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Abstract. This paper deals with techniques of finite state machines (FSMs) localization in FSM-based
softcore intellectual property (IP) cores described in VHDL. The main goal of the FSM localisation is to
supplement additional information about the softcore for the core user, to ease design of the diagnostic
test of the core. Three methods and experimental results are presented in the paper together with the
perspective for future research.

1 Introduction

Continued advances in both the semiconductor technology and the design automation tools are enabling
engineers to design more complex integrated circuits. This, combined with competitive pressures to
improve both the design productivity and the time to market, are driving engineers towards new System
on Chip (SoC) design methodologies and the growing use of predesigned embedded, intellectual property
(IP) cores within their designs.

With an SoC methodology, IP cores are integrated with the designers own User Defined Logic (UDL)
in order to create complex SoC designs. Examples of embedded cores used in SoC design include func-
tional blocks such as memory, processors (general purpose, graphics and DSP), and complex standard
logic such as industry standard bus interfaces.

It can be seen that core-based SoC methodologies take advantage of design reuse, thereby signif-
icantly increasing designer productivity of complex electronic systems. The designer can build a SoC
using various cores (similar to using lower level cells in a library) and connect them using UDL.

According to the level of abstraction IP cores can be divided into (1)softcores, which are cores in
behavioral notation, (2)firmcores, in the form of netlist or register transfer level (RTL) and (3)hardcores,
which are cores in the form of final layout on the silicon mask.

With the increasing complexity of controller (IP cores with control FSM) designs, testing of these
cores has become a bottleneck in the design process. To cope with the exponential state-space growth,
some techniques have been proposed [2, 3] in order to reduce this state space, but only at the RT level.

To date, no technique, which uses behavioral level of the softcore for FSM analysis, is known to the
author.

1.1 Motivation

Last year a coooperation between our department and a professional company developing intellectual
property softcores was established. As indicated by professionals, it was seen as reasonable contribution
to the design of IP cores if the design could be accompanied with recommendations concerning the
diagnostics and testing of the developed core. This was the main motivation for us to start the research



in this area. Thus, our objective was to develop a software tool for the analysis of a behavioral VHDL
code of a softcore (either created or supplied) which is able to: (1) identify memory structures of the
core, (2) identify control structures (FSMs) of the core, if present and (3) define basic principles of
VHDL-synthesized circuit test application.

2 Analysis of the IP cores

Let an FSM based IP core be considered (i.e. a controller). The core consists of two parts: the control
part, which covers the combinational logic and the state control of the FSM; and the data part, which
covers data paths used in the core.

After locating the FSM in the behavioral notation of the core, by finding its state control, a possibility
to design an alternative core test appears. This test could check the correctness of the control part of the
core (i.e. FSM states and transitions), data part of the core has to be tested by other techniques.

One option to create an alternative controller test is to extend the standard test wrapper (TW) [1, 4] of
the core by adding new states to the TW and suggest modifications in the core which could allow access
from the proposed TW to the control structure. This provides an alternative way to test the finite state
machine by changing and/or observing the machine states directly.

The location of the FSM in softcore can be done through compilation techniques, by a method which
should be independent of the specific coding style of IP core author.

FSM localization is not a new topic in this field of research. Some techniques for FSM extracting
have been already proposed [5]. This work is focused on FSM extraction, but again at the RT level, to
improve functional verification, by converting the HDL model to a hierarchicalprocess-module(PM)
graph. Typical FSM patterns are to be searched in the PM graph afterwards. The authors claim that their
technique is independent of HDL coding style.

The goal of this method is that the behavioral notation of an IP core, which is delivered to the core
user, will be supplied with the results of this analysis. The user will therefore be provided with a detailed
information about the alternative way of testing the core. The information will be useful within the
design of the test patterns in the subsequent steps of test design. To provide a user with this information,
FSM must be located in the code first.

3 Locating the FSM in core

Locating the state control in the behavioral notation of arbitrary IP core consists of these steps:
(1) Syntax analysis of the core done by VHDL compiler. This creates the syntax tree of the core.
(2) Extraction of the input/output ports of the core and extraction of the internal signals of the core

from the syntax tree. These are listed in the table called register table.
(3) Syntax tree analysis by one of the proposed methods:1TR, 2CA or 3PE (described later in the

text). These methods add two attributes to each of the items from register table, callednC as the value
of the current state register candidate andnN as the value of the next state register candidate (both
parameters described are later in the text).

Dividing state registers into two registers (current and next state registers) are the specifics of analysis
at the behavioral level. After the synthesis into the RTL these two registers are merged into one.

(4) Using the results from the previous step, determine, whether the core under analysis is really a
controller and determine the type of the controller, or it is a NAC (see 3.3) core.

(5) Using the results from step 3, determine which register (or registers) represent the state control
of the core, and provide the core user with this information.



All five steps of the procedure are described in detail in this section.

3.1 VHDL compilation

The goal of the first step is to convert the core behavioral description into an abstract syntax tree. To do
so, Savant VHDL compiler was used [6].

The IEEE standard 1076.6 is defined, which is a suitable subset of the VHDL simulation language
for VHDL to RTL synthesis, along with its semantics. The purpose of our work is to locate the state
control, which is independent on the core synthesability, so the compilation can be done over the entire
set of the VHDL standard. It can be stated that Savant software tool can analyze VHDL descriptions
even when they are not in accordance with the IEEE standard 1076.6.

By compiling the source file(s), the abstact syntax tree in the IIR intermediate form becomes available
as a result of lexical, syntax and semantics analysis. Using the Part plugin [7] to Savant, the syntax tree
with additional information is saved in the DOT format [8] for the next steps of analysis.

Syntax treeZ, Z = (V,E) is formally defined by a set of its verticesv ∈ V and edgese ∈ E, where

E =
{
(u, v, i)

∣∣ u, v ∈ V ; i ∈ N+ }
(1)

the symboli indicates the index of the edge. All vertices have its type assigned from the lexems
type setA, which consists about 250 lexem types, which can be formalised as a surjective mapping
f(v) → a, wherev ∈ V , a ∈ A. From the setA the following lexem typesa are used in this
paper: (1)iir ifstatement, which stands for the VHDLif statement, which is used for conditional
branching, (2)iir casestatement, which stands forcasestatement, used as conditional multiple branch-
ing, (3) iir casestatementalternativelist, which stands for list ofcasevariants and (4)iir casestatement-
alternativebyexpressionwhich are used in the subtree of thecasestatement as one of the variant branches,
(5) iir signalassignmