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Abstract – Fast, flexible, cheap in hardware or low-power implementations of multiple-output 
Boolean functions are often required in embedded systems. The paper describes digital system 
architectures which embody some of these attributes. They are based on already known, and 
recently reinvented, representation of combinational logic by Look-Up Table (LUT) cascades. 
Theoretical background of cascade decomposition is revised and a relation to decision diagrams 
is pinpointed. The design of LUT cascades is discussed and a heuristic method of cascade 
synthesis is given. Three possible applications of LUT cascades are presented: combinational 
logic pipelines, efficient micro-programs with multi-way branching and fast logic simulation in 
software. It is shown that LUT cascades are quite flexible in making trade-offs between 
performance and cost by adjusting cascade length, complexity of its cells and multiplicity of 
cascades. The method of LUT cascades may be quite useful not only for high performance 
pipelined stream processing or embedded microprocessor or microcontroller firmware, but also in 
digital system simulation. 
 
Keywords: LUT cascades, binary decision diagrams BDD, MTBDD, iterative disjunctive 
decomposition, multi-way branching. 
 

     Nomenclature 

ZR, the set of integers {0, 1, …, R-1} 
Complete Boolean functions:       

 fn : (Z2) 
n → Z2, a single output Boolean function  

fn
(i)

 : (Z2) 
n → Z2   i = 1, 2, ..., m  or equivalently 

Fn: (Z2) 
n → ZR, a multiple output Boolean function 

or an R-valued function of n Boolean variables 
R, the number of distinct m-tuples of binary values 

Explicit form: i =1, 2, ..., m      
yi = fn

(i)(x1, x2, …, xn)  (scalar notation),                                         
y = F(x)          (vector notation) 

Implicit form: 
φ0 (x, y) = 1, an output characteristic function   

Incomplete multiple-output Boolean functions:   
Fn: X → ZR, X ⊂ Z2

n  
Z2

n \ X = D, the don’t care set  
Discrete M-valued functions of n K-valued variables 
 Fn: (ZK) 

n → ZM.  

I.  Introduction 

The implementation of combinational logic 
circuits in a form of one-dimensional unidirectional 
arrays (cascades) of modules (cells) attracted 
attention of researchers already many years ago. The 
reason might have been the simplicity, regularity and 
a hidden potential for future VLSI technologies. 
Soon it became known that the simplest single-rail 
(Maitra) cascade of horizontally connected cells, 

with individual (side) inputs, is not sufficient for 
realization of every single Boolean function of n > 2 
variables, even though each variable is allowed to 
enter several cells [1]. However, if K- valued signals 
are used at horizontal line and M-valued signals at 
side inputs, every K-valued integer function of M-
valued integer variables is then realizable by uniform 
redundant cascade (i.e. with repeated use of some 
input variables), [2]. Binary coded integer values can 
then be substituted for integer values if multiple 
output Boolean functions are required.  Cascade 
cells can be realized either by random logic based on 
gates, multiplexers/de-multiplexers, or by look-up 
tables (LUTs) stored in ROM or RAM. 

Redundant cascades of this kind were designed 
using algebraic approach [2] leading to an excessive 
number of cells, since this approach disregarded the   
complexity of synthesized functions. Long cascades 
were impractical due to a high cost and large delays. 
E.g. two Boolean functions of 4 variables required a 
two-rail cascade with 22 “permutation” cells or 12 
general cells [2]. (Author proved that only 8 cells 
would do, [3]). That was the reason why the 
redundant cascades were more or less abandoned 
and shortest possible irredundant cascades were 
sought. Such cascades can be related to ordered 
multi-terminal binary decision diagrams (MTBDDs) 
that are used to represent binary-input, integer-
valued output functions [3]. One level of the 
MTBDD is mapped into one cell in the cascade. If 
the order of variables is given, the MTBDD has a 
canonical form. However, finding a good order even 



 
  
 

 

  

for BDDs is an NP-complete problem [4]. Different 
variable orderings may produce formidable 
difference in size of resulting DDs. 

Nevertheless, the sub-optimal LUT cascade 
synthesis can be based on the concept of sub-
function and sub-function counting. The cascade is 
being built backwards from the last cell to the first, 
and simultaneously, as a byproduct, the MTBDD 
from leaves up to the root [5], [6]. 

