

1 Faculty of Information Technology, Brno University of Technology, Brno, Czech Republic

LUT Cascade-Based Architectures for High Productivity Embedded
Systems

V. Dvorak1

Abstract – Fast, flexible, cheap in hardware or low-power implementations of multiple-output
Boolean functions are often required in embedded systems. The paper describes digital system
architectures which embody some of these attributes. They are based on already known, and
recently reinvented, representation of combinational logic by Look-Up Table (LUT) cascades.
Theoretical background of cascade decomposition is revised and a relation to decision diagrams
is pinpointed. The design of LUT cascades is discussed and a heuristic method of cascade
synthesis is given. Three possible applications of LUT cascades are presented: combinational
logic pipelines, efficient micro-programs with multi-way branching and fast logic simulation in
software. It is shown that LUT cascades are quite flexible in making trade-offs between
performance and cost by adjusting cascade length, complexity of its cells and multiplicity of
cascades. The method of LUT cascades may be quite useful not only for high performance
pipelined stream processing or embedded microprocessor or microcontroller firmware, but also in
digital system simulation.

Keywords: LUT cascades, binary decision diagrams BDD, MTBDD, iterative disjunctive
decomposition, multi-way branching.

 Nomenclature

ZR, the set of integers {0, 1, …, R-1}
Complete Boolean functions:

 fn : (Z2)
n → Z2, a single output Boolean function

fn
(i)

 : (Z2)
n → Z2 i = 1, 2, ..., m or equivalently

Fn: (Z2)
n → ZR, a multiple output Boolean function

or an R-valued function of n Boolean variables
R, the number of distinct m-tuples of binary values

Explicit form: i =1, 2, ..., m
yi = fn

(i)(x1, x2, …, xn) (scalar notation),
y = F(x) (vector notation)

Implicit form:
φ0 (x, y) = 1, an output characteristic function

Incomplete multiple-output Boolean functions:
Fn: X → ZR, X ⊂ Z2

n
Z2

n \ X = D, the don’t care set
Discrete M-valued functions of n K-valued variables
 Fn: (ZK)

n → ZM.

I. Introduction

The implementation of combinational logic
circuits in a form of one-dimensional unidirectional
arrays (cascades) of modules (cells) attracted
attention of researchers already many years ago. The
reason might have been the simplicity, regularity and
a hidden potential for future VLSI technologies.
Soon it became known that the simplest single-rail
(Maitra) cascade of horizontally connected cells,

with individual (side) inputs, is not sufficient for
realization of every single Boolean function of n > 2
variables, even though each variable is allowed to
enter several cells [1]. However, if K- valued signals
are used at horizontal line and M-valued signals at
side inputs, every K-valued integer function of M-
valued integer variables is then realizable by uniform
redundant cascade (i.e. with repeated use of some
input variables), [2]. Binary coded integer values can
then be substituted for integer values if multiple
output Boolean functions are required. Cascade
cells can be realized either by random logic based on
gates, multiplexers/de-multiplexers, or by look-up
tables (LUTs) stored in ROM or RAM.

Redundant cascades of this kind were designed
using algebraic approach [2] leading to an excessive
number of cells, since this approach disregarded the
complexity of synthesized functions. Long cascades
were impractical due to a high cost and large delays.
E.g. two Boolean functions of 4 variables required a
two-rail cascade with 22 “permutation” cells or 12
general cells [2]. (Author proved that only 8 cells
would do, [3]). That was the reason why the
redundant cascades were more or less abandoned
and shortest possible irredundant cascades were
sought. Such cascades can be related to ordered
multi-terminal binary decision diagrams (MTBDDs)
that are used to represent binary-input, integer-
valued output functions [3]. One level of the
MTBDD is mapped into one cell in the cascade. If
the order of variables is given, the MTBDD has a
canonical form. However, finding a good order even

for BDDs is an NP-complete problem [4]. Different
variable orderings may produce formidable
difference in size of resulting DDs.

Nevertheless, the sub-optimal LUT cascade
synthesis can be based on the concept of sub-
function and sub-function counting. The cascade is
being built backwards from the last cell to the first,
and simultaneously, as a byproduct, the MTBDD
from leaves up to the root [5], [6].

The recent renewed interest in LUT cascades is
due to a demand for more efficient realization of
digital systems than provided by PLA or FPGA, as
far as chip area or power is concerned, with a lower
or even competitive speed [7]. It is therefore the
right time to revise former results [8], [9] and
compare them to the most recent ones [10]. As we
will see, their synergy could produce some new ways
of designing LUT cascades, clarify the relevant
figures of merit, and specify other function classes
realizable by them.

The rest of the paper is organized as follows.
Section II presents the basic notions. Section III
reviews some important theorems useful for
estimation the cascade size and defines classes of
realizable functions. Heuristic cascade synthesis by
iterative decomposition is exemplified in Section IV.
Synthesis of LUT cascades and LUT-cascade/
MTBDD co-synthesis is presented in sections V and
VI. Multi-way branching micro-programs and a
specialized micro-engine are discussed in Section
VII and further optimization of LUT cascades in
Section VIII. Results are commented on in
Conclusion.

