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Abstract 

 
The paper addresses firmware implementation of 

multiple-output combinational and sequential Boolean 
functions based on cascades of Look-Up Tables 
(LUTs). A LUT cascade is described as a means of 
compact representation of a large class of Boolean 
functions, which reduces their evaluation to multiple 
indirect memory accesses. A LUT-oriented decom-
position technique is illustrated on several examples. A 
specialized micro-engine is proposed for sequential 
processing of LUT cascades by means of multi-way 
branching. The presented method provides high 
performance micro-programmed control for embedded 
applications. 
 
1. Introduction 
 

Efficient evaluation of Boolean functions is an 
important part of many embedded firmware or 
software systems. Application-specific functions most 
frequently used in embedded systems practice have 
typically low complexity. They include applications 
such as encryption, data compression and conversion, 
pattern matching and searching, sliding window 
functions on data streams, etc. We will address 
Boolean functions of large numbers (tens, hundreds) of 
variables because small size systems can be 
implemented directly in hardware, e.g. in various 
PLDs, PLAs, ROMs or TCAM (Ternary Content 
Addressable Memory).  

Firmware implementation of Boolean functions will 
be assumed in a form of data structures describing the 
function and of a micro-program that reads the input 
vector and evaluates the function with the use of this 
data structure. The size of the code and of the data 
structure is one figure of merit; another one is the 
evaluation time from reading the input to generating 
the output.   

Hereafter we will use two complementary   
representations: Look-Up Tables (LUTs) and binary 

decision diagrams (BDDs). The BDDs are well known, 
especially the reduced ordered BDDs (ROBDDs), [1]. 
On the base of ROBDDs we will develop a more 
practical representation – cascades of LUTs. 

Firmware implementation of Boolean functions has 
been up to now studied especially in connection with 
PLCs (“ladder diagrams”) or specialized event 
processing, where either a speed (PLC) or a required 
memory were not that important. On the contrary, in 
embedded systems we do care for performance, 
memory space as well as for power consumption. We 
will demonstrate that presently used algorithms (binary 
programs, BDD traversal or sequential evaluation of 
Boolean expressions) are generally too slow and that 
the use of LUT cascades enables faster evaluation. The 
longer cascades with simpler LUTs are slower than 
shorter cascades with larger LUTs, and thus the 
processing speed can be even adjusted to requirements.  

The idea of using a specialized micro-engine for 
sequential processing of LUT cascades was conceived 
in [2]. In the present paper we use a modified micro-
engine architecture based on micro-program sequencer 
(Am 2910) and its multi-way branch control unit (Am 
29803A), that can be easily implemented in FPGA. In 
the meantime a different architecture under the name 
LUT ring was developed and implemented in VLSI 
technology [3] from the scratch. However, it is more 
complicated and in some way less general (the use a 
barrel shifter instead of the branch control unit).  

The paper is structured as follows. In the following 
Section 2 we introduce basic notions and terminology 
concerning Boolean functions and their representation. 
Binary decision diagrams (BDDs) and LUT cascades 
are introduced in Section 3, and the way how to obtain 
the LUT cascade for a Boolean function is given in 
Section 4. A micro-engine for sequential LUT cascade 
processing is presented in Section 5 with illustration of 
trade-offs between speed of evaluation and required 
memory space. Obtained results, some generalizations 
and future research are commented on in Conclusions. 



2. Basic notions and terminology 
 

To begin our discussion, we define the following 
terminology. A system of m Boolean functions of n 
Boolean variables, 

          fn
(i)

 : (Z2) 
n

  → Z2 ,  i = 1, 2, ..., m                          (1)                                                         
will be simply referred to as multiple-output Boolean  
function Fn with output values from ZR = {0, 1, 2, …,  
R-1}, 

Fn: (Z2) 
n

  → ZR ,                                    (2)  
where R is the number of distinct combinations of m 
output binary values enumerated by values from ZR. 
Function Fn is incomplete if it is defined only on set  
X ⊂ (Z2) 

n;   (Z2) 
n

 \ X = D is the don’t care set. 
  The behavior of a combinational circuit can be 

described by the system of m complete functions of n 
variables  

yi =  fn
(i)(x1 , x2 , …, xn),            i = 1, 2, ..., m     (3)  

or y = F(x) in vector notation.  
Computer representation of Boolean functions uses   

binary decision diagrams (BDDs), which can have 
many forms. Bit-level binary decision diagrams 
(BDDs), ordered binary decision diagrams (OBDDs) 
and reduced ordered binary decision diagrams 
(ROBDDs) are the best known representations of a 
single Boolean function in a form of a directed acyclic 
graph [1]. The ROBDD is a canonical (unique) 
representation for any given complete function and for 
a given order of variables.  

