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Abstract. An evolutionary algorithm is utilized to find a set of im-
age filters which can be employed in a bank of image filters. This filter
bank exhibits at least comparable visual quality of filtering in compari-
son with a sophisticated adaptive median filter when applied to remove
the salt-and-pepper noise of high intensity (up to 70% corrupted pixels).
The main advantage of this approach is that it requires four times less
resources on a chip when compared to the adaptive median filter. The
solution also exhibits a very good behavior for the impulse bursts noise
which is typical for satellite images.

1 Introduction

As low-cost digital cameras have entered to almost any place, the need for high-
quality, high-performance and low-cost image filters is of growing interest. In
this paper, a new approach is proposed to the impulse noise filters design. The
aim is to introduce a class of simple image filters that utilize small filtering
windows and whose performance is at least comparable to existing well-tuned
algorithms devoted to common processors. Furthermore, an area-efficient hard-
ware implementation is required because these filters have to be implemented
on the off-the-shelf hardware, such as field programmable gate arrays (FPGA).

In most cases, impulse noise is caused by malfunctioning pixels in camera
sensors, faulty memory locations in hardware, or errors in the data transmission
(especially in satellite images [1]). We distinguish two common types of impulse
noise: the salt-and-pepper noise (commonly referred to as intensity spikes or
speckle) and the random-valued shot noise. For images corrupted by salt-and-
pepper noise, the noisy pixels can take only the maximum or minimum values
(i.e. 0 or 255 for 8-bit grayscale images). In case of the random-valued shot noise,
the noisy pixels have an arbitrary value. We will deal with the salt-and-pepper
noise in this paper.

Traditionally, the salt-and-pepper noise is removed by median filters. When the
noise intensity is less than approx. 10% a simple median utilizing 3×3 or 5×5-pixel
window is sufficient. Evolutionary algorithms (EA) have been applied to the image
filter design problems in recent years [2,3,4]. EA is utilized either to find some
coefficients of a pre-designed filtering algorithm or to devise a complete structure
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of a target image filter. As the first approach only allows tuning existing designs,
the use of the second approach has led to introducing completely new filtering
schemes, unknown so far [4]. The images filtered by evolved filters are not as
smudged as the images filtered by median filters. Moreover, evolved filters occupy
only approx. 70% of the area needed to implement the median filter on a chip.

When the intensity of noise is increasing (10-90% pixels are corrupted), sim-
ple median filters are not sufficient and more advanced techniques have to be
utilized. Various approaches were proposed (see a survey of the methods, e.g.
in [5]). Among others, adaptive medians provide good results [6]. However, they
utilize large filtering windows and additional values (such as the maximum and
minimum value of the filtering window) have to be calculated. This makes them
expensive in terms of hardware resources. Others algorithms are difficult to ac-
celerate in hardware for real-time processing of images coming from cameras.

Unfortunately, the evolutionary design approach stated above which works up
to 10% noise intensity does not work for higher noise intensities. The method
proposed in this paper combines simple evolved filters with human-designed
components to create a bank of 3 × 3 filters which provides a sufficient filtering
quality for high noise intensities (up to 70%), and simultaneously a very low
implementation cost in hardware.

2 Conventional Image Filters

Various approaches have been proposed to remove salt-and-pepper noise from
grayscale images [7,8,9,5]. As linear filters have inclination to smoothing, most
of proposed approaches are based on a nonlinear approach. The median filter
is the most popular nonlinear filter for removing the impulse noise because of
its good denoising power, computational efficiency and a reasonably expensive
implementation in hardware [10]. The median filter utilizes the fact that original
and corrupted pixels are significantly different and hence the corrupted pixels can
easily be identified as non-medians. However, when the noise level (the number
of corrupted pixels) increases, some pixels remain corrupted and unfiltered [11].
Median filters which utilize larger filtering windows are capable of removing noise
of high intensity but filtered images do not exhibit a sufficient visual quality.