II. Basic Notions

 Machine representation of Boolean functions uses
binary decision diagrams (BDDs), which can have
many forms. Bit-level binary decision diagrams
(BDDs), ordered binary decision diagrams (OBDDs)
and reduced ordered binary decision diagrams
(ROBDDs) are well known representation of a single
Boolean function in a form of a directed acyclic
graph [4]. Whereas ROBDD is canonical (unique)
representation for any given function and an order of
variables, in case of incomplete Boolean functions
we may have apparently more choices.

An important parameter is a size of BDD, i.e. the
total number of decision nodes, as it determines the
size of data structure needed to store a BDD. The
construction of minimum-size ROBDDs belongs
among NP-hard problems [4]: the size of the
ROBDD depends on variable ordering and there are
n! possible orderings of n variables. A heuristic
approach can be used in search for near-optimal
orderings [6]. Even though the upper bounds on the
OBDD’s size for general Boolean functions are not

too encouraging, many practical functions do have a
reasonable BDD size.
 M-ary decision diagrams are straightforward
generalization of BDDs. They have two types of
nodes: decision and terminal nodes. Decision node L
is testing M-ary variable var(L) and its outgoing
edges are marked by its values 0, 1, …, M-1. The
terminal node assigns a single value from ZM
(generally ZR, R≠M) to output y = Fn(x1, x2,…, xn).

To represent a system of Boolean functions by
means of decision diagrams, we can use either m bit-
level BDDs, one for each of m Boolean functions
(possibly sharing some of their sub-diagrams, Shared
BDDs or SBDDs, [19]) or one word-level BDD
(WLBDD) with n Boolean decision variables and
with R integer terminal values. The latter form is
more concise, but to obtain it from the bit-level BDD
is not easy. There are many types of WLDDs. Multi-
terminal BDDs have integer leaves and therefore
represent functions from Booleans to integers. A
BMD (Binary Moment Diagram) is another
representation for functions that map Boolean
vectors to integers. This representation is more
compact for some useful arithmetic functions which
have exponential size if represented by MTBDDs.
Hybrid decision diagrams HDDs are a combination
of MTBDDs and BMDs.

Encoded Characteristic Function of Non-zero
outputs (ECFN) is yet another representation of
multiple-output functions, which uses the shortest
encoding of output vectors y using auxiliary
variables. The auxiliary variables can be
intermingled with normal variables arbitrarily [11].
Auxiliary variables can also be used in connection
with MTBDDs and SBDDs with resulting diagrams
MTBDD+ and SBDD+, [11]. In what follows, we
will use the most frequent type – MTBDDs.

As the LUT cascades are the main concern of this
paper, we will provide a formal definition.

Def. 1. A cascade C of a form k × m is the system
C = [K, M, H1, H2, …, HB, µ]
where
K ≤ 2k (M ≤ 2m) is the number of specified Boolean

input vectors at k horizontal (m vertical or side)
cell inputs,

Hi: (Z2)
k × (Z2)

m → (Z2)
k, 1 ≤ i ≤ B are functions

implemented by individual cells,
B is the total number of cells and
µ: {1,2,…, B} → (Z2)

k assigns k-tuples of input
variables xi , i = 1,2,…, n to B cells in the cascade.
The above cascade has k horizontal rails carrying

Boolean values and each cell has m vertical (side)
inputs. The last cell in the cascade may have r ≠ k
outputs.
Note. Cascades considered at [12] use cells with
additional vertical outputs. They will be introduced
by example in Section VI.

Def.2. A cascade is said to be irredundant if each
variable used at vertical input enters one and only
one cell. Otherwise the cascade is redundant.

III. Complexity of Some LUT Cascades

As an arbitrary system of Boolean functions can
be implemented by a single memory look-up table, it
is natural to compare the capacity of this single LUT
with the total capacity of all LUTs in the cascade. So
the simplest figure of merit of different cascades
implementing the same Boolean system is a total
number of bits of all LUTs.

The LUT of the original Boolean system with n
input and r output variables requires r2n bits,
whereas each but last LUT in a cascade requires
k2k+m bits. We can therefore realize saving if

 (B-1)k2k+m +r2k+m < r2n. (1)
With k+m input variables entering the first cell, there
will be B = (n-k)/m cells in the cascade and
condition (1) becomes

 
12

1/)(

−
−−> −− mkn

mkn
kr . (2)

LUT cascades satisfying above condition (1) will be
referred to as cost-effective ones. In case that r ≤ k
saving may start at no less than 6 (5) variables for
r=1 (r=2). We always save with cascades having r >
k. The problem is that not all functions are realizable
by cost-effective cascades. Fortunately, important
classes of functions used in digital design are LUT
cascade-realizable.
 Incomplete Boolean functions that are frequently
used in applications are one such class, for which the
form factor of LUT cascades can be estimated [13]:

Theorem 1. Every R-valued incomplete function of n
Boolean variables defined on set X ⊂ Z2

n is
realizable as the output function of a k × m cascade
with k = log2 | X |.
Upper bound on the cost of such LUT cascade is
derived in [13].