Important parameters of a BDD are its size and 
width, i.e. the total number of decision nodes and the 
maximum number of edges between adjacent levels, 
where the edges pointing to the same nodes are 
counted as one. The size determines the memory space 
needed to store the BDD data structure while the width 
K (also a C-measure) determines a BDD form factor 
since the height is given by the number of variables. 
The construction of minimum-size or by the same 
token minimum-width ROBDDs belong among NP-
complete problems [4]; the size and width of the 
ROBDD depend on variable ordering and there are n! 
possible orderings of n variables. A heuristic approach 
can be used in a search for near-optimal orderings [5]. 
Upper bounds on the OBDD’s size and width for 
general random complete Boolean functions grow 
exponentially with number of variables n for any 
ordering, but functions used in digital systems design 
with few exceptions do have a reasonable BDD size 
and small width. 

 To represent a system of Boolean functions (1) by 
means of decision diagrams, we can use either m bit-
level BDDs, one for each of m Boolean functions 
(possibly sharing some of their sub-diagrams in Shared 
BDDs or SBDDs, [6]), or one word-level BDD 

(WLBDD) with n Boolean decision variables and with 
R integer terminal values [7].  

As the LUT cascades are the main concern of this 
paper, we will provide a formal definition. A LUT will 
be also interchangeably referred to as a “cell”. 

Def. 1. A cascade of a form k × m is the system of B 
cells with k horizontal rails and m vertical cell inputs 
supporting K ≤ 2k (M ≤ 2m) Boolean input vectors. 
Individual cells implement functions  

 Hi: Z2
k × Z2

m → Z2
k, 1 ≤ i ≤ B.  

The last cell in the cascade may have r ≠ k outputs. 
Def.2. A cascade is said to be non-redundant if each 

variable used at vertical input enters one and only one 
cell. Otherwise the cascade is redundant. 

 
3. MTBDDs and LUT cascades  
 

Whereas BDDs and MTBDDs proved useful in 
many areas of digital design [7] where they provide 
compact data structures and a degree of flexibility in 
manipulating them, they are not as useful for the 
purpose of function evaluation. The primary reason is 
the slow speed, since the evaluation by branching 
program inspects one Boolean variable at a time.  
There is though a certain speedup in comparison to 
direct evaluation of Boolean expressions, because each 
variable is processed only once. Straightforward 
remedy how to speed up the traversal of a BDD is to 
process several variables at a time. This way we will 
derive LUT cascades, in fact a special case of LUT 
networks. 

A close relation between both these representations 
of multiple-output Boolean functions will be illustrated 
on a bit-counting example. The combinational function 
Fn: Z2

n → Zn gives the number of 1´s presented at n 
inputs in a form of a binary number. The MTBDD and 
associated LUT cascade are displayed in Fig. 1 for n = 
4. 
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Fig.1.   Bit counting example 
 



Generalization for larger values of n is easy. As the 
number of nodes grows linearly from the root to 
leaves, the width of the MTBDD is given by the last 
level of decision nodes and has the value of K = n. 

What connects two representations is the concept of 
sub-functions. Informally, the sub-function f of Fn is a 
function of s variables obtained from Fn by setting n− s 
variables to fixed constant values. The number of 
distinct sub-functions of s variables, s = 1, 2,…, n-1, a 
so called profile, characterizes the Boolean function 
and its complexity. In Fig.1 we can recognize distinct 
sub-functions as edges crossing boundaries between 
MTBDD layers, counting edges incident with the same 
node only once. Edges are labeled by ID codes of 
distinct sub-functions. From the top down, there are 2 
sub-functions of variables a, b, c (ID codes 0, 1), 3 
sub-functions of variables a, b (ID codes 0, 1, 2), 4 
sub-functions of variable a (ID codes 0, 1, 2, 3), and 5 
sub-functions of zero variables (constant terminal 
values 0 to 4). LUT contents are defined as 
input/output pairs, where inputs are binary ID codes 
and a value of a side variable entering a cell and 
outputs are binary ID codes generated by the cell. Co-
synthesis of MTBDD and LUT cascade can be done 
for small problems by hand (as illustrated in Section 
3.2) and for large incomplete functions by a program 
tool [8].     

As can be seen, the difference between the MTBDD 
and the LUT cascade is in communication among the 
MTBDD layers and LUTs in the cascade: in a MTBDD 
each sub-function ID code requires an individual edge 
(”wire”), whereas the ID codes being sent between 
LUTs are binary coded. The number of rails k in the 
cascade (a cascade “width”) is therefore  

 k = log2 K.                                     (4) 
This difference of two representations reflects itself 

in the way how the program interprets a certain 
application-specific MTBDD or a LUT cascade. In 
case of the MTBDD we may use for each node a 
record with 3 fields. A format indicator is one-bit field 
specifying the leaf node (leaf nodes may generally 
occur at any level of the diagram). Two other fields of 
the leaf node are then used for an output. If the node is 
not a leaf, two fields (adjacent words) contain pointers 
to the base addresses of other nodes. The base address 
is then modified by the value of a current control 
variable(s) and is used to extract the correct field with 
the pointer to the next node. The program traverses a 
certain path in the MTBDD from the root to a leaf in at 
most n steps. 

 LUTs are interpreted similarly, only the pointer to 
the next LUT is obtained from the current output by 
concatenating it with the control variable value and 
adding it up to the next LUT base address. If suitable, 

some LUTs can be combined to provide even faster 
processing (see first three cells in Fig.1). 

 
4. LUT cascades synthesis by iterative 
decomposition 

The decomposition of the multiple output Boolean 
function (or a combinational part of a sequential 
system) can be done by identifying distinct sub-
functions in the original function. If their count is 
slightly above a power of two, we can first try to make 
it equal or less than that value by transforming the 
function and resulting in a narrower cascade. Then the 
iterative decomposition removes one variable from the 
residual functions at a time. We will stop when the 
desired number of remaining variables for the first 
LUT is obtained.   

 We will consider the following combinational 
function: from two n-bit binary numbers on inputs the 
smaller one should be passed to the output. For 
simplicity we will take n = 3 and compare numbers (a2 
a1 a0) and (b2 b1 b0). The full function table is at the 
top of Fig. 2a. Sub-functions of b0 are the pairs of 
horizontally adjacent integers in the function table. The 
pairs of different integer values represent proper sub-
functions, whereas pairs of the same integer values are 
constant sub-functions. .Since the number of single-
variable sub-functions is greater than 8 for any 
variable, we will do a permutation (04)(15)(26)(37) in 
the upper half of the table (for a2 = 0). By means of 
this permutation the number of sub-functions of b0 
becomes 8 and the cascade width 3 rails will do. 
Enumeration of sub-functions of b0 is done by giving 
each and every distinct sub-function a new ID from 0 
to 7. This way a variable b0 will not appear in the 
residual function. Note, that we have started building 
the cascade from the LUT 1 at the end, Fig.2b. 
Repeating the decomposition for variable b1, we will 
obtain a residual function of variables a2, a1, a0, and 
b2, in fact LUT4. Next three decomposition steps 
shown in Fig. 2 are not needed. Note that the LUT 
cascade in Fig. 2 is a redundant one.   

Design of LUT cascades by slicing MTBDDs or by 
iterative decomposition has a catch: the size and width 
of MTBDD strongly depends on variable ordering. 
Optimum variable ordering is, however, a separate 
problem. Recently, heuristic minimization algorithms 
have been proposed [7] that allow reduction of the 
WLDD size analogously as for BDDs.  A co-synthesis 
of both MTBDD and LUT cascade for incompletely 
specified multiple-output Boolean functions has been 
developed  in [9].  



     b2 b1 b0   
 a2 a1 a0 0 1 2 3 4 5 6 7 
 0 0 0 0 0 0 0 0  0  
 1 0 1  1 1 1 1 1 1 
 2 0 1 2 2 2  2  2  2  
 3 0 1 2 3  3  3  3  3  
 4 0 1 2 3  4  4  4  4 
 5 0 1 2 3  4  5  5  5  
 6 0 1 2 3  4  5  6  6  
 7 0 1 2 3  4  5  6  7  
          
  4 4 4 4 4 4 4  4  
 LUT1 4 5  5 5 5 5 5 5 
 (04) 4 5 6 6 6  6  6  6  
 (15) 4 5 6 7  7  7  7  7  
 (26) 0 1 2 3  4  4  4  4 
 (37) 0 1 2 3  4  5  5  5  
  0 1 2 3  4  5  6  6  
  0 1 2 3  4  5  6  7  
          
 LUT2      LUT3  
 44:=0 0 0 0 0  00:=0 
 45:=1 1 3 3 3  13:=1 
 01:=2 1 4 4 4  14:=2 
 55:=3 1 5 7 7  15:=3 
 66:=4 2 6 0 0  26:=4 
 67:=5 2 6 1 3  33:=5 
 23:=6 2 6 1 4  44:=6 
 77.=7 2 6 1 5  77:=7 
          
      LUT4        

 0 0         
 1 5         
 2 6  0 3      
 3 7  1 4  0 2  0 
 4 0  2 0  1 0  1 
 4 1  2 1      
 4 2          

 a) 

b) 

a2 
a1 
a0 

b2 b1 b0 a2 

LUT 
4 

LUT 
3 

LUT 
2 

LUT 
1

 
Fig.2. Redundant iterative decomposition a) 

and the associated LUT cascade b) 
 

There are other heuristic approaches for MTBDD 
optimization, e.g. a sifting method or the application 
specific variable ordering (ASVO) [7]. For example in 
sifting method all position of a given variable in the 
given ordering are checked successively. The variable 
is then left in an optimal position with the lowest 
MTBDD size and the process repeats for all variables.  
Thorough comparison of all heuristic methods of 
optimization, as regards quality of results and an 
amount of the required execution time, remains still to 
be done. 

5. A micro-programmed controller with 
multi-way branching 
 

Evaluation of Boolean functions at the firmware 
level can use the LUT cascade paradigm. By making 
use of hardware micro-engines with a support for 
multi-way branching, we can speed up evaluation of 
Boolean functions with respect to a general purpose 
CPU core.  A suitable architecture of a micro-engine, a 
modified version of the one in [2], is depicted in Fig.3.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.3. Micro-programmed controller 
architecture with multi-way branching 

 
There are three microinstructions formats deter-

mined by a format indicator field FI: 
FI = 01:  state output (control signals), µIP := µIP+1 
FI = 10:  MXs and BCU control, jump to an address 

specified in micro-instruction modified by BCU   
FI = 11: conditional output, jump to an address 

specified in micro-instruction (no modification). 
The second format includes all kinds of jumps to the 

target address obtained from the address specified in 
the micro-instruction; this latter address  is modified by 
external variables, by up to 4 variables at a time, 
including 0 variable (no modification), by means of 16-
way Branch Control Unit (BCU). The task of this unit 
is to shift active inputs, selected by a 4-bit mask, to the 
lowest positions of the 4-bit output vector. This vector 
is then wire-ORed with the address obtained from the 
micro-instruction. If there are more external variables, 
LUT cascade paradigm is used. The LUT output 
contains not only the rail variables, but the whole next 
LUT base address modified by k rail variables in 
proper positions.  

We will illustrate rewriting a general multi-way 
branch microinstruction into a micro-program. The 
multi-way branch has the same structure as a switch. 
Let us have the statement 
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S0: if  F = 0 then v0 exit S0 
if  F = 1 then v1exit S1 
if  F = 2 then v2 exit S1 
if  F = 3 then v2 exit S2 
if  F = 4 then v3 exit S3 
else don´t care;                                            (5) 

Si´s are state labels, vj´s are conditional output vectors, 
F(A,B,C,D): X→ Z5,  X ⊂ (Z2)4 is an incomplete 
multiple-output Boolean function, its map is in Fig. 4a. 
The switch statement (5) describes a transition from 
present state S0 to one of next states S0 to S3 
depending on the values of 4 external variables A, B, C 
and D. During the transition a certain conditional 
output vector vj is generated. 
 

F(A,B,C,D) CD    
AB 00 01 10 11 
00 0 1 2 2 
01 x 2 2 2 
10 x 4 0 1 
11 4 x 2 3 

S0 exit L@ABCD 
... 
L@0000 v0 exit S0 
L@0001 v1 exit S1 
... 
... 
L@1110 v2 exit S1 
L@1111 v2 exit S2 

  a)                                                b) 
 
Fig.4. The map of a sample function (a) and a 
symbolic dispatch table in the micro-program 

(b) 
 
If the speed of the micro-engine is the utmost 

priority, we should do the testing of external variables 
in one step. The 16-way branch is then translated to the 
dispatch table in Fig.4b. Replacement of 4 bits in the 
address is denoted by operator “@”. If wired OR is 
used for replacement, the bits being replaced must be 
reset to 0. 
 
 

F: 0    1    x    2   2     4   0    1    2     3 
v: 0    1    x    2   2     3   0    1    2     2 
S: 0    1    x    1   1     3   0    1    1     2    

S0 

N2 N3 

AC 

BD BD 

N1 

S0 exit N1@AC 
N1@00 exit N2@BD 
N1@01 v2 exit S1 
N1@10 v3 exit S3 
N1@11 exit N3@BD 
 

N2@00 v0 exit S0 
N2@01 v1 exit S1 
N2@10 -  
N2@11 v2 exit S1 
N3@00 v0 exit S0 
N3@01 v1 exit S1 
N3@10 v2 exit S1 
N3@11 v2 exit S2 
 

LUT 1 

LUT 2 

a) b) 
 

Fig.5. LUT cascade (a) and the symbolic 
micro-program (b) for a multiway branching 

example 
 
If saving in hardware (chip area) is more important 

than overall speed, we can test variables A, B, C and D 

in groups of two. The optimum MTBDD found by the 
iterative decomposition is shown in Fig. 5a, together 
with the symbolic micro-program derived from it 
(Fig.5b). It can be seen that the second LUT is only 
partial as two sub-functions of two variables A, C are 
constants (2 and 4). Control store capacity is almost 
half of the capacity in the previous case and the BCU 
can be simplified.  

As the last example we shall consider evaluation of 
the following Boolean function of 16 variables: it 
attains the value 1 if the given 6-bit string is detected 
anywhere within an input string of 16 Boolean values; 
otherwise the function has the value 0.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

b) 
 

Fig.6. The LUT cascade detecting a 6-bit string 
in 16 bits (a) and the ROBDD (b) 

 
Since the string of 6 consecutive values of variables 

may be located in 11 positions (we do not assume that 
the pattern wraps around), we can specify the function 
by 11 words of 16 ternary digits (0, 1, x). The CPU 
evaluation of Boolean expressions would take in the 
worst case 11 × 6 steps, whereas a traversal of the 
ROBDD would need 16 steps.  We can do much better 
with LUTs, though. First the ROBDD of this function 
may be obtained using the applet [10], since the 

 

 

a1 a2 a3 a4 

    
a) 

 



Boolean expression with 11 min-terms, each with 6 
literals, is easy to write (the pattern of six 1´s): 

 

a1*a2*a3*a4*a5*a6+a2*a3*a4*a5*a6*a7+a3*a4*a5*a
6*a7*a8+a4*a5*a6*a7*a8*a9+a5*a6*a7*a8*a9*a10+
a6*a7*a8*a9*a10*a11+a7*a8*a9*a10*a11*a12+a8*a
9*a10*a11*a12*a13+a9*a10*a11*a12*a13*a14+a10*
a11*a12*a13*a14*a15+a11*a12*a13*a14*a15*a16    
(6) 
 

The ROBDD is in Fig.6b, from which an optimal 
size and count of LUTs can be determined. We have 
used 4 LUTs with 3 rails and 4 vertical inputs (Fig, 6a) 
for the target   micro-controller architecture in Fig.3.  

The micro-program would consist of 16 + 3 × 128 = 
400 jump microinstructions, but only 4 of them would 
be executed for the given input vector. The execution 
time (of 4 micro-instructions) will be shorter than 4 
table lookups of software implementation.  

 
6. Conclusions 
 

Firmware evaluation of multiple-output Boolean 
functions on the base of Boolean expressions or BDDs 
can be in many cases dramatically accelerated using 
the LUT cascade paradigm. Complexity of 
(incomplete) functions with many variables that can 
appear in embedded systems is usually low and related 
LUT cascades have much lower memory space 
requirements then the full table.  

Obtaining the LUT cascade by slicing the MTBDD 
or by iterative decomposition is relatively easy. 
Optimum variable ordering is, however, a separate 
problem and can have a great impact on cascade width 
and space efficiency. LUTs obtained from the optimum 
MTBDDs seem to be a very good and effective data 
structure and should always be considered for 
evaluation of Boolean functions. They are flexible in 
making trade-offs between response time and memory 
consumption – two or more LUTs can be compacted 
into one larger LUT and  the evaluation then reduces to 
a shorter chain of indirect memory accesses. 
Combinational LUT cascades implemented directly in 
hardware can support the fastest asynchronous or 
synchronous pipeline processing.   

Future research will be oriented to study of 
evolutionary techniques for the optimum iterative 
decomposition of sparse Boolean functions of many 
variables where the exhaustive search is out of 
question. The goal is to decompose large systems fully 
specified by Boolean expressions into LUT cascades 
with the aid of parallel processing. Algorithmic 
synthesis of redundant cascades and of multiple 
cascades will be other targets of the research in a near 
future. Applications mainly in safety/security area will 
be sought. 
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