The recent renewed interest in LUT cascades is 
due to a demand for more efficient realization of 
digital systems than provided by PLA or FPGA, as 
far as chip area or power is concerned, with a lower 
or even competitive speed [7]. It is therefore the 
right time to revise former results [8], [9] and 
compare them to the most recent ones [10]. As we 
will see, their synergy could produce some new ways 
of designing LUT cascades, clarify the relevant 
figures of merit, and specify other function classes 
realizable by them. 

The rest of the paper is organized as follows. 
Section II presents the basic notions. Section III 
reviews some important theorems useful for 
estimation the cascade size and defines classes of 
realizable functions. Heuristic cascade synthesis by 
iterative decomposition is exemplified in Section IV. 
Synthesis of LUT cascades and LUT-cascade/ 
MTBDD co-synthesis is presented in sections V and 
VI. Multi-way branching micro-programs and a 
specialized micro-engine are discussed in Section 
VII and further optimization of LUT cascades in 
Section VIII. Results are commented on in 
Conclusion. 

II.  Basic Notions 

     Machine representation of Boolean functions uses   
binary decision diagrams (BDDs), which can have 
many forms. Bit-level binary decision diagrams 
(BDDs), ordered binary decision diagrams (OBDDs) 
and reduced ordered binary decision diagrams 
(ROBDDs) are well known representation of a single 
Boolean function in a form of a directed acyclic 
graph [4]. Whereas ROBDD is canonical (unique) 
representation for any given function and an order of 
variables, in case of incomplete Boolean functions 
we may have apparently more choices.  

An important parameter is a size of BDD, i.e. the 
total number of decision nodes, as it determines the 
size of data structure needed to store a BDD. The 
construction of minimum-size ROBDDs belongs 
among NP-hard problems [4]: the size of the 
ROBDD depends on variable ordering and there are 
n! possible orderings of n variables. A heuristic 
approach can be used in search for near-optimal 
orderings [6]. Even though the upper bounds on the 
OBDD’s size for general Boolean functions are not 

too encouraging, many practical functions do have a 
reasonable BDD size. 
        M-ary decision diagrams are straightforward 
generalization of BDDs. They have two types of 
nodes: decision and terminal nodes. Decision node L 
is testing M-ary variable var(L) and its outgoing 
edges are marked  by its values 0, 1, …, M-1.  The 
terminal node assigns a single value from ZM 
(generally ZR, R≠M) to output y = Fn(x1, x2,…, xn). 

To represent a system of Boolean functions by 
means of decision diagrams, we can use either m bit-
level BDDs, one for each of m Boolean functions 
(possibly sharing some of their sub-diagrams, Shared 
BDDs or SBDDs, [19]) or one word-level BDD 
(WLBDD) with n Boolean decision variables and 
with R integer terminal values. The latter form is 
more concise, but to obtain it from the bit-level BDD 
is not easy. There are many types of WLDDs. Multi-
terminal BDDs have integer leaves and therefore 
represent functions from Booleans to integers. A 
BMD (Binary Moment Diagram) is another 
representation for functions that map Boolean 
vectors to integers. This representation is more 
compact for some useful arithmetic functions which 
have exponential size if represented by MTBDDs. 
Hybrid decision diagrams HDDs are a combination 
of MTBDDs and BMDs.  

Encoded Characteristic Function of Non-zero 
outputs (ECFN) is yet another representation of 
multiple-output functions, which uses the shortest 
encoding of output vectors y using auxiliary 
variables. The auxiliary variables can be 
intermingled with normal variables arbitrarily [11].  
Auxiliary variables can also be used in connection 
with MTBDDs and SBDDs with resulting diagrams 
MTBDD+ and SBDD+, [11]. In what follows, we 
will use the most frequent type – MTBDDs. 

As the LUT cascades are the main concern of this 
paper, we will provide a formal definition. 

 
Def. 1. A cascade C of a form k × m is the system 
C = [ K, M, H1, H2, …, HB, µ] 
where  
K ≤ 2k (M ≤ 2m) is the number of specified Boolean 

input vectors at k horizontal (m vertical or side) 
cell inputs, 

Hi: (Z2)
k × (Z2)

m → (Z2)
k, 1 ≤ i ≤ B are functions 

implemented by individual cells, 
B is the total number of cells and  
µ: {1,2,…, B} → (Z2)

k assigns k-tuples of input 
variables xi , i = 1,2,…, n  to B cells in the cascade. 
The above cascade has k horizontal rails carrying 

Boolean values and each cell has m vertical (side) 
inputs. The last cell in the cascade may have r ≠ k 
outputs. 
Note. Cascades considered at [12] use cells with 
additional vertical outputs. They will be introduced 
by example in Section VI.  



