
Implementation of Combinational and Sequential Functions in Embedded
Firmware

Vaclav Dvorak
Brno University of Technology

dvorak@fit.vutbr.cz

Abstract

The paper addresses firmware implementation of

multiple-output combinational and sequential Boolean
functions based on cascades of Look-Up Tables
(LUTs). A LUT cascade is described as a means of
compact representation of a large class of Boolean
functions, which reduces their evaluation to multiple
indirect memory accesses. A LUT-oriented decom-
position technique is illustrated on several examples. A
specialized micro-engine is proposed for sequential
processing of LUT cascades by means of multi-way
branching. The presented method provides high
performance micro-programmed control for embedded
applications.

1. Introduction

Efficient evaluation of Boolean functions is an
important part of many embedded firmware or
software systems. Application-specific functions most
frequently used in embedded systems practice have
typically low complexity. They include applications
such as encryption, data compression and conversion,
pattern matching and searching, sliding window
functions on data streams, etc. We will address
Boolean functions of large numbers (tens, hundreds) of
variables because small size systems can be
implemented directly in hardware, e.g. in various
PLDs, PLAs, ROMs or TCAM (Ternary Content
Addressable Memory).

Firmware implementation of Boolean functions will
be assumed in a form of data structures describing the
function and of a micro-program that reads the input
vector and evaluates the function with the use of this
data structure. The size of the code and of the data
structure is one figure of merit; another one is the
evaluation time from reading the input to generating
the output.

Hereafter we will use two complementary
representations: Look-Up Tables (LUTs) and binary

decision diagrams (BDDs). The BDDs are well known,
especially the reduced ordered BDDs (ROBDDs), [1].
On the base of ROBDDs we will develop a more
practical representation – cascades of LUTs.

Firmware implementation of Boolean functions has
been up to now studied especially in connection with
PLCs (“ladder diagrams”) or specialized event
processing, where either a speed (PLC) or a required
memory were not that important. On the contrary, in
embedded systems we do care for performance,
memory space as well as for power consumption. We
will demonstrate that presently used algorithms (binary
programs, BDD traversal or sequential evaluation of
Boolean expressions) are generally too slow and that
the use of LUT cascades enables faster evaluation. The
longer cascades with simpler LUTs are slower than
shorter cascades with larger LUTs, and thus the
processing speed can be even adjusted to requirements.

The idea of using a specialized micro-engine for
sequential processing of LUT cascades was conceived
in [2]. In the present paper we use a modified micro-
engine architecture based on micro-program sequencer
(Am 2910) and its multi-way branch control unit (Am
29803A), that can be easily implemented in FPGA. In
the meantime a different architecture under the name
LUT ring was developed and implemented in VLSI
technology [3] from the scratch. However, it is more
complicated and in some way less general (the use a
barrel shifter instead of the branch control unit).

The paper is structured as follows. In the following
Section 2 we introduce basic notions and terminology
concerning Boolean functions and their representation.
Binary decision diagrams (BDDs) and LUT cascades
are introduced in Section 3, and the way how to obtain
the LUT cascade for a Boolean function is given in
Section 4. A micro-engine for sequential LUT cascade
processing is presented in Section 5 with illustration of
trade-offs between speed of evaluation and required
memory space. Obtained results, some generalizations
and future research are commented on in Conclusions.

2. Basic notions and terminology

To begin our discussion, we define the following
terminology. A system of m Boolean functions of n
Boolean variables,

 fn
(i)

 : (Z2)
n

 → Z2 , i = 1, 2, ..., m (1)
will be simply referred to as multiple-output Boolean
function Fn with output values from ZR = {0, 1, 2, …,
R-1},

Fn: (Z2)
n

 → ZR , (2)
where R is the number of distinct combinations of m
output binary values enumerated by values from ZR.
Function Fn is incomplete if it is defined only on set
X ⊂ (Z2)

n; (Z2)
n

 \ X = D is the don’t care set.
 The behavior of a combinational circuit can be

described by the system of m complete functions of n
variables

yi = fn
(i)(x1 , x2 , …, xn), i = 1, 2, ..., m (3)

or y = F(x) in vector notation.
Computer representation of Boolean functions uses

binary decision diagrams (BDDs), which can have
many forms. Bit-level binary decision diagrams
(BDDs), ordered binary decision diagrams (OBDDs)
and reduced ordered binary decision diagrams
(ROBDDs) are the best known representations of a
single Boolean function in a form of a directed acyclic
graph [1]. The ROBDD is a canonical (unique)
representation for any given complete function and for
a given order of variables.