The adaptive median filters produce significantly better resulting images than
convential medians [6]. The filter operates with a kernel of Smax × Smax pixels.
The kernel is divided into subkernels of size 3×3, 5×5, . . . , Smax ×Smax inputs.
For each subkernel, the minimum, maximum and median value is calculated.
In order to obtain the filtered pixel, the calculated values are processed by the
algorithm described in [6].

With the aim to visually compare images filtered by the convential median
filter and adaptive median filter, Figure 1 provides some examples for the 40%
salt-and-pepper noise (PSNR states for the peak signal-to-noise ratio). We can
observe that there are many unfiltered shots in the image obtained by the median
filter. We used the 3 × 3 kernel in order to easily compare the results described
is next sections. Note that the use of larger kernels implies that many details
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Fig. 1. Images obtained by using conventional filters. a) Original image b) Noise image
corrupted by 40% Salt-and-Pepper noise, PSNR: 9.364 dB c) Filtered by median filter
with the kernel size 3×3, PSNR: 18.293 dB d) Filtered by median filter with the kernel
size 5 × 5, PSNR: 24.102 dB e) Filtered by adaptive median with the kernel size up
to 5 × 5, PSNR: 26.906 dB f) Filtered by adaptive median with the kernel size up to
7 × 7, PSNR: 27.315 dB.

are lost in the image. On the other hand, the image obtained by the adaptive
median filter is sharp and preserves details. However, the adaptive median (with
5x5 filtering window) costs approx. eight times more area on a chip in comparison
to a conventional 3x3 median filter. Even better visual results can be achieved by
using more specialized algorithms [9], but their hardware implementation leads
to area-expensive and slow solutions.

3 Evolutionary Design of Image Filters

3.1 The Approach

This section describes the evolutionary method which can be utilized to create
innovative 3 × 3 image filters [4]. These filters will be utilized in the proposed
bank of filters. Every image filter is considered as a function (a digital circuit
in the case of hardware implementation) of nine 8-bit inputs and a single 8-bit
output, which processes grayscale (8-bits/pixel) images. As Fig. 2 shows, every
pixel value of the filtered image is calculated using a corresponding pixel and
its eight neighbors in the processed image. In order to evolve an image filter
which removes a given type of noise, we need an original (training) image to
measure the fitness values of candidate filters. The goal of EA is to minimize
the difference between the original image and the filtered image. The generality
of the evolved filters (i.e., whether the filters operate sufficiently also for other
images of the same type of noise) is tested by means of a test set.
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3.2 EA for Filter Evolution

The method is based on Cartesian Genetic Programming (CGP) [12]. A can-
didate filter is represented using a graph which contains nc (columns) × nr

(rows) nodes placed in a grid. The role of EA is to find the interconnection of
the programmable nodes and the functions performed by the nodes. Each node
represents a two-input function which receives two 8-bit values and produces an
8-bit output. Table 1 shows the functions we consider as useful for this task [4].
We can observe that these functions are also suitable for hardware implemen-
tation (i.e. there are not such functions as multiplication or division). A node
input may be connected either to an output of another node, which is placed
anywhere in the preceding columns or to a primary input. Filters are encoded
as arrays of integers of the size 3 × nr × nr + 1. For each node, three integers
are utilized which encode the connection of node inputs and function. The last
integer encodes the primary output of a candidate filter.

Table 1. List of functions implemented in each programmable node

code function description code function description
0 255 constant 8 x � 1 right shift by 1
1 x identity 9 x � 2 right shift by 2
2 255 − x inversion A swap(x, y) swap nibbles
3 x ∨ y bitwise OR B x + y + (addition)
4 x̄ ∨ y bitwise x̄ OR y C x +S y + with saturation
5 x ∧ y bitwise AND D (x + y) � 1 average
6 x ∧ y bitwise NAND E max(x, y) maximum
7 x ⊕ y bitwise XOR F min(x, y) minimum
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Fig. 2. The concept of image filtering using a 3 × 3 filter (left). An example of evolved
filter (right).

