
Porting SIMLIB/C++ to 64-bit Platform

Peringer Petr⋆

peringer@fit.vutbr.cz

Abstract: This article deals with porting of SIMLIB/C++ (SIMulation LIBrary for C++) from
32-bit to 64-bit environment. SIMLIB/C++ is a freely available open source simulation software
tool usable for education and research. Main problem of porting the code was the non-portable
implementation of cooperative threads (sometimes called ”coroutines”), which we use for par-
allel process modelling. The article contains basic performance comparison of 32-bit and 64-bit
code using simple discrete and continuous simulation models. The results show we can achieve
significantly better performance of simulation tools in 64-bit environment.

Keywords: simulation tool, SIMLIB/C++, process, coroutine, user-level thread, setjmp, longjmp,
x86-64, 64-bit code performance

1 Introduction

The modelling and simulation practice depends on availability of suitable simulation software.
There is a place not only for complex simulation environments like DYMOLA or SIMULINK,
but also for simple simulation tools. Our small tool is SIMLIB/C++ — simple simulation library
usable for discrete and continuous simulation with some extensions for simulation of special
kinds of models (3D, fuzzy).

In this article we describe the implementation changes needed for using SIMLIB/C++ in
64-bit environment. We also show the results of basic performance testing in 32-bit and 64-bit
environments.

2 Motivation and Current State of Development

The development of SIMLIB/C++ started in 1991 on 16-bit platform (MSDOS); later it was
ported to 32-bit (Linux, Windows 95) environment. The original code designed during early
90’s (before C++ standard was published) is now outdated. Wewant to improve overall library
design, bring some new concepts of C++ programming, and release new version of library,
which will solve most of the problems accumulated over time.

The 64 bit computers are becoming the main line of personal computing. Almost all cur-
rently sold PCs are equipped with 64-bit processors. Because of not very good 32-bit processor
architecture traditionally used in PCs (x86 ) there are performance advantages gained by mov-
ing to 64-bit code. The main advantages of 64 bit platform (x86-64 , also calledAMD64or
EM64T) from scientific computing point of view are:

• x86-64 processor has more registers available (16 general purposeregisters and 16 SSE
registers). This allows the compiler to do better optimization of code.

⋆ Department of Intelligent Systems, Faculty of InformationTechnology, Brno University of Technology,
Božetěchova 2, 612 66 Brno–Královo Pole, Czech Republic



• Program can access more memory directly (pointers are 64-bit, possible address space is up
to 2

64 bytes in comparison with232 in 32-bit systems).

The process of porting to 64 bit architecture is described inmany publications (for example [1]
or [5]). Basically we should:

• check all data types which changed size (for example pointers in C++ programs are 32-bit
in old code and 64-bit now) and alignment rules in the new environment,

• usesize_t insteadint or long for storing the size of objects in bytes,
• rewrite all processor dependent code (for example inline assembly code),
• test and debug the new code.

Porting of clean code written in high level languages is not big problem – only small parts of
specialized code should be corrected or rewritten, which isthe case of process switching code in
SIMLIB/C++. This part of code is not portable, because it uses some inline assembly language
code and direct access to stack contents.

There are many implementations of user-level threads [3] available as libraries. They use
various methods of switching the stack, but all are more complex and use more memory per
thread than our implementation.

3 Class Process Implementation

The implementation of specialized threads for simulation purposes can be simpler than general
user-level threads implementations. Simulation processes can be implemented using coopera-
tive multi-threading, which eliminates many problems. Switching process context in simulation
software can be done in three possible ways:

• Stack switching – usually usingsetcontext /getcontext family of system calls which
conforms to theSingle Unix Specificationstandard [7]. More information can be found in
[3]. This approach is currently not used in SIMLIB, but we plan to use this as alternative
implementation for improving portability.

• Use operating system provided threads – this approach is themost portable, but slower
and less memory efficient. This implementation can allow parallel execution of simulation
models on multiprocessor machines, but the implementationof simulation tools this way is
complex. We plan to try boost::threads [2] in SIMLIB in the future because it is possible,
that boost::threads will be part of the next C++ standard.

• Save/restore stack – copy stack contents of interrupted thread into heap-allocated storage and
restore it back before it will continue. Processor context can be read/changed using standard
setjmp /longjmp functions. This approach is not portable because we need small inline
assembly code for getting and setting of stack pointer. Thisis the main problem of porting
SIMLIB/C++ to 64-bit platform.