 
  
 

 

  

Def.2. A cascade is said to be irredundant if each 
variable used at vertical input enters one and only 
one cell. Otherwise the cascade is redundant. 

III.  Complexity of Some LUT Cascades 

As an arbitrary system of Boolean functions can 
be implemented by a single memory look-up table, it 
is natural to compare the capacity of this single LUT 
with the total capacity of all LUTs in the cascade. So 
the simplest figure of merit of different cascades 
implementing the same Boolean system is a total 
number of bits of all LUTs. 

The LUT of the original Boolean system with n 
input and r output variables requires r2n bits, 
whereas each but last LUT in a cascade requires 
k2k+m bits. We can therefore realize saving if 

      (B-1)k2k+m   +r2k+m < r2n.                           (1) 
With k+m input variables entering the first cell, there 
will be B = (n-k)/m cells in the cascade and 
condition (1) becomes 

 
12

1/)(

−
−−> −− mkn

mkn
kr .                 (2) 

LUT cascades satisfying above condition (1) will be 
referred to as cost-effective ones. In case that r ≤ k 
saving may start at no less than 6 (5) variables for 
r=1 (r=2). We always save with cascades having r > 
k. The problem is that not all functions are realizable 
by cost-effective cascades. Fortunately, important 
classes of functions used in digital design are   LUT 
cascade-realizable.  
 Incomplete Boolean functions that are frequently 
used in applications are one such class, for which the 
form factor of LUT cascades can be estimated [13]: 
 
Theorem 1. Every R-valued incomplete function of n 
Boolean variables defined on set X ⊂ Z2

n is 
realizable as the output function of a k × m cascade 
with k = log2 | X |. 
Upper bound on the cost of such LUT cascade is 
derived in [13]. 

Functions with large areas of the domain mapped 
to a certain constant and with remaining points 
mapped to R-1 other values show similar properties 
as incompletely specified functions [13]: 

 
Theorem 2. Every function F: Z2

n → ZR such that F 
=  const in K-1 input vectors and F ≠ const otherwise 
is realizable by log2 K  × m cascade.  
 

Another measure of multiple-output Boolean 
functions is the width of the MTBDD for the given 
ordering of input variables. This is called a C- 
measure in a recent literature [12]. In Section VI we 
will see, that C- measure is directly related to the 
number of rails in the LUT cascade and the lower its 
value, the better the chance that cost effective 

cascade exists. Theoretically, for the most random 
functions and any permutation of input variables, C-
measures increase exponentially and the related 
number of rails k may be too large to provide saving. 
For random logic the following Theorem 3 gives the 
upper bound on number of rails k (the C-measure has 
a value of 2k), [12]: 

 
Theorem 3. Every multiple output Boolean function 
F: Z2

n → ZR is realizable as the output function of an 
irredundant cascade k × m with B = n/m cells and 
with number of rails 

[ ] )2,(minmaxlog )1(2
2

−≤ Bm

i

i

Rk ,           (3) 

i = 0, 1,…, B-1. Fortunately, many real-world 
functions have small C-measures and lend them-
selves to cost-effective cascade realization. Some of 
these classes are listed below: 

 
1. Symmetric functions (any permutation of n input 
variables does not change the value of the function) 
2. Threshold functions (special case of symmetric 
functions) [12] 
3. Detectors of bit patterns in data streams [14] 
important for Intrusion Detection Systems (IDS)  
4. Numerical function generators (trigonometric 
functions, logarithm functions, square root, 
reciprocal) using linear [15] or quadratic 
approximations 
5. Weighted Sum functions [12] 
6. The Advanced Encryption Standard (AES) 
encryption using a 128-bit key [16] 
7. Multiple-valued CAM functions [17] 
8. Code converters and checkers 
9. Radix converters 
10. Sorting networks [8]. 