Important parameters of a BDD are its size and
width, i.e. the total number of decision nodes and the
maximum number of edges between adjacent levels,
where the edges pointing to the same nodes are
counted as one. The size determines the memory space
needed to store the BDD data structure while the width
K (also a C-measure) determines a BDD form factor
since the height is given by the number of variables.
The construction of minimum-size or by the same
token minimum-width ROBDDs belong among NP-
complete problems [4]; the size and width of the
ROBDD depend on variable ordering and there are n!
possible orderings of n variables. A heuristic approach
can be used in a search for near-optimal orderings [5].
Upper bounds on the OBDD’s size and width for
general random complete Boolean functions grow
exponentially with number of variables n for any
ordering, but functions used in digital systems design
with few exceptions do have a reasonable BDD size
and small width.

 To represent a system of Boolean functions (1) by
means of decision diagrams, we can use either m bit-
level BDDs, one for each of m Boolean functions
(possibly sharing some of their sub-diagrams in Shared
BDDs or SBDDs, [6]), or one word-level BDD

(WLBDD) with n Boolean decision variables and with
R integer terminal values [7].

As the LUT cascades are the main concern of this
paper, we will provide a formal definition. A LUT will
be also interchangeably referred to as a “cell”.

Def. 1. A cascade of a form k × m is the system of B
cells with k horizontal rails and m vertical cell inputs
supporting K ≤ 2k (M ≤ 2m) Boolean input vectors.
Individual cells implement functions

 Hi: Z2
k × Z2

m → Z2
k, 1 ≤ i ≤ B.

The last cell in the cascade may have r ≠ k outputs.
Def.2. A cascade is said to be non-redundant if each

variable used at vertical input enters one and only one
cell. Otherwise the cascade is redundant.

3. MTBDDs and LUT cascades

Whereas BDDs and MTBDDs proved useful in
many areas of digital design [7] where they provide
compact data structures and a degree of flexibility in
manipulating them, they are not as useful for the
purpose of function evaluation. The primary reason is
the slow speed, since the evaluation by branching
program inspects one Boolean variable at a time.
There is though a certain speedup in comparison to
direct evaluation of Boolean expressions, because each
variable is processed only once. Straightforward
remedy how to speed up the traversal of a BDD is to
process several variables at a time. This way we will
derive LUT cascades, in fact a special case of LUT
networks.

A close relation between both these representations
of multiple-output Boolean functions will be illustrated
on a bit-counting example. The combinational function
Fn: Z2

n → Zn gives the number of 1´s presented at n
inputs in a form of a binary number. The MTBDD and
associated LUT cascade are displayed in Fig. 1 for n =
4.

d d

c c

b b b

a a a a

c

b

a

0 1 2 3 4

0 1

0 1 2

0 1 2 3

Fig.1. Bit counting example

Generalization for larger values of n is easy. As the
number of nodes grows linearly from the root to
leaves, the width of the MTBDD is given by the last
level of decision nodes and has the value of K = n.

What connects two representations is the concept of
sub-functions. Informally, the sub-function f of Fn is a
function of s variables obtained from Fn by setting n− s
variables to fixed constant values. The number of
distinct sub-functions of s variables, s = 1, 2,…, n-1, a
so called profile, characterizes the Boolean function
and its complexity. In Fig.1 we can recognize distinct
sub-functions as edges crossing boundaries between
MTBDD layers, counting edges incident with the same
node only once. Edges are labeled by ID codes of
distinct sub-functions. From the top down, there are 2
sub-functions of variables a, b, c (ID codes 0, 1), 3
sub-functions of variables a, b (ID codes 0, 1, 2), 4
sub-functions of variable a (ID codes 0, 1, 2, 3), and 5
sub-functions of zero variables (constant terminal
values 0 to 4). LUT contents are defined as
input/output pairs, where inputs are binary ID codes
and a value of a side variable entering a cell and
outputs are binary ID codes generated by the cell. Co-
synthesis of MTBDD and LUT cascade can be done
for small problems by hand (as illustrated in Section
3.2) and for large incomplete functions by a program
tool [8].

As can be seen, the difference between the MTBDD
and the LUT cascade is in communication among the
MTBDD layers and LUTs in the cascade: in a MTBDD
each sub-function ID code requires an individual edge
(”wire”), whereas the ID codes being sent between
LUTs are binary coded. The number of rails k in the
cascade (a cascade “width”) is therefore

 k = log2 K. (4)
This difference of two representations reflects itself

in the way how the program interprets a certain
application-specific MTBDD or a LUT cascade. In
case of the MTBDD we may use for each node a
record with 3 fields. A format indicator is one-bit field
specifying the leaf node (leaf nodes may generally
occur at any level of the diagram). Two other fields of
the leaf node are then used for an output. If the node is
not a leaf, two fields (adjacent words) contain pointers
to the base addresses of other nodes. The base address
is then modified by the value of a current control
variable(s) and is used to extract the correct field with
the pointer to the next node. The program traverses a
certain path in the MTBDD from the root to a leaf in at
most n steps.

 LUTs are interpreted similarly, only the pointer to
the next LUT is obtained from the current output by
concatenating it with the control variable value and
adding it up to the next LUT base address. If suitable,

some LUTs can be combined to provide even faster
processing (see first three cells in Fig.1).

4. LUT cascades synthesis by iterative
decomposition

The decomposition of the multiple output Boolean
function (or a combinational part of a sequential
system) can be done by identifying distinct sub-
functions in the original function. If their count is
slightly above a power of two, we can first try to make
it equal or less than that value by transforming the
function and resulting in a narrower cascade. Then the
iterative decomposition removes one variable from the
residual functions at a time. We will stop when the
desired number of remaining variables for the first
LUT is obtained.

 We will consider the following combinational
function: from two n-bit binary numbers on inputs the
smaller one should be passed to the output. For
simplicity we will take n = 3 and compare numbers (a2
a1 a0) and (b2 b1 b0). The full function table is at the
top of Fig. 2a. Sub-functions of b0 are the pairs of
horizontally adjacent integers in the function table. The
pairs of different integer values represent proper sub-
functions, whereas pairs of the same integer values are
constant sub-functions. .Since the number of single-
variable sub-functions is greater than 8 for any
variable, we will do a permutation (04)(15)(26)(37) in
the upper half of the table (for a2 = 0). By means of
this permutation the number of sub-functions of b0
becomes 8 and the cascade width 3 rails will do.
Enumeration of sub-functions of b0 is done by giving
each and every distinct sub-function a new ID from 0
to 7. This way a variable b0 will not appear in the
residual function. Note, that we have started building
the cascade from the LUT 1 at the end, Fig.2b.
Repeating the decomposition for variable b1, we will
obtain a residual function of variables a2, a1, a0, and
b2, in fact LUT4. Next three decomposition steps
shown in Fig. 2 are not needed. Note that the LUT
cascade in Fig. 2 is a redundant one.