Current version of SIMLIB/C++ uses ”save/restore stack” approach. It was used in initial MS-
DOS version because of small memory requirements. The typical amount of memory needed
for storing the stack contents is hundreds of bytes per running instance of class Process. Low
memory overhead is the main advantage of this approach – we store only currently used data
on stack, which is different from all other methods which usefixed stack size for each thread.
The main disadvantages of this approach are:

• Non-portable implementation – we need stack manipulations(see Fig. 1), which can cause
implementation problems on some platforms.



STACK HEAP

StackBase

SP

copy
p1

p2

p3

p4

Fig. 1: Save/Restore stack contents of threads

• Speed – this implementation can be slower, because of memorycopying. The amount of
memory depends on amount of local variables in methodBehavior() 1. It is not recom-
mended to use big local variables, best is to store such data into objects as attributes. The
benchmark results later in this article show the dependenceof speed on the size of local data.

3.1 Process dispatcher

The code of simulation system consists of simulation-control algorithm (we use Next-Event)
and special function for process dispatch, which starts/continues behavior of active processes.
The pseudo-code explains the function:

Dispatch:
1 Stack_Base = SP; // save/check current stack pointer
2 if(setjmp(Base_context)==0)

if(Current process has non-empty process context)
3 Restore stack contents
4 longjmp(Proc_context, 1); // go back to Behavior()

else
5 Behavior(); // start of process behavior description

else
6 // after Behavior() was interrupted

The only place, which can start/continue process behavior is the dispatcher. The reason for
this is theStack_Base variable, which should be constant during simulation. Thisvariable
contains (1) start of stack area to save/restore (stack usually grows down, see figure 1).

First call ofsetjmp(Base_context) stores (2) the processor context2 into global vari-
ableBase_context and returns zero. After setting theBase_context we test whether cur-
1 Behavior() is pure virtual method of classProcess , which should be defined in each derived class. The

method defines behavior of processes used in discrete simulation.
2 The stored context is important for jump back fromBehavior() as we will show later. After this jump it

seems likesetjmp returned again, but now it returns non-zero value, and we candistinguish those two returns.



rent process has the stored context. If not (5), it should start Behavior() , if there is the stored
context (3) we should restore stack usingmemcpyand processor context (4) usinglongjmp .
There are some implementation problems:

1. We should shift stack pointer (SP) outside overwritten area before copying the stored data
back into stack, because the call of functionmemcpyuses stack for arguments and return
address, and those should not be overwritten.

2. We can not use local variables in this area of code, becausethey can be referenced using
stack pointer we change (it depends on compiler, level of optimization, and platform).

Call of longjmp never returns back — it continues with new context. If the call of setjmp
returns with non-zero value (6) it is the case of process behavior interrupted by calling a special
method.

3.2 Interrupting the Behavior() method

The Behavior() method can call other special methods able tointerrupt running function and
later come back. We show the implementation ofWait() method as the typical example:

Wait(dt):
1 Calendar.Schedule(this process, at Time + dt);

2 Compute size of stack data (from current SP to Stack_Base)
3 Allocate new process context
4 Save stack (from current SP to Stack_Base)
5 if(setjmp(Proc_context)==0)
6 longjmp(Base_context,1); // go back to dispatcher

else // coming back from dispatcher
7 delete process context

The code for storing process context (2-7) is the same in all functions which can interrupt
runningBehavior() . First it reads the stack pointerSP and computes (2) size of stack area
to save (size = Stack_Base - SP ). Then (3) it allocates memory and does the copy (4)
of stack contents to allocated memory. The pointer to the data is saved into process context in
the object attributes.

Then thesetjmp is called (5) and processor context saved. This call tosetjmp returns
zero. Then (6) the call tolongjmp jumps back to dispatcher usingBase_context . The
process state is stored and can be used for restoring the state of process at the time of its re-
activation by dispatcher. The call oflongjmp by dispatcher leads to second return (5) from
setjmp in Wait() , but now with non-zero return value. Then is the current process context
removed (7), because is not valid anymore. The temporarily interruptedBehavior() method
continues after return fromWait() .

This implementation is simple and works well at PC architecture, but there are other archi-
tectures, on which this implementation can be a problem. There is room for improvements and
optimizations – for example frequent allocation and deallocation of process context can be im-
proved by caching allocated blocks and reusing suitable sized blocks instead of new allocation.