IV.  Iterative Disjunctive Decomposition 
and LUT Cascades 

Storing the full map of the multiple output 
function as a single LUT in the memory is in 
embedded systems acceptable approach up to about 
10 variables. For several tens of variables we have to 
use more compact data structures and one way of 
obtaining them utilizes a disjunctive decomposition 
of original functions. The basic idea is shown in 
Fig.1. 
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n-h 
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Fig.1. Disjunctive decomposition of multiple output Boolean 

function F of n variables 

 
The original function F is split into two functions H 



 
  
 

 

  

and G, so that F = G(Y, H(X)), where multi-valued 
variables X, Y, H and G are binary coded using h, n-
h+k, k and r bits, respectively: 

X∈Z2
h, Y∈Z2

n-h+k, H∈Z2
k, and G∈Z2

r,          (4) 
Fig.1. Of course, we are interested only in non-trivial 
decompositions for which k < h, i.e. tables of 
functions H and G are more thrifty in memory space 
than the table of original function F, i.e. 

                       k 2h + r 2n-h+k ≤ r 2n.                        (5) 
Sometimes we prefer to get tables describing H and 
G of the same size, to be stored in the same memory 
area (e.g. two table items in one word). This 
requirement translates to  
                h = k + n – h                                          (6) 
and (9) is then rewritten into 
                   2k ≤ r2h /(r + k).                                   (7) 
The lower a value of k (with values n, h, r fixed), the 
better. In a special case k=r , (11) turns to k ≤ h – 1. 
     The value of k cannot be selected arbitrarily, it is 
given by complexity of the function under 
consideration. The minimum value of k is given by 
modified decomposition Theorem 4 [18], which 
under notation (4) and according to Fig.1 says: 
 
Theorem 4.    
Function F is decomposable into 
                F = G(Y, H(X)) 
(Fig.1) if and only if  the value of 2k is equal or 
greater than the number of distinct sub-functions of 
n-h variables. 
      Note. A sub-function fn-h of n-h variables is an 
instance of function Fn with h remaining variables 
fixed at certain values. In the following sections we 
will use a technique of minimizing sub-function 
count; it requires enumeration of the distinct sub-
functions in the set of all 2h sub-functions. Then we 
also need to count separately distinct non-constant 
sub-functions.    
         Decomposition shown at Fig.1 can be repeated 
iteratively with functions H and G. Provided that   m 
variables are removed at a time, n - h = m, the 
cascade will be ultimately composed of n/m cells, 
each cell with m side inputs and cells interconnected 
horizontally to one another. The procedure of 
obtaining this cascade will be referred to as iterative 
disjunctive decomposition. We will illustrate it on 
examples in the next section. 

V. Synthesis of LUT Cascades 

Using the concept of sub-functions, we will now 
illustrate iterative decomposition.  The number of 
distinct sub-functions of s variables, s = 1, 2, …, n-1, 
characterizes the Boolean function and its 
complexity. Sub-functions themselves may also be 
incomplete (don’t care values for some binary s-
tuples). A compatibility relation can be defined on 

the co-domain of such sub-functions: don’t care 
(denoted by “x”) is compatible with any value from 
ZR . 
 

x8 x7 x6 x5 x4 x3 x2 x1 A B C D 
            
1 x x x x x x x 1 0 0 0 
0 1 x x x x x x 0 1 1 1 
0 0 1 x x x x x 0 1 1 0 
0 0 0 1 x x x x 0 1 0 1 
0 0 0 0 1 x x x 0 1 0 0 
0 0 0 0 0 1 x x 0 0 1 1 
0 0 0 0 0 0 1 x 0 0 1 0 
0 0 0 0 0 0 0 1 0 0 0 1 

 
 

    
x4 x3 x2 x1 

    
                   

 0 1 2 2 3 3 3 3 4 4 4 4 4 4 4 4  

 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5  

 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6  

 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6  

 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7  

 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7  

 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7  

 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7  

 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8  

 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8  

 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8  

 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8  

 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8  

 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8  

 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8  

 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8  
                  
 x4 x3                
 0 1 2 2    0          
 3 3 3 3    1          
 4 4 4 4    2          

 4 4 4 4    2          

 5 5 5 5    3          

 5 5 5 5    3          

 5 5 5 5    3    0      

 5 5 5 5    3    1    0  

 6 6 6 6    4    2      

 6 6 6 6    4    2      

 6 6 6 6    4          
 6 6 6 6    4          
 6 6 6 6    4          
 6 6 6 6    4          
 6 6 6 6    4          
 6 6 6 6    4          
                  

x8 
x7 
x6 
x5 

x8 
x7 
x6 
x5 

x8 
x7 
x6 
x5 

x8 
x7 

 
Fig.2. Iterative disjunctive decomposition of 8-bit priority 

encoder 

 
First we shall decompose iteratively the 8-bit 

priority encoder (PE) fully specified by the compact 
table at the top of Fig.2, which is expanded to the 
full size function table under it. Two variables will 
be removed from the function at a time. If we start 
with variables x2 and x1, sub-functions of x2 and x1 
are easily detected as 4 adjacent fields in rows. 
There are 7 distinct sub-functions that will be 
renamed as: 
0122 := 0, 3333 := 1, 4444 := 2, 5555 := 3, 6666 := 
4, 7777 := 5, and 8888 := 6. 