EA uses a single genetic operator – mutation – which modifies 5% of the chromo-
some (this value was determined experimentally). No crossover operator is utilized
in this type of EA because no suitable crossover operator has been proposed so far
[13]. Mutation modifies either a node or an output connection. The EA operates
with the population of λ individuals (typically, λ = 8). The initial population is
randomly generated. Every new population consists of a parent (the fittest indi-
vidual from the previous population) and its mutants. In case that two or more
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individuals have received the same fitness score in the previous generation, the
individual which did not serve as the parent in the previous population will be
selected as a new parent. This strategy was proven to be very useful [12]. The evo-
lution is typically stopped (1) when the current best fitness value has not improved
in the recent generations, or (2) after a predefined number of generations.

3.3 Fitness Function

The design objective is to minimize the difference between the filtered image
and the original image. Usually, mean difference per pixel (mdpp) is minimized.
Let u denote a corrupted image and let v denote a filtered image. The original
(uncorrupted) version of u will be denoted as w. The image size is K × K
(K=128) pixels but only the area of 126 × 126 pixels is considered because the
pixel values at the borders are ignored and thus remain unfiltered. The fitness
value of a candidate filter is obtained as

fitness = 255.(K − 2)2 −
K−2∑

i=1

K−2∑

j=1

|v(i, j) − w(i, j)|.

3.4 Design Examples

This approach was utilized to evolve efficient image filters for Gaussian noise and
5 % salt-and-pepper noise and to create novel implementations of edge detectors
[4]. Examples of filtered images for the 40 % salt-and-pepper noise are given in
Fig. 3. When compared with the common median filter (see Fig. 1 and PSNR),
evolved filters preserve more details and generate sharper images. Note that
these filtered images represent the best outputs that can be obtained by a single
3 × 3-input filter evolved using described method for the 40% noise.

Figure 2 shows an example of evolved filter. We can observe that EA can
create only a combinational behavior and the filter utilizes only 3 × 3 pixels at
the input. These filters are not able to compete to adaptive median filters which
sophistically operate with larger kernels. A way to improve evolved filters could
be to increase the kernel size; however, this will lead to smoothing and loosing
details in images.

 evolved filter1a)  evolved filter2b)  evolved filter3c)

Fig. 3. A corrupted image (see Fig. 1) filtered by evolved filters a) evf1 (PSNR: 18.868
dB), b) evf2 (PSNR: 18.266 dB) and c) evf3 (PSNR: 18.584 dB)
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4 Proposed Approach

In order to create a salt-and-pepper noise filter which generates filtered images of
the same quality as an adaptive median filter and which is suitable for hardware
implementation, we propose to combine several simple image filters utilizing
the 3 × 3 window that are designed by an evolutionary algorithm according to
previous Section 3. As Figure 4(a) shows the procedure has three steps: (1) the
reduction of a dynamic range of noise, (2) processing using a bank of n filters
and (3) deterministic selection of the best result.

We analyzed various filters evolved according to description in Section 3 and
recognized that they have problems with the large dynamic range of corrupted
pixels (0/255). A straightforward solution of this problem is to create a com-
ponent which inverts all pixels with value 255, i.e. all shots are transformed to
have a uniform value.

Filter kernel 3x3 Filtered image
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Fig. 4. a) Proposed architecture for salt-and-pepper noise removal and b) training
image

Preprocessed image then enters a bank of n filters that operate in parallel.
Since we repeated the evolutionary design of salt-and-noise filters (according to
Section 3) many times, we have gathered various implementations of this type
of filter. We selected n different evolved filters which exhibit the best filtering
quality and utilized them in the bank. Note that all these filters were designed
by EA using the same type of noise and training image and with the same aim:
to remove 40% salt-and-pepper noise.

Finally, the outputs coming from banks 1 . . . n were combined by n-input
median filter which can easily be implemented using comparators [14]. As the
proposed system naturally forms a pipeline, the overall design can operate at
the same frequency as a simple median filter when implemented in hardware.