4 Experimental results

We measured performance of the code in various benchmarks. For all benchmarks we used
the PC class computer with Athlon64/3000+ and 512MiB of memory with Debian/GNU Linux
version 4.0/Etch (Linux kernel 2.6.18-4-amd64). The compiler used is GCC version 4.1.2 with
optimization level-O2 .

The methodology we used is very simple: run programs 10 times, remove two slowest and
two fastest measurements and average the remaining 6 values. The absolute numbers are not
very important, because we want only relative performance comparison of 32-bit vs 64-bit en-
vironments.

4.1 Performance of process switching

First benchmark measures the time of one million context-switches3. Results of experiments are
in the table (lower time is better):

Local data size time [s] difference
[Bytes] 32-bit code 64-bit code [%]
0 1.02 0.71 -30
10 1.02 0.70 -31
100 1.08 0.76 -30
1000 1.57 1.05 -33
10000 7.31 4.14 -43
0 (Events) 0.14 0.08 -43

The table shows at least 30 percent improvement of process switching and scheduling per-
formance in 64-bit environment. For comparison we measuredequivalent code using events
(without process switching code overhead). The use of events leads to more complex model
description, but as results show, it is significantly faster.

4.2 Memory requirements

The amount of memory used by processes is tested by program, which generates and acti-
vates N simple processes without local variables at the sametime. Then each process starts its
Behavior() method, doesWait(1) operation and ends. There is N interrupted processes
with saved context at once during this test. We estimated thepossible maximum number of pro-
cesses running simultaneously in memory limited to 400MiB (using commandulimit -v at
Linux). Then we measured run-time of simultaneous creation, activation,Wait(1) and dele-
tion of half million processes:

Benchmark 32-bit code 64-bit code difference [%]
Number of processes created in 400MiB 1 100 000 880 000 -20
Average amount of memory per process [B] 381 476 +24
Time [s] for running 500 000 processes 1.19 0.84 -29

The results show increased memory consumption and faster execution of code in 64-bit envi-
ronment.
3 Process1 is interrupted, reactivation scheduled, context1 saved, found next Process2 record in calendar, context2

restored, Process2 can continue.



4.3 Performance of numerical methods

The performance of numerical methods code used by continuous simulation also improved in
64-bit implementation. Our simple benchmark uses continuous system simulation solving the
differential equationy′′

= −y, with initial conditionsy = 0, y
′
= 1 (so-called ”circle test”).

In the table is the time spent by one million steps using various numerical integration methods
(lower time is better):

Integration method time [s] difference
set using SetMethod(”name”) 32-bit code 64-bit code [%]
abm4 0.66 0.41 -38
euler 0.78 0.53 -32
rke (default) 1.70 1.12 -34
rkf8 2.43 1.56 -36

Table shows that our code compiled for 64-bit platform is at least 30 percent faster. The reason
is that 64-bit processor allows the compiler better optimization of code containing floating-point
instructions.

5 Conclusions

As we have seen in this article, there are some problems associated with conversion of 32-bit
code to 64-bit computing environment, but we get better performance (at least with the code
used in simulation). The conversion of our code tox86-64 architecture was simple, except
process switching code which needed some changes. Our simple benchmarks show, that 64-bit
code can be up to 40 percent faster than 32-bit one on the same machine.

All the work described here is only small part of bigger effort which should result in new ver-
sion of SIMLIB/C++. The process switching code will be implemented in at least two ways in
final version to achieve better portability. We also plan theoptional use of GSL (GNU Scientific
Library [4]) as numerical methods backend, which should significantly improve the usability of
SIMLIB/C++.

This work has been supported by the Research Plan No. MSM0021630528 ”Security-Oriented
Research in Information Technology”.

Bibliography

1. 64-bit development resources,http://www.viva64.com/links.php (Jun 2007)
2. Boost WWW page:http://www.boost.org/ (July 2007)
3. Engelschall, Ralf S.:Portable Multithreading-The Signal Stack Trick for User-Space Tliread Creation,

In Proceedings of the USENIX Annual Technical Conference, San Diego, California, pages 239–250,
June 2000

4. GNU Scientific Library WWW page:http://www.gnu.org/software/gsl/ (July 2007)
5. Porting Linux applications to 64-bit systems

http://www.ibm.com/developerworks/library/l-port64. html (Jun 2007)
6. SIMLIB/C++ WWW page:http://www.fit.vutbr.cz/˜peringer/SIMLIB/ (2007)
7. The Open Group: The Single UNIX Specification, Version 3,

http://www.unix.org/version3/ (Jun 2007)