 
  
 

 

  

Replacing sub-functions by new IDs, we obtain the 
map of a residual function of 6 variables as shown in 
Fig.2. This residual function has 5 distinct sub-
functions, regardless the choice of two variables. If 
we use x4 and x3, sub-functions are: 
0122 := 0, 3333 := 1, 4444 := 2, 5555 :=3, 6666 := 4 
and a residual function of 4 variables remains. In two 
additional steps we will rename 3 sub-functions of 
variables x6 and x5: 
0122 := 0,  3333 := 1, 4444 := 2 
and in the last step we have a single function of 
variables x8 and x7 (0122 renamed to a constant 0). 

The complexity of the cascade for the priority 
encoder function is given by numbers of sub-
functions in all residual functions. If we take all the 
distinct sub-functions, the “sub-function profile” is 
{7, 5, 3}. Number of bits required for encoding sub-
functions IDs gives the number of rails connecting 
neighbor cells. In the next section we will show that 
number of rails between adjacent cells can be 
reduced by eliminating constant sub-functions.  

The design of the LUT cascade is completed by 
creating look-up tables of individual cells. The 
contents of these tables are obtained by reversing the 
previous renaming assignments. Contents of four 
LUTs in the priority encoder example are given in 
Fig.3b. First two LUTs are combined into one in cell 
1. 

Let us note that capacity of 3 LUTs is 16 × 3 + 32 
× 3 + 32 × 4 = 272 bits, whereas the full table of the 
priority encoder would require 256 × 5 = 1280 bits. 
Cascades with smaller aggregate LUT capacity than 
the full table of the original function will be denoted 
as cost-effective. Fortunately, many functions used in 
real life may be realized by cost-effective cascades. 
There are some exceptions though, e.g. integer 
multipliers.  

LUT cascade just described can be used for 
pipelined implementation of the PE. The LUT 
cascade would have to be completed by pipeline 
registers between cells. These registers would serve 
also for storing variables used at cell side inputs (4 
bits between cells 1 and 2, 2 bits between cells 2 and 
3). The performance of the PE in the continuous 
stream of input vectors would then be determined by 
the slowest cell, be it memory block or logic gate 
network.  

The first implementation of a new programmable 
logic device using LUT cascade architecture 
developed in 0.35um CMOS logic process has been 
announced recently, [7]. Eight 64Kb asynchronous 
SRAMs are simply connected to form an LUT 
cascade with a few additional circuits. Benchmark 
results show that it has a competitive performance to 
FPGAs. The latency of an internal LUT is 3.8ns. A 
total latency of 11.6ns for a 2-LUT cascade, 34.4ns 
for an 8-LUT cascade in asynchronous operation, 
and the operating frequency of 200 MHz in an 8-

stage pipeline operation were experimentally 
confirmed, [7]. 
 
 
 
 
 
 
 
 
 
 

             
 

              
  x8 x7     x6 x5    
             
 0 0 1 2 2  0 0 1 2 2  
       1 3 3 3 3  
  cell 1    2 4 4 4 4  
             
             
  x4 x3     x2 x1    
             
 0 0 1 2 2  0 0 1 2 2  
 1 3 3 3 3  1 3 3 3 3  
 2 4 4 4 4  2 4 4 4 4  
 3 5 5 5 5  3 5 5 5 5  
 4 6 6 6 6  4 6 6 6 6  
       5 7 7 7 7  
  cell 2    6 8 8 8 8  
         cell 3   
             

 
 

x8 
x7  

x6 x5 

a)  

x4 x3 x2 x1 

A 
B 
C 
D 

1 2 3 

b)  

Fig.3.  Iterative disjunctive decomposition of the  
8-bit priority encoder. a) LUT cascade b) cell functions 

 
 The PE example was easy. The number of sub-
functions in each step was the same, regardless 
which pair of variables had been selected. The next 
example will illustrate a typical LUT cascade for an 
incompletely specified function, where the number 
of sub-functions in a certain step of iterative 
decomposition depends on a selected variable.  

VI.  LUT Cascades and MTBDDs 

The central concept of a sub-function used 
previously in iterative decomposition has another 
representation – a decision node in MTBDDs. There 
is 1:1 mapping between a level of decision nodes in 
the MTBDDs and a set of sub-functions recognized 
in a corresponding decomposition step. In this 
section we will revise a heuristic algorithm [6] for 
constructing sub-optimal MTBDDs and simultane-
ously the LUT cascade [5]. Before exact formulation 
of an algorithm we prefer to illustrate the technique 
on a small example. 
 Let us consider the 5-valued function F(a,b,c,d) of 
four Boolean variables specified by the map in Fig. 
4. (An algorithm described later on operates, 
however, on a list of defined input vectors). 
Selection heuristics used in decomposition steps is 



 
  
 

 

  

based on counting the number of true (non-constant) 
distinct sub-functions of every variable and selecting 
the variable with the lowest count. In case of ties, we 
use a lower count of constant sub-functions, then an 
arbitrary choice. 

In the first decomposition step we have 
           a: 2, b: 2, c: 4 and d: 3  
true sub-functions and we select variable b because it 
has only one constant sub-function whereas a has 
four. The list of all distinct sub-functions of variable 
b with the new IDs follows: 

44 := 0, 03 := 1, 21 := 2, x3 := 03 :=1, xx := x . 
Don´t cares in incomplete sub-functions are either 
replaced by output values to make them equivalent 
with other complete sub-functions, e.g. xb  and ax  
can be made equivalent to ab, or are left don´t cares 
(xx := x). The goal is to minimize the total count of 
true and constant sub-functions. 

We can interpret distinct sub-functions of a single 
variable as binary decision nodes. True sub-
functions are represented by decision nodes with two 
edges, whereas for constant sub-functions these 
edges coincide and the decision node may be 
omitted. Using new IDs for sub-functions of variable 
b 

(44 :=0)    03 :=1    21 :=3, 
we can draw the lowest level of the MTBDD, Fig. 
4a, and transform the original map into a map of the 
residual function of  3 variables.   

In the second decomposition step variable d is an 
optimum choice, requiring also only two decision 
nodes. Two remaining variables c and a need one 
decision node each. The complete MTBDD of the 
given function in Fig. 4a thus contains 6 nodes what 
is a minimum count in this case. Three more nodes 
corresponding to constant sub-functions are replaced 
by a single output edge. The LUT cascade comple-
mentary to the MTBDD is shown in Fig. 4b. It is 
easily obtained by cutting the MTBDD into 3 slices. 
 Returning to the former example of 8-bit priority 
encoder, we can obtain the MTBDD from previous 
decomposition at Fig.2 when we remove only one 
variable at a time instead of two. This diagram in 
Fig. 5a has a very simple linear form and terminal 
values are generated very early along the main path. 
If we present the terminal values at the cell side 
outputs as soon as they are generated, the number of 
rails between cells in the LUT cascade can be 
reduced, as the terminal values (i.e. constant sub-
functions IDs) do not have to propagate to the end of 
cascade and the shorter code carried on the rails 
identifies only the true sub-functions. This reduced 
form of the LUT cascade is shown in Fig.5b and it 
corresponds to implicit representation of the multiple 
output function. All terminal values are wire-ORed 
on the output bus. What terminal value will be used 
is determined by a Boolean function φ0 (x, y) = 1. 
 

 
  a 0    

   1    
       
    c      
 a 0 2   02:= 0 
  1 1   11:= 1 
       

cd      01:= 0 
a 0 1 2 2  12:= 1 
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cd       
ab 4 0 2 2  ( 44:= 0 ) 

 4 3 1 1  03:= 1 
 x x x 2  21:= 2 
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0, 1, 2 
0, 1, 2, 3, 4 

0, 1, 2 

b)  
Fig.4. LUT cascade and MTBDD co-synthesis by means of the 

bottom -up iterative decomposition. 
a) leaves to root  MTBDD construction b) backward construction 

of the cascade from cell 3 to 1 
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0 

1 

a) 

b) 

 Fig.5. The 8-bit priority encoder 
a) ROBDD  b) variant of the LUT cascade with a single rail 

 
 As we have seen, instead of undertaking a global 
search of optimum order of variables, we go on in 
steps and select m variables at a time. In each step 
we look for an m-tuple of variables which has the 
lowest minimum cover of all true distinct sub-
functions associated with it, over all m-tuples of 
remaining variables. The maps of small functions are 
good for illustration purposes only. The large 
functions must be handled automatically. The 
software packages for MTBDDs and multi-valued 
DDs and their optimization are available and could 
be employed for LUT cascade synthesis. A special 
algorithm for a class of incomplete specified 
functions given by the list of input vectors is 
described in detail in [8]. As already mentioned, 
completely specified functions with one dominant 
value also behave as incomplete ones.   