Functions with large areas of the domain mapped
to a certain constant and with remaining points
mapped to R-1 other values show similar properties
as incompletely specified functions [13]:

Theorem 2. Every function F: Z2

n → ZR such that F
= const in K-1 input vectors and F ≠ const otherwise
is realizable by log2 K  × m cascade.

Another measure of multiple-output Boolean
functions is the width of the MTBDD for the given
ordering of input variables. This is called a C-
measure in a recent literature [12]. In Section VI we
will see, that C- measure is directly related to the
number of rails in the LUT cascade and the lower its
value, the better the chance that cost effective

cascade exists. Theoretically, for the most random
functions and any permutation of input variables, C-
measures increase exponentially and the related
number of rails k may be too large to provide saving.
For random logic the following Theorem 3 gives the
upper bound on number of rails k (the C-measure has
a value of 2k), [12]:

Theorem 3. Every multiple output Boolean function
F: Z2

n → ZR is realizable as the output function of an
irredundant cascade k × m with B = n/m cells and
with number of rails

[] )2,(minmaxlog)1(2
2

−≤ Bm

i

i

Rk , (3)

i = 0, 1,…, B-1. Fortunately, many real-world
functions have small C-measures and lend them-
selves to cost-effective cascade realization. Some of
these classes are listed below:

1. Symmetric functions (any permutation of n input
variables does not change the value of the function)
2. Threshold functions (special case of symmetric
functions) [12]
3. Detectors of bit patterns in data streams [14]
important for Intrusion Detection Systems (IDS)
4. Numerical function generators (trigonometric
functions, logarithm functions, square root,
reciprocal) using linear [15] or quadratic
approximations
5. Weighted Sum functions [12]
6. The Advanced Encryption Standard (AES)
encryption using a 128-bit key [16]
7. Multiple-valued CAM functions [17]
8. Code converters and checkers
9. Radix converters
10. Sorting networks [8].

IV. Iterative Disjunctive Decomposition
and LUT Cascades

Storing the full map of the multiple output
function as a single LUT in the memory is in
embedded systems acceptable approach up to about
10 variables. For several tens of variables we have to
use more compact data structures and one way of
obtaining them utilizes a disjunctive decomposition
of original functions. The basic idea is shown in
Fig.1.

H G F
n k r

n-h

h
F

n r

Fig.1. Disjunctive decomposition of multiple output Boolean

function F of n variables

The original function F is split into two functions H

and G, so that F = G(Y, H(X)), where multi-valued
variables X, Y, H and G are binary coded using h, n-
h+k, k and r bits, respectively:

X∈Z2
h, Y∈Z2

n-h+k, H∈Z2
k, and G∈Z2

r, (4)
Fig.1. Of course, we are interested only in non-trivial
decompositions for which k < h, i.e. tables of
functions H and G are more thrifty in memory space
than the table of original function F, i.e.

 k 2h + r 2n-h+k ≤ r 2n. (5)
Sometimes we prefer to get tables describing H and
G of the same size, to be stored in the same memory
area (e.g. two table items in one word). This
requirement translates to
 h = k + n – h (6)
and (9) is then rewritten into
 2k ≤ r2h /(r + k). (7)
The lower a value of k (with values n, h, r fixed), the
better. In a special case k=r , (11) turns to k ≤ h – 1.
 The value of k cannot be selected arbitrarily, it is
given by complexity of the function under
consideration. The minimum value of k is given by
modified decomposition Theorem 4 [18], which
under notation (4) and according to Fig.1 says:

Theorem 4.
Function F is decomposable into
 F = G(Y, H(X))
(Fig.1) if and only if the value of 2k is equal or
greater than the number of distinct sub-functions of
n-h variables.
 Note. A sub-function fn-h of n-h variables is an
instance of function Fn with h remaining variables
fixed at certain values. In the following sections we
will use a technique of minimizing sub-function
count; it requires enumeration of the distinct sub-
functions in the set of all 2h sub-functions. Then we
also need to count separately distinct non-constant
sub-functions.
 Decomposition shown at Fig.1 can be repeated
iteratively with functions H and G. Provided that m
variables are removed at a time, n - h = m, the
cascade will be ultimately composed of n/m cells,
each cell with m side inputs and cells interconnected
horizontally to one another. The procedure of
obtaining this cascade will be referred to as iterative
disjunctive decomposition. We will illustrate it on
examples in the next section.

