1;
(S2, p5) : S2; (S2, p2) : S3; (S2, p4) : S2;
(S3, p5) : S3; (S3, p3) : S0; (S3, p4) : S3;
A = (Q,T, P, S0, Serr)

The last part covers data monitoring transported by means of the protocol, checking the con-
ditions rules describing the contents of data. An example: the first transported byte must contain
0xAB (Start-of-Frame Delimiter), the ninth byte must have the value which is lower then 124 (the
width of the word is 4 bytes). The record in the language is given by the following rules:

p0 = DATA0[7 downto 0] == 0xAB;
p1 = DATA2[7 downto 0] < 124;

(S0, p0) : S1;
(S1, p1) : S0;

6 Experimental Results

For all types of rules checker structure was generated and correct behavior was tested on COMBO6X
card with FPGA Virtex2 Pro for network traffic [7]. Synthesis to Virtex2 Pro FPGA was also per-
formed to obtain basic parameters of generated circuit. For all generated circuits, the maximal
frequency was higher than 350 MHz and does not affect maximal frequency of IP cores. FPGA
logic utilization was different for all types of rules and types of diagnostic levels. The results show
that the amount of used resources is really low. All results are summarized in table 1.

The types of rules were derived from the LL protocol specification developed for FPGA VIR-
TEX2Pro. For each of three types of rules for which checkers were synthesized, different numbers
of slices were involved into the design as the result of the synthesis. The right column of the table
gives the numbers of slices needed to detect error states of the protocol. In both cases, power re-
quirements are very low. In our opinion, in practical applications it will be reasonable to monitor
correct combinations and sequences of protocol signals.

Rules Slices Rules Slices

Correct Signal Combination 3 Error Signal Combination 4
Correct Sequence of Signals 5 Error Sequence of Signals 7
Data checking 16 Data checking 16

Table 1. Resources usage in slices

For the third type of rules, where also data is checked, the number of utilized resources is related
to the number of compared bits. The results of our experiments show that the number of utilized
resources is increased linearly with the number of compared bits.

An example of checker constructed for Local Link protocol is shown in Figure 4.



Figure 4. Checker implementation for Local Link protocol

7 Conclusions

A methodology was developed which can be used for automatic development of communication
protocol checkers. The following tasks had to be solved during the work on the topic: 1. the
development of formal tool for the formal description of properties that are supposed to be checked
- the properties are derived from protocol definitions and rules. 2. the implementation of the
generator which can be then used for compiling the description into VHDL code, 3. the synthesis
of the checker into Virtex 2 FPGA, 4. experimenting with all these tools, comparing the results (in
terms of checker complexity) gained for different sets of properties.

Our approach of generating hardware checkers is different from those based on the utilization of
PSL [6]. While PSL based methodologies allow to describe formally the properties to be checked
and add this description to the HDL source code of the component to be synthesized (and develop
the checker together with the component), our methodology can be used in situations where the
design is finished and it is still expected that certain properties should be checked. As an example,
precisely defined communication protocol can serve for which a checker is needed. In our future
research, we have an intension to compare our results with those based on the usage of PSL.
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