5 Experimental Results

5.1 Quality of Filtering

The filters utilized in the bank were evolved using the method described in
Section 3. These filters use the size of kernel 3× 3 pixels and contain up to 8× 4
programmable nodes with functions according to Table 1.
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Fig. 5. Examples of test images

Table 2. PSNR for adaptive median filter with the kernel size up to 5 × 5 and 7 × 7

kernel size 5 × 5 7 × 7
image/noise 10% 20% 40% 50% 70% 10% 20% 40% 50% 70%
goldhill 31.155 30.085 26.906 24.290 15.859 31.155 30.085 27.315 25.961 20.884
bridge 29.474 28.064 24.993 22.567 14.781 29.474 28.058 25.177 23.710 19.060
lena 33.665 31.210 27.171 24.433 15.468 33.655 31.207 27.529 25.984 20.455
pentagon 32.767 31.460 28.235 25.217 16.315 32.767 31.460 28.621 27.175 21.654
camera 30.367 28.560 25.145 22.675 14.973 30.367 28.560 25.298 23.852 19.242

A training 128 × 128-pixel image was partially corrupted by 40% salt-and-
pepper noise (see Fig. 4(b)). EA operates with an eight-member population. The
5% mutation is utilized. A single run is terminated after 196,608 generations.
Results will be demonstrated for 5 test images of size 256 × 256 pixels which
contain the salt-and-pepper noise with the intensity of 10%, 20%, 40%, 50% and
70% corrupted pixels. Figure 5 shows some examples of test images. Table 2
summarizes results obtained for the adaptive median filter which serves as a
reference implementation. All results are expressed in terms of

PSNR = 10 log10
2552

1
MN

∑
i,j(v(i, j) − w(i, j))2

where N × M is the size of image.
Table 3 summarizes results for the images filtered using the bank of size 3

and 5. The output pixel is calculated by a 3-input (5-input, respectively) median
circuit. Surprisingly, only three filters utilized in the bank are needed to obtain
a bank filter which produces images of at least comparable visual quality to



Reducing the Area on a Chip Using a Bank of Evolved Filters 229

Table 3. PSNR for the bank filter

filter 3-bank 5-bank
image/noise 10% 20% 40% 50% 70% 10% 20% 40% 50% 70%
goldhill 33.759 30.619 27.716 25.867 19.091 34.392 31.131 27.966 25.965 19.079
bridge 31.458 28.992 25.83 24.282 18.333 32.321 29.714 26.124 24.441 18.327
lena 30.304 28.162 25.684 24.137 18.324 30.393 28.424 25.881 24.203 18.314
pentagon 34.631 31.89 28.681 26.577 18.437 35.201 32.411 28.945 26.683 18.435
camera 30.576 28.185 25.284 23.72 17.85 31.091 28.74 25.576 23.919 17.845

Table 4. Result of synthesis for different filters

optimal adaptive evolved filters proposed
filter median filter median utilized in bank filter bank

3 × 3 5 × 5 7 × 7 5 × 5 7 × 7 fb1 fb2 fb3 fb4 fb5 3-bank 5-bank
no. of slices 268 1506 4426 2024 6567 156 199 137 183 148 500 843
area [%] 1.1 6.4 18.7 8.6 27.8 0.7 0.8 0.6 0.8 0.6 2.1 3.6
fmax [MHz] 305 305 305 303 298 316 318 308 321 320 308 305

the adaptive median filter. This fact is demonstrated by Figure 6 where the
visual quality of the images filtered by the adaptive median and 3-bank filter is
practically undistinguishable.

5.2 Implementation Cost

In order to compare the implementation cost of median filters, adaptive me-
dian filters, evolved filters and the bank of filters, all these filters were imple-
mented in FPGA [15]. Results of synthesis are given for relatively large Virtex
II Pro XC2vp50-7 FPGA which contains 23616 slices (configurable elements of
the FPGA). This FPGA is available on our experimental Combo6x board. Ta-
ble 4 shows that proposed bank filters require considerably smaller area on the
chip in comparison to adaptive median filters whose implementation is based on
area-demanding sorting networks.