Design of LUT cascades by slicing MTBDDs or by
iterative decomposition has a catch: the size and width
of MTBDD strongly depends on variable ordering.
Optimum variable ordering is, however, a separate
problem. Recently, heuristic minimization algorithms
have been proposed [7] that allow reduction of the
WLDD size analogously as for BDDs. A co-synthesis
of both MTBDD and LUT cascade for incompletely
specified multiple-output Boolean functions has been
developed in [9].

 b2 b1 b0
 a2 a1 a0 0 1 2 3 4 5 6 7
 0 0 0 0 0 0 0 0 0
 1 0 1 1 1 1 1 1 1
 2 0 1 2 2 2 2 2 2
 3 0 1 2 3 3 3 3 3
 4 0 1 2 3 4 4 4 4
 5 0 1 2 3 4 5 5 5
 6 0 1 2 3 4 5 6 6
 7 0 1 2 3 4 5 6 7

 4 4 4 4 4 4 4 4
 LUT1 4 5 5 5 5 5 5 5
 (04) 4 5 6 6 6 6 6 6
 (15) 4 5 6 7 7 7 7 7
 (26) 0 1 2 3 4 4 4 4
 (37) 0 1 2 3 4 5 5 5
 0 1 2 3 4 5 6 6
 0 1 2 3 4 5 6 7

 LUT2 LUT3
 44:=0 0 0 0 0 00:=0
 45:=1 1 3 3 3 13:=1
 01:=2 1 4 4 4 14:=2
 55:=3 1 5 7 7 15:=3
 66:=4 2 6 0 0 26:=4
 67:=5 2 6 1 3 33:=5
 23:=6 2 6 1 4 44:=6
 77.=7 2 6 1 5 77:=7

 LUT4

 0 0
 1 5
 2 6 0 3
 3 7 1 4 0 2 0
 4 0 2 0 1 0 1
 4 1 2 1
 4 2

 a)

b)

a2
a1
a0

b2 b1 b0 a2

LUT
4

LUT
3

LUT
2

LUT
1

Fig.2. Redundant iterative decomposition a)

and the associated LUT cascade b)

There are other heuristic approaches for MTBDD
optimization, e.g. a sifting method or the application
specific variable ordering (ASVO) [7]. For example in
sifting method all position of a given variable in the
given ordering are checked successively. The variable
is then left in an optimal position with the lowest
MTBDD size and the process repeats for all variables.
Thorough comparison of all heuristic methods of
optimization, as regards quality of results and an
amount of the required execution time, remains still to
be done.

5. A micro-programmed controller with
multi-way branching

Evaluation of Boolean functions at the firmware
level can use the LUT cascade paradigm. By making
use of hardware micro-engines with a support for
multi-way branching, we can speed up evaluation of
Boolean functions with respect to a general purpose
CPU core. A suitable architecture of a micro-engine, a
modified version of the one in [2], is depicted in Fig.3.

Fig.3. Micro-programmed controller
architecture with multi-way branching

There are three microinstructions formats deter-

mined by a format indicator field FI:
FI = 01: state output (control signals), µIP := µIP+1
FI = 10: MXs and BCU control, jump to an address

specified in micro-instruction modified by BCU
FI = 11: conditional output, jump to an address

specified in micro-instruction (no modification).
The second format includes all kinds of jumps to the

target address obtained from the address specified in
the micro-instruction; this latter address is modified by
external variables, by up to 4 variables at a time,
including 0 variable (no modification), by means of 16-
way Branch Control Unit (BCU). The task of this unit
is to shift active inputs, selected by a 4-bit mask, to the
lowest positions of the 4-bit output vector. This vector
is then wire-ORed with the address obtained from the
micro-instruction. If there are more external variables,
LUT cascade paradigm is used. The LUT output
contains not only the rail variables, but the whole next
LUT base address modified by k rail variables in
proper positions.

We will illustrate rewriting a general multi-way
branch microinstruction into a micro-program. The
multi-way branch has the same structure as a switch.
Let us have the statement

x1
x2

xn

M
X

ROM

M
X
s

16-way
Branch
Ctrl Unit

µ
I
P

address
sources

+1
Decoder/
Seqencer

µ
I
R

m =4

Wired
OR

FI

The next LUT base address
with up to k bits replaced
by pre-computed LUT
output

 4

S0: if F = 0 then v0 exit S0
if F = 1 then v1exit S1
if F = 2 then v2 exit S1
if F = 3 then v2 exit S2
if F = 4 then v3 exit S3
else don´t care; (5)

Si´s are state labels, vj´s are conditional output vectors,
F(A,B,C,D): X→ Z5, X ⊂ (Z2)4 is an incomplete
multiple-output Boolean function, its map is in Fig. 4a.
The switch statement (5) describes a transition from
present state S0 to one of next states S0 to S3
depending on the values of 4 external variables A, B, C
and D. During the transition a certain conditional
output vector vj is generated.