V. Synthesis of LUT Cascades

Using the concept of sub-functions, we will now
illustrate iterative decomposition. The number of
distinct sub-functions of s variables, s = 1, 2, …, n-1,
characterizes the Boolean function and its
complexity. Sub-functions themselves may also be
incomplete (don’t care values for some binary s-
tuples). A compatibility relation can be defined on

the co-domain of such sub-functions: don’t care
(denoted by “x”) is compatible with any value from
ZR .

x8 x7 x6 x5 x4 x3 x2 x1 A B C D

1 x x x x x x x 1 0 0 0
0 1 x x x x x x 0 1 1 1
0 0 1 x x x x x 0 1 1 0
0 0 0 1 x x x x 0 1 0 1
0 0 0 0 1 x x x 0 1 0 0
0 0 0 0 0 1 x x 0 0 1 1
0 0 0 0 0 0 1 x 0 0 1 0
0 0 0 0 0 0 0 1 0 0 0 1

x4 x3 x2 x1

 0 1 2 2 3 3 3 3 4 4 4 4 4 4 4 4

 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6

 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6

 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8

 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8

 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8

 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8

 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8

 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8

 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8

 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8

 x4 x3
 0 1 2 2 0
 3 3 3 3 1
 4 4 4 4 2

 4 4 4 4 2

 5 5 5 5 3

 5 5 5 5 3

 5 5 5 5 3 0

 5 5 5 5 3 1 0

 6 6 6 6 4 2

 6 6 6 6 4 2

 6 6 6 6 4
 6 6 6 6 4
 6 6 6 6 4
 6 6 6 6 4
 6 6 6 6 4
 6 6 6 6 4

x8
x7
x6
x5

x8
x7
x6
x5

x8
x7
x6
x5

x8
x7

Fig.2. Iterative disjunctive decomposition of 8-bit priority

encoder

First we shall decompose iteratively the 8-bit

priority encoder (PE) fully specified by the compact
table at the top of Fig.2, which is expanded to the
full size function table under it. Two variables will
be removed from the function at a time. If we start
with variables x2 and x1, sub-functions of x2 and x1
are easily detected as 4 adjacent fields in rows.
There are 7 distinct sub-functions that will be
renamed as:
0122 := 0, 3333 := 1, 4444 := 2, 5555 := 3, 6666 :=
4, 7777 := 5, and 8888 := 6.

Replacing sub-functions by new IDs, we obtain the
map of a residual function of 6 variables as shown in
Fig.2. This residual function has 5 distinct sub-
functions, regardless the choice of two variables. If
we use x4 and x3, sub-functions are:
0122 := 0, 3333 := 1, 4444 := 2, 5555 :=3, 6666 := 4
and a residual function of 4 variables remains. In two
additional steps we will rename 3 sub-functions of
variables x6 and x5:
0122 := 0, 3333 := 1, 4444 := 2
and in the last step we have a single function of
variables x8 and x7 (0122 renamed to a constant 0).

The complexity of the cascade for the priority
encoder function is given by numbers of sub-
functions in all residual functions. If we take all the
distinct sub-functions, the “sub-function profile” is
{7, 5, 3}. Number of bits required for encoding sub-
functions IDs gives the number of rails connecting
neighbor cells. In the next section we will show that
number of rails between adjacent cells can be
reduced by eliminating constant sub-functions.

The design of the LUT cascade is completed by
creating look-up tables of individual cells. The
contents of these tables are obtained by reversing the
previous renaming assignments. Contents of four
LUTs in the priority encoder example are given in
Fig.3b. First two LUTs are combined into one in cell
1.

Let us note that capacity of 3 LUTs is 16 × 3 + 32
× 3 + 32 × 4 = 272 bits, whereas the full table of the
priority encoder would require 256 × 5 = 1280 bits.
Cascades with smaller aggregate LUT capacity than
the full table of the original function will be denoted
as cost-effective. Fortunately, many functions used in
real life may be realized by cost-effective cascades.
There are some exceptions though, e.g. integer
multipliers.

LUT cascade just described can be used for
pipelined implementation of the PE. The LUT
cascade would have to be completed by pipeline
registers between cells. These registers would serve
also for storing variables used at cell side inputs (4
bits between cells 1 and 2, 2 bits between cells 2 and
3). The performance of the PE in the continuous
stream of input vectors would then be determined by
the slowest cell, be it memory block or logic gate
network.

The first implementation of a new programmable
logic device using LUT cascade architecture
developed in 0.35um CMOS logic process has been
announced recently, [7]. Eight 64Kb asynchronous
SRAMs are simply connected to form an LUT
cascade with a few additional circuits. Benchmark
results show that it has a competitive performance to
FPGAs. The latency of an internal LUT is 3.8ns. A
total latency of 11.6ns for a 2-LUT cascade, 34.4ns
for an 8-LUT cascade in asynchronous operation,
and the operating frequency of 200 MHz in an 8-

stage pipeline operation were experimentally
confirmed, [7].

 x8 x7 x6 x5

 0 0 1 2 2 0 0 1 2 2
 1 3 3 3 3
 cell 1 2 4 4 4 4

 x4 x3 x2 x1

 0 0 1 2 2 0 0 1 2 2
 1 3 3 3 3 1 3 3 3 3
 2 4 4 4 4 2 4 4 4 4
 3 5 5 5 5 3 5 5 5 5
 4 6 6 6 6 4 6 6 6 6
 5 7 7 7 7
 cell 2 6 8 8 8 8
 cell 3

x8
x7

x6 x5

a)

x4 x3 x2 x1

A
B
C
D

1 2 3

b)

Fig.3. Iterative disjunctive decomposition of the
8-bit priority encoder. a) LUT cascade b) cell functions

 The PE example was easy. The number of sub-
functions in each step was the same, regardless
which pair of variables had been selected. The next
example will illustrate a typical LUT cascade for an
incompletely specified function, where the number
of sub-functions in a certain step of iterative
decomposition depends on a selected variable.