 
  
 

 

  

VII.  Multi-way Branching Micro-
programs and a Micro-sequencer 

LUT cascades can also serve as a paradigm of 
operation for specialized micro-programmed 
controllers with frequent multi-way branching. The 
required speed is determined by the size of a group 
of condition variables tested in one micro-
instruction. For example, if the micro-program 
should branch to 5 targets according to a function of 
4 Boolean variables, it can do four 2-way branching, 
two 4-way branching or a single 16-way branching. 
Micro-sequencers available nowadays as off-the-
shelf components or IP cores support typically two-
way branching which assumes testing either a single 
condition bit or a hard-wired combination of selected 
condition bits. Multi-way branching based on certain 
binary patterns of subgroups of condition bits can be 
implemented as a series of two-way branches along a 
certain path in an associate BDD or using an 
additional multi-way branch control unit such as the 
16-way Am 29803A by AMD Inc.  
 The operation of a micro-sequencer with multi-
way branch unit will be explained in Fig.6. Here µIP 
and µIR is the micro-instruction pointer and register, 
ROM is a control store, +1 is an incrementer, MX is 
a multiplexer. The 16-way branch control unit 
enables to move values of 0 up to 4 variables 
selected by input multiplexers to the lowest 
significant bits of the output code. This code is then 
wire – ORed with the lowest part of the target 
address.  
 As an example, we will continue our previous PE 
example at Fig.3. A general multi-way branch micro-
instruction, not related to any particular architecture, 
has the same structure as a switch: 
 
S0    if F(0) then  cv0  exit S0 
     if F(1) then  cv1  exit S1 
   if F(R-1) then  cvR--  exit SR-- 
  … 

else don´t care 
 
where Si´s are state labels, cvj´s are conditional 
output vectors (ABCD) and F(i)  = 1 iff F(x1, x2, …, 
xn) = i. In case of the 8-bit PE we may use two 
LUTs, each with 16 items (cell 1 and 2+3 in Fig. 3a). 
The symbolic micro-program will look like this 
segment: 
 
N0 exit N1@x8x7x6x5 
N1@0000   exit N2@x4x3x2x1 
N1@0001  5 exit S5 
N1@0010  6 exit S6 
N1@0011  6 exit S6 
…. 
N1@1111  8 exit S8 
N2@0000  0 exit S0 

N2@0001  1 exit S1 
… 
N2@1111  4 exit S4. 
 
Here conditional output is the priority level from 0 to 
8 and operator @ means modification of target 
address Ni (with the lowest part cleared) by wired-
ORing it with the code at the right of @.  
 It is apparent that we have used a cascade of two 
look-up tables with starting addresses N1, N2 and 
that 2 or 3 microinstructions have to be executed in 
order to emulate the PE.  

 
Fig.6. Micro-sequencer  architecture with multi-way branching 

VIII.  Further Optimization of LUT 
Cascades 

Two optimization techniques will be presented in 
this last section: irredundant cascades and output 
grouping. Both these techniques can reduce the 
number of rails or cell complexity and can make the 
cascade cost-effective. 

 First example, Moore-type state machine, is the 
arbiter circuit with dynamic priority allocation 
scheme based on Last Granted Lowest Priority 
(LGLP). It has 3 input requests x3, x2, x1, 6 states, 
and 3 outputs (grants). Its behavior is described by 
next state/output table in Fig.7a. The arbiter is 
scalable, for n inputs it will have n(n+1)/2 states. We 
are to find LUT cascade implementation for n = 3. 