F(A,B,C,D) CD
AB 00 01 10 11
00 0 1 2 2
01 x 2 2 2
10 x 4 0 1
11 4 x 2 3

S0 exit L@ABCD
...
L@0000 v0 exit S0
L@0001 v1 exit S1
...
...
L@1110 v2 exit S1
L@1111 v2 exit S2

 a) b)

Fig.4. The map of a sample function (a) and a
symbolic dispatch table in the micro-program

(b)

If the speed of the micro-engine is the utmost

priority, we should do the testing of external variables
in one step. The 16-way branch is then translated to the
dispatch table in Fig.4b. Replacement of 4 bits in the
address is denoted by operator “@”. If wired OR is
used for replacement, the bits being replaced must be
reset to 0.

F: 0 1 x 2 2 4 0 1 2 3
v: 0 1 x 2 2 3 0 1 2 2
S: 0 1 x 1 1 3 0 1 1 2

S0

N2 N3

AC

BD BD

N1

S0 exit N1@AC
N1@00 exit N2@BD
N1@01 v2 exit S1
N1@10 v3 exit S3
N1@11 exit N3@BD

N2@00 v0 exit S0
N2@01 v1 exit S1
N2@10 -
N2@11 v2 exit S1
N3@00 v0 exit S0
N3@01 v1 exit S1
N3@10 v2 exit S1
N3@11 v2 exit S2

LUT 1

LUT 2

a) b)

Fig.5. LUT cascade (a) and the symbolic
micro-program (b) for a multiway branching

example

If saving in hardware (chip area) is more important

than overall speed, we can test variables A, B, C and D

in groups of two. The optimum MTBDD found by the
iterative decomposition is shown in Fig. 5a, together
with the symbolic micro-program derived from it
(Fig.5b). It can be seen that the second LUT is only
partial as two sub-functions of two variables A, C are
constants (2 and 4). Control store capacity is almost
half of the capacity in the previous case and the BCU
can be simplified.

As the last example we shall consider evaluation of
the following Boolean function of 16 variables: it
attains the value 1 if the given 6-bit string is detected
anywhere within an input string of 16 Boolean values;
otherwise the function has the value 0.

b)

Fig.6. The LUT cascade detecting a 6-bit string
in 16 bits (a) and the ROBDD (b)

Since the string of 6 consecutive values of variables

may be located in 11 positions (we do not assume that
the pattern wraps around), we can specify the function
by 11 words of 16 ternary digits (0, 1, x). The CPU
evaluation of Boolean expressions would take in the
worst case 11 × 6 steps, whereas a traversal of the
ROBDD would need 16 steps. We can do much better
with LUTs, though. First the ROBDD of this function
may be obtained using the applet [10], since the

a1 a2 a3 a4

a)

Boolean expression with 11 min-terms, each with 6
literals, is easy to write (the pattern of six 1´s):

a1*a2*a3*a4*a5*a6+a2*a3*a4*a5*a6*a7+a3*a4*a5*a
6*a7*a8+a4*a5*a6*a7*a8*a9+a5*a6*a7*a8*a9*a10+
a6*a7*a8*a9*a10*a11+a7*a8*a9*a10*a11*a12+a8*a
9*a10*a11*a12*a13+a9*a10*a11*a12*a13*a14+a10*
a11*a12*a13*a14*a15+a11*a12*a13*a14*a15*a16
(6)

The ROBDD is in Fig.6b, from which an optimal
size and count of LUTs can be determined. We have
used 4 LUTs with 3 rails and 4 vertical inputs (Fig, 6a)
for the target micro-controller architecture in Fig.3.