VI. LUT Cascades and MTBDDs

The central concept of a sub-function used
previously in iterative decomposition has another
representation – a decision node in MTBDDs. There
is 1:1 mapping between a level of decision nodes in
the MTBDDs and a set of sub-functions recognized
in a corresponding decomposition step. In this
section we will revise a heuristic algorithm [6] for
constructing sub-optimal MTBDDs and simultane-
ously the LUT cascade [5]. Before exact formulation
of an algorithm we prefer to illustrate the technique
on a small example.
 Let us consider the 5-valued function F(a,b,c,d) of
four Boolean variables specified by the map in Fig.
4. (An algorithm described later on operates,
however, on a list of defined input vectors).
Selection heuristics used in decomposition steps is

based on counting the number of true (non-constant)
distinct sub-functions of every variable and selecting
the variable with the lowest count. In case of ties, we
use a lower count of constant sub-functions, then an
arbitrary choice.

In the first decomposition step we have
 a: 2, b: 2, c: 4 and d: 3
true sub-functions and we select variable b because it
has only one constant sub-function whereas a has
four. The list of all distinct sub-functions of variable
b with the new IDs follows:

44 := 0, 03 := 1, 21 := 2, x3 := 03 :=1, xx := x .
Don´t cares in incomplete sub-functions are either
replaced by output values to make them equivalent
with other complete sub-functions, e.g. xb and ax
can be made equivalent to ab, or are left don´t cares
(xx := x). The goal is to minimize the total count of
true and constant sub-functions.

We can interpret distinct sub-functions of a single
variable as binary decision nodes. True sub-
functions are represented by decision nodes with two
edges, whereas for constant sub-functions these
edges coincide and the decision node may be
omitted. Using new IDs for sub-functions of variable
b

(44 :=0) 03 :=1 21 :=3,
we can draw the lowest level of the MTBDD, Fig.
4a, and transform the original map into a map of the
residual function of 3 variables.

In the second decomposition step variable d is an
optimum choice, requiring also only two decision
nodes. Two remaining variables c and a need one
decision node each. The complete MTBDD of the
given function in Fig. 4a thus contains 6 nodes what
is a minimum count in this case. Three more nodes
corresponding to constant sub-functions are replaced
by a single output edge. The LUT cascade comple-
mentary to the MTBDD is shown in Fig. 4b. It is
easily obtained by cutting the MTBDD into 3 slices.
 Returning to the former example of 8-bit priority
encoder, we can obtain the MTBDD from previous
decomposition at Fig.2 when we remove only one
variable at a time instead of two. This diagram in
Fig. 5a has a very simple linear form and terminal
values are generated very early along the main path.
If we present the terminal values at the cell side
outputs as soon as they are generated, the number of
rails between cells in the LUT cascade can be
reduced, as the terminal values (i.e. constant sub-
functions IDs) do not have to propagate to the end of
cascade and the shorter code carried on the rails
identifies only the true sub-functions. This reduced
form of the LUT cascade is shown in Fig.5b and it
corresponds to implicit representation of the multiple
output function. All terminal values are wire-ORed
on the output bus. What terminal value will be used
is determined by a Boolean function φ0 (x, y) = 1.

 a 0

 1

 c
 a 0 2 02:= 0
 1 1 11:= 1

cd 01:= 0
a 0 1 2 2 12:= 1

 1 x 1 2 (22:= 2)

cd
ab 4 0 2 2 (44:= 0)

 4 3 1 1 03:= 1
 x x x 2 21:= 2
 3 x 3 1

a

c

d d

b b

4

0

0

0

1

1

1 1 2 2

2

0 3 2 1

a)

a

 d b

1 2 3

c

0, 1, 2
0, 1, 2, 3, 4

0, 1, 2

b)
Fig.4. LUT cascade and MTBDD co-synthesis by means of the

bottom -up iterative decomposition.
a) leaves to root MTBDD construction b) backward construction

of the cascade from cell 3 to 1

x6 x5 x4 x3 x2 x1

x8
x7

ABCD

0,1,2

5,6,7,8 3,4

1 2 3

x8 x7 x6 x5 x4 x2 x1 x3

8 7 6 5 4 3 2 1

0
0

1

a)

b)

 Fig.5. The 8-bit priority encoder
a) ROBDD b) variant of the LUT cascade with a single rail

 As we have seen, instead of undertaking a global
search of optimum order of variables, we go on in
steps and select m variables at a time. In each step
we look for an m-tuple of variables which has the
lowest minimum cover of all true distinct sub-
functions associated with it, over all m-tuples of
remaining variables. The maps of small functions are
good for illustration purposes only. The large
functions must be handled automatically. The
software packages for MTBDDs and multi-valued
DDs and their optimization are available and could
be employed for LUT cascade synthesis. A special
algorithm for a class of incomplete specified
functions given by the list of input vectors is
described in detail in [8]. As already mentioned,
completely specified functions with one dominant
value also behave as incomplete ones.