In order to implement the proposed 3-bank filter in a small and cheap em-
bedded system, a smaller FPGA, XC3S50, is sufficient (it contains 768 slices).
However,a larger and more expensive XC3S400 FPGA (containing 3584 slices)
has to be utilized to implement the adaptive median filter.

5.3 Other Properties of Evolved Bank Filters

Figure 7 shows another interesting feature we observed for the bank of evolved
filters. This kind of filters is relatively good in removing the impulse bursts noise;
much better than the adaptive median filters. The impulse bursts usually cor-
rupt images during the data transmission phase when the impulse noise occurs.
The main reason for the occurrence of bursts is the interference of frequency
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Fig. 6. Comparison of resulting images filtered using the adaptive median filter with
kernel size up to 7 × 7 (a, b, c) and 3-bank filter (d, e, f)

b) adaptive median
filter

image with
40% noise

a) image with
40% noise

a) adaptive median
filter

b) evolved filterc)

Fig. 7. a) Image corrupted by 40% impulse noise (bursts), images filtered using b)
adaptive median with kernel size up to 5 × 5 (PSNR: 11.495 dB) and c) 3-bank filter
(PSNR: 22.618 dB)

modulated carrying signal with the signals from other sources of emission. Re-
liable elimination of this type of noise by means of standard robust filters can
be achieved only by using sliding windows that are large enough. However, e.g.,
the 5x5 median filter leads to significant smearing of useful information [1]. Note
that images shown in Figure 7 were obtained by the bank filter which was not
trained for the impulse bursts noise at all. This solution represents a promising
area of our future research.

6 Discussion

The proposed approach was evaluated on a single class of images. Future work
will be devoted to testing the proposed filtering scheme on other types of images.
Anyway, results obtained for this class of images are quite promising from the
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Fig. 8. Example of an evolved filter utilized in the 3-bank filter

application point of view. We can reach the quality of adaptive median filter-
ing using a 3-bank filter; however, four times less resources are utilized. This
can potentially lead to a significant reduction of power consumption of a target
system. Moreover, Table 4 does not consider the implementation cost of sup-
porting circuits (i.e. the FIFOs) needed to correctly read the filtering windows
from memory. This cost can be significant since adaptive median filters require
larger filtering windows than the bank filter.

Currently we do not exactly know why three (five, respectively) filters evolved
with the aim of removing 40%-salt-and-pepper noise are able to suppress the salt-
and-pepper noise with the intensity up to 70%. Moreover, none of these filters
does work sufficiently in the task which it was trained for (the 40% noise). We
can speculate that although these filters perform the same task, they operate
in a different way. While a median filter gives as its output one of the pixels
of the filtering window, evolved filters sometime produce new pixel values. By
processing these n-values in the n-input median, the shot can be suppressed.
We tested several variants of evolved filters in the bank but never observed a
significant degradation in the image quality.

The existence of several filters in the bank offers an opportunity to perma-
nently evolve one of them while the remaining ones could still be sufficient to
achieve a correct filtering. A possible incorrect behavior of the candidate filter
will not probably influence the system significantly. Therefore, this approach
could lead to on-line adaptive filtering, especially in the case when EA can mod-
ify different filters of the bank. Note that a solution which uses only a single filter
cannot be utilized in the on-line adaptive system in which the image processing
must not be interrupted.

7 Conclusions

In this paper a new class of image filters was introduced. The proposed bank
filter consists of a set of evolved filters equipped with a simple preprocessing and
post-processing unit. Our solution provides the same filtering capability as a
standard adaptive median filter; however, using much fewer resources on a chip.
The solution also exhibits a very good behavior for the impulse bursts noise
which is typical for satellite images. In particular, evolutionary design of image
filters for this type of noise will be investigated in our future research.
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