Let us consider the next state function. The 
number of single-variable sub-functions is 9 for any 
variable and we would need 4 rails on entrance into 
the last LUT. However, the number of sub-functions 
of x1 can easily be reduced to 7 (3 rails) by making 
use of permutation (12) in the right half of the next 
state table. By applying this permutation we do not 
remove any variable, but simplify the following 
decomposition. Permuted values are denoted in bold 
in Fig.7a, b. Three following decomposition steps in 
Fig. 7b will do to obtain the resultant cascade in Fig. 
7c. The output is generated by another cell as a 
function of the state. The cascade delay can be cut in 
half by combining two adjacent LUTs into one. One 
more register (beside the state register) will enable 
pipeline operation. This small size arbiter could use 
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one LUT only, but serves as an exercise example. 
Larger arbiters could yield more interesting cascade 
implementations. The same architecture, a LUT 
cascade plus pipeline registers, can implement any 
sequential circuit. 

  
   x3 x2 x1        

 0 1 2 3 4 5 6 7     
             

0 0 5 3 3 1 1 1 1  0 0 0 
1 2 2 2 2 1 1 1 1  1 0 0 
2 2 5 3 3 1 5 3 3  0 0 0 
3 4 4 3 3 4 4 3 3  0 1 0 
4 4 5 3 5 1 5 1 5  0 0 0 
5 0 5 0 5 0 5 0 5  0 0 1 
6 x x x x x x x x    x x x 
7 x x x x x x x x    x x x 
             

             
   x3 x2 x1        

 0 1 2 3 4 5 6 7     
             

0 0 5 3 3 2 2 2 2     
1 2 2 2 2 2 2 2 2     
2 2 5 3 3 2 5 3 3     
3 4 4 3 3 4 4 3 3     
4 4 5 3 5 2 5 2 5     
5 0 5 0 5 0 5 0 5     
6 x x x x x x x x       
7 x x x x x x x x       
             

             

 0 1 2 2  0 1  0    
 2 2 2 2  1 1  1    
 3 1 3 1  2 2  2    
 4 1 4 1  3 3  3    
 5 6 3 3  4 5  4    
 0 0 0 0  6 6  5    
 x x x x  x x  x    
 x x x x  x x  x    
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Fig.7. LUT cascade implementation of the LGLP arbiter.  
a) transition table b) decomposition procedure  c) redundant 

cascade. 
 

If the LUT cascades tend to have too many rails, 
we can partition the outputs into several groups and 
realize each group by a separate LUT cascade. 
Immediately a new problem is generated, namely 
how to do output grouping, i.e. which outputs should 
be considered together. Suggested heuristics [19] 
allow cascade realization of large designs, lead to 
faster responses and to a better cost-effectiveness. 

IX.  Conclusion 

Design of digital systems with a degree of 
regularity in physical placement of subsystems 
(cells) and in their interconnection has always been a 
much desired goal and is even more so at present. A 
regular logic has advantages which make it more 
attractive: short development time, better utilization 
of chip area, easy testability and easy modifications 
all end up in a lower cost. 

Digital systems based on LUT cascades have 
desired regularity and may therefore result in high 
productivity. The method of LUT cascade synthesis 
of Boolean functions   is suitable for designs with 
many input- and/or output variables in the following 
cases: 
- LUTs in block RAMs: provide support for recon-
figurable architectures, asynchronous cascades or 
clocked pipelines; speed is competitive with other 
FPGA designs [7], layout and wiring are very easy. 
The LUT cascade LSI is a promising reconfigurable 
logic device for future sub-100nm LSIs [7]. 
- LUTs in control ROM. Sequential processing of 
LUT cascades by means of multi-way branching 
(also known as LUT ring, [20]); it can speed up 
branching programs or micro-programs. It can be 
useful for micro-sequencers and micro-program 
controllers not only on FPGAs, but also for 
controllers on ASICs or SOCs. Comparison with 
traditional design methods on a set of benchmarks 
[20] demonstrated better performance and a smaller 
chip area. 
- LUTs in RAM, sequential processing of LUT 
cascades in software by universal CPU cores. LUTs 
serve as a means of software description of large 
systems for the purpose of simulation and 
verification. High speed-ups (from 16 to 64) at 
evaluation of logic functions with respect to a LCC 
simulator (Levelized Compiled Code simulator)   
were reported [21]. 

Cost-effective cascade implementation is 
restricted to functions with low complexity or with 
don’t cares, that are frequently used in practice. 
Synergy of present and old LUT cascade synthesis 
techniques can broaden the field of applications. 
Output grouping is one such technique. It provides 
multiple LUT cascades that can be processed in 
parallel or one after another sequentially. 

   Future research should address new application 
areas by employing optimization techniques - 
introducing redundant cascades or new heuristics for 
output grouping. These techniques could provide 
cost-effective cascades for new classes of functions, 
especially for encrypting devices, intrusion detectors, 
code checkers and fault-tolerant systems. Security 
and safety oriented applications will be a subject of a 
future research. 
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