VII. Multi-way Branching Micro-
programs and a Micro-sequencer

LUT cascades can also serve as a paradigm of
operation for specialized micro-programmed
controllers with frequent multi-way branching. The
required speed is determined by the size of a group
of condition variables tested in one micro-
instruction. For example, if the micro-program
should branch to 5 targets according to a function of
4 Boolean variables, it can do four 2-way branching,
two 4-way branching or a single 16-way branching.
Micro-sequencers available nowadays as off-the-
shelf components or IP cores support typically two-
way branching which assumes testing either a single
condition bit or a hard-wired combination of selected
condition bits. Multi-way branching based on certain
binary patterns of subgroups of condition bits can be
implemented as a series of two-way branches along a
certain path in an associate BDD or using an
additional multi-way branch control unit such as the
16-way Am 29803A by AMD Inc.
 The operation of a micro-sequencer with multi-
way branch unit will be explained in Fig.6. Here µIP
and µIR is the micro-instruction pointer and register,
ROM is a control store, +1 is an incrementer, MX is
a multiplexer. The 16-way branch control unit
enables to move values of 0 up to 4 variables
selected by input multiplexers to the lowest
significant bits of the output code. This code is then
wire – ORed with the lowest part of the target
address.
 As an example, we will continue our previous PE
example at Fig.3. A general multi-way branch micro-
instruction, not related to any particular architecture,
has the same structure as a switch:

S0 if F(0) then cv0 exit S0
 if F(1) then cv1 exit S1
 if F(R-1) then cvR-- exit SR--
 …

else don´t care

where Si´s are state labels, cvj´s are conditional
output vectors (ABCD) and F(i) = 1 iff F(x1, x2, …,
xn) = i. In case of the 8-bit PE we may use two
LUTs, each with 16 items (cell 1 and 2+3 in Fig. 3a).
The symbolic micro-program will look like this
segment:

N0 exit N1@x8x7x6x5
N1@0000 exit N2@x4x3x2x1
N1@0001 5 exit S5
N1@0010 6 exit S6
N1@0011 6 exit S6
….
N1@1111 8 exit S8
N2@0000 0 exit S0

N2@0001 1 exit S1
…
N2@1111 4 exit S4.

Here conditional output is the priority level from 0 to
8 and operator @ means modification of target
address Ni (with the lowest part cleared) by wired-
ORing it with the code at the right of @.
 It is apparent that we have used a cascade of two
look-up tables with starting addresses N1, N2 and
that 2 or 3 microinstructions have to be executed in
order to emulate the PE.

Fig.6. Micro-sequencer architecture with multi-way branching

VIII. Further Optimization of LUT
Cascades

Two optimization techniques will be presented in
this last section: irredundant cascades and output
grouping. Both these techniques can reduce the
number of rails or cell complexity and can make the
cascade cost-effective.

 First example, Moore-type state machine, is the
arbiter circuit with dynamic priority allocation
scheme based on Last Granted Lowest Priority
(LGLP). It has 3 input requests x3, x2, x1, 6 states,
and 3 outputs (grants). Its behavior is described by
next state/output table in Fig.7a. The arbiter is
scalable, for n inputs it will have n(n+1)/2 states. We
are to find LUT cascade implementation for n = 3.

Let us consider the next state function. The
number of single-variable sub-functions is 9 for any
variable and we would need 4 rails on entrance into
the last LUT. However, the number of sub-functions
of x1 can easily be reduced to 7 (3 rails) by making
use of permutation (12) in the right half of the next
state table. By applying this permutation we do not
remove any variable, but simplify the following
decomposition. Permuted values are denoted in bold
in Fig.7a, b. Three following decomposition steps in
Fig. 7b will do to obtain the resultant cascade in Fig.
7c. The output is generated by another cell as a
function of the state. The cascade delay can be cut in
half by combining two adjacent LUTs into one. One
more register (beside the state register) will enable
pipeline operation. This small size arbiter could use

x1
x2

xn

M
X

ROM

M
X

16-way
B-unit

µ
I
P

µ-branch
control

address
sources

+1

Decoder/
Seqencer

µ
I
R

4

OR

one LUT only, but serves as an exercise example.
Larger arbiters could yield more interesting cascade
implementations. The same architecture, a LUT
cascade plus pipeline registers, can implement any
sequential circuit.

 x3 x2 x1

 0 1 2 3 4 5 6 7

0 0 5 3 3 1 1 1 1 0 0 0
1 2 2 2 2 1 1 1 1 1 0 0
2 2 5 3 3 1 5 3 3 0 0 0
3 4 4 3 3 4 4 3 3 0 1 0
4 4 5 3 5 1 5 1 5 0 0 0
5 0 5 0 5 0 5 0 5 0 0 1
6 x x x x x x x x x x x
7 x x x x x x x x x x x

 x3 x2 x1

 0 1 2 3 4 5 6 7

0 0 5 3 3 2 2 2 2
1 2 2 2 2 2 2 2 2
2 2 5 3 3 2 5 3 3
3 4 4 3 3 4 4 3 3
4 4 5 3 5 2 5 2 5
5 0 5 0 5 0 5 0 5
6 x x x x x x x x
7 x x x x x x x x

 0 1 2 2 0 1 0
 2 2 2 2 1 1 1
 3 1 3 1 2 2 2
 4 1 4 1 3 3 3
 5 6 3 3 4 5 4
 0 0 0 0 6 6 5
 x x x x x x x
 x x x x x x x

state

output next state

input

a)

b)

 x2

3

x3

c)

x3 x1 clk

reg.

Fig.7. LUT cascade implementation of the LGLP arbiter.
a) transition table b) decomposition procedure c) redundant

cascade.

If the LUT cascades tend to have too many rails,
we can partition the outputs into several groups and
realize each group by a separate LUT cascade.
Immediately a new problem is generated, namely
how to do output grouping, i.e. which outputs should
be considered together. Suggested heuristics [19]
allow cascade realization of large designs, lead to
faster responses and to a better cost-effectiveness.

IX. Conclusion

Design of digital systems with a degree of
regularity in physical placement of subsystems
(cells) and in their interconnection has always been a
much desired goal and is even more so at present. A
regular logic has advantages which make it more
attractive: short development time, better utilization
of chip area, easy testability and easy modifications
all end up in a lower cost.

Digital systems based on LUT cascades have
desired regularity and may therefore result in high
productivity. The method of LUT cascade synthesis
of Boolean functions is suitable for designs with
many input- and/or output variables in the following
cases:
- LUTs in block RAMs: provide support for recon-
figurable architectures, asynchronous cascades or
clocked pipelines; speed is competitive with other
FPGA designs [7], layout and wiring are very easy.
The LUT cascade LSI is a promising reconfigurable
logic device for future sub-100nm LSIs [7].
- LUTs in control ROM. Sequential processing of
LUT cascades by means of multi-way branching
(also known as LUT ring, [20]); it can speed up
branching programs or micro-programs. It can be
useful for micro-sequencers and micro-program
controllers not only on FPGAs, but also for
controllers on ASICs or SOCs. Comparison with
traditional design methods on a set of benchmarks
[20] demonstrated better performance and a smaller
chip area.
- LUTs in RAM, sequential processing of LUT
cascades in software by universal CPU cores. LUTs
serve as a means of software description of large
systems for the purpose of simulation and
verification. High speed-ups (from 16 to 64) at
evaluation of logic functions with respect to a LCC
simulator (Levelized Compiled Code simulator)
were reported [21].

Cost-effective cascade implementation is
restricted to functions with low complexity or with
don’t cares, that are frequently used in practice.
Synergy of present and old LUT cascade synthesis
techniques can broaden the field of applications.
Output grouping is one such technique. It provides
multiple LUT cascades that can be processed in
parallel or one after another sequentially.

 Future research should address new application
areas by employing optimization techniques -
introducing redundant cascades or new heuristics for
output grouping. These techniques could provide
cost-effective cascades for new classes of functions,
especially for encrypting devices, intrusion detectors,
code checkers and fault-tolerant systems. Security
and safety oriented applications will be a subject of a
future research.

Acknowledgements

This research has been carried out under the
financial support of the research grants
“Architectures of Embedded Systems Networks”,
GACR GA102/05/0467, “Design and hardware
implementation of a patent-invention machine”,
GACR 102/07/0850, Grant Agency of Czech
Republic and “Security-Oriented Research in
Information Technology”, MSM 0021630528.

References
 [1] K.K. Maitra: Cascaded switching networks of two-input

flexible cells, IRE Trans. Electron. Comput., pp, 136-143,
1962.

[2] M. Yoeli : The Synthesis of Multivalued Cellular Cascades.

IEEE Trans. On Computers, Vol. C-9, Nov. 1970, pp.1089-
1090.

[3] V. Dvořák: Decomposition Theory with Applications in

Programmable Digital Systems. A thesis required for
Doctor of Sciences (DrSc) degree. Faculty of Electrical
Engineering, Technical University of Brno, May 1989. (224
pages, in Czech).

[4] B.M. Moret: Decision Trees and Diagrams. Computing

Surveys, Vol.14, No.4, Dec. 1982, pp. 593-623.

[5] V. Dvořák: Automated Cascade Partitioning of Combi-

national Logic. Proc. of the 1st conf. CompEuro 87, VLSI
and Computers. Eds. W.E.Proebster and H.Reiner,
Hamburg, 1987, pp. 315 - 318.

[6] V. Dvořák: An optimization technique for ordered (binary)

decision diagrams, Proceedings of the 6th Annual
European Computer Conference CompEuro' 92, Hague,
NL, 1992, pp. 1-4.

[7] K. Nakamura, T. Sasao, M. Matsuura, K. Tanaka, K.

Yoshizumi, H. Qin, and Y. Iguchi, "Programmable logic
device with an 8-stage cascade of 64K-bit asynchronous
SRAMs," Cool Chips VIII, IEEE Symposium on Low-
Power and High-Speed Chips, April 20-22, 2005,
Yokohama, Japan.

[8] V. Dvořák: A cascade implementation of digital systems, In:

Microprocessing and Micropro-gramming, North-Holland,
Vol. 29, No. 1, 1990, pp. 151-163.

[9] V. Dvořák: Microsequencer architecture supporting arbitrary

branching up to 2^m targets, Computer Architecture News,
IEEE Publ., US, March 1990, 1990, pp. 9-16

[10] T.Sasao´s group publications:

www.lsi-cad.com/sasao/Papers/pub2001.html to 2007.html

[11] A. Mishchenko, T. Sasao: Logic Synthesis of LUT Cascades

with Limited Rais – A Direct Implementation of Multi-
Output Functions. Technical report of IEICE, The Institute
of Electronics, Information and Communication Engineers
Vol.102, No.476(20021121) pp. 103-108. VLD2002-99,
ISSN:09135685.

[12] T. Sasao, Y. Iguchi, M. Matsuura, "LUT cascades and

emulators for realizations of logic functions," RM2005,
Tokyo, Japan, Sept. 5 - Sept. 6, 2005, pp.63-70.

[13] V. Dvořák: Bounds on Size of Decision Diagrams, JUCS -
The Journal of Universal Computer Science, Vol..3, 1997,
pp. 2-23.

[14] V. Dvořák: Time- and Space-Efficient Evaluation of Sparse

Boolean Functions in Embedded Software. Proc. of the 14th
IEEE Int. Conf. And Workshops on the Engineering of
Computer-Based Systems. IEEE CS Press, Los Alamitos,
CA, 2007, pp.178-185.

[15] T. Sasao, S. Nagayama, and J. T. Butler, "Programmable

numerical function generators: Architectures and synthesis
system," FPL 2005 ,Tampere, Aug.24-26, 2005, pp.118-
123.

[16] H. Qin, T. Sasao, and Y. Iguchi, "An FPGA design of AES

encryption circuit with 128-bit keys," GLS VLSI 2005,
Chicago, IL, April 17-19, 2005, pp. 147-151.

[17] T. Sasao and J. T. Butler, "Implementation of multiple-

valued CAM functions by LUT cascades," ISMVL-2006,
Singapore, May 17-20, 2006.

[18] H.A. Curtis: A New Approach to the Design of Switching

Circuits (Van Nostrand Comp. Inc., Princeton, N.J., 1962).

[19] R. Drechsler, M. Herbstritt, B. Becker: Grouping heuristics

for word-level decision diagrams. Proceedings of the 1999
IEEE International Symposium on Circuits and System
ISCAS '99, pp. 411--415.

[20] T. Sasao, J. T. Butler, and M. D. Riedel, "Application of

LUT cascades to numerical function generators," The 12th
Workshop on Synthesis And System Integration of Mixed
Information technologies (SASIMI2004), Oct. 18-19, 2004,
Kanazawa, Japan, pp.422-429.

[21] H. Nakahara, T. Sasao and M. Matsuura, "A fast logic

simulator using an LUT cascade emulator," ASPDAC 2006,
Yokohama Jan. 2006, pp.466-465.

Authors’ information
1Brno University of Technology, Faculty of Information
Technology, Brno, Czech Republic, CZ 612 66

Vaclav Dvorak obtained M.Sc.
degree in Electrical Engineering and
Ph.D. degree in Applied Cybernetics
from Brno University of Technology,
Czech Republic, in 1963 and 1968.
He was awarded a distinguished
DrSc degree in Computer Science
and Engineering in 1990.

Since 1963 he was 10 years with
the Research Institute of Mathematical Machines Prague. Then he
joined Brno University of Technology, Faculty of Information
Technology, as a research associate and later as Associate and
Full Professor. The major field of his interest has been computer
hardware and architecture. He interleaved the work at the home
university with acting as visiting scientist, lecturer and professor
at a number of foreign institutions, over 8 years in all. (Canada,
Malta, Libya, New Zealand, Australia, Tenerife-Spain). His
research is recently oriented into application specific and parallel
architectures.

Prof. Dvorak is a member of Computer Society and IEEE, a
member of the Scientific Board of the Faculty of Information
Technology, committees for Bc, MSc and Ph.D. studies in
Information Technology and a member of JUCS and JEE
Editorial Boards.