The micro-program would consist of 16 + 3 × 128 =
400 jump microinstructions, but only 4 of them would
be executed for the given input vector. The execution
time (of 4 micro-instructions) will be shorter than 4
table lookups of software implementation.

6. Conclusions

Firmware evaluation of multiple-output Boolean
functions on the base of Boolean expressions or BDDs
can be in many cases dramatically accelerated using
the LUT cascade paradigm. Complexity of
(incomplete) functions with many variables that can
appear in embedded systems is usually low and related
LUT cascades have much lower memory space
requirements then the full table.

Obtaining the LUT cascade by slicing the MTBDD
or by iterative decomposition is relatively easy.
Optimum variable ordering is, however, a separate
problem and can have a great impact on cascade width
and space efficiency. LUTs obtained from the optimum
MTBDDs seem to be a very good and effective data
structure and should always be considered for
evaluation of Boolean functions. They are flexible in
making trade-offs between response time and memory
consumption – two or more LUTs can be compacted
into one larger LUT and the evaluation then reduces to
a shorter chain of indirect memory accesses.
Combinational LUT cascades implemented directly in
hardware can support the fastest asynchronous or
synchronous pipeline processing.

Future research will be oriented to study of
evolutionary techniques for the optimum iterative
decomposition of sparse Boolean functions of many
variables where the exhaustive search is out of
question. The goal is to decompose large systems fully
specified by Boolean expressions into LUT cascades
with the aid of parallel processing. Algorithmic
synthesis of redundant cascades and of multiple
cascades will be other targets of the research in a near
future. Applications mainly in safety/security area will
be sought.

7. References

[1] B. M. Moret: Decision Trees and Diagrams, Computing
Surveys, Vol.14, No.4, Dec. 1982, pp. 593-623.
[2] V. Dvořák, V.: Microsequencer architecture supporting
arbitrary branching up to 2^m targets, Computer Architecture
News, IEEE Publ., March 1990, pp. 9-16.
[3] H. Qin, T. Sasao, M. Matsuura, K. Nakamura S.
Nagayama and Y. Iguchi: "A realization of multiple-output
functions by a look-up table ring," IEICE Transactions on
Fundamentals of Electronics, Vol.E87-A, Dec. 2004, pp.
3141-3150.
[4] B. Bollig, I. Wegener: “Improving the Variable Ordering
of OBDDs Is NP-Complete”, IEEE Transactions on
Computers, 45(9), September 1996, pp. 993––1002.
[5] V. Dvořák: An optimization technique for ordered
(binary) decision diagrams, Proceedings of the 6th Annual
European Computer Conference CompEuro' 92, Hague, NL,
1992, pp. 1-4.
[6] A. Mishchenko, T. Sasao: Logic Synthesis of LUT
Cascades with Limited Rails－ A Direct Implementation of
Multi-Output Functions, Technical report of IEICE, The
Institute of Electronics, Information and Communication
Engineers, Vol.102, No.476 (20021121), pp. 103-108.
VLD2002-99, ISSN:09135685.
[7] R. Drechsler, B. Becker: Binary Decision Diagrams -
Theory and Implementation, Springer 1998.
[8] V. Dvořák: A cascade implementation of digital systems,
Microprocessing and Microprogramming, North-Holland,
Vol. 29, No. 1, 1990, pp. 151-163.
[9] V. Dvořák: Time- and Space-Efficient Evaluation of
Sparse Boolean Functions in Embedded Software,
Proceedings of 14th Annual IEEE International Conference
and Workshops on the Engineering of Computer-Based
Systems, Los Alamitos, IEEE CS US,, 2007, pp. 178-185.
 [10] University of Hamburg, Department of Informatics,
http://tams-www.informatik.uni-hamburg.de/applets

Acknowledgement
This research has been carried out under the

financial support of the research grants GA
102/07/0850 “Design and hardware implementation
of a patent-invention machine”, Grant Agency of
Czech Republic, and “Security-Oriented Research in
Information Technology”, MSM 0021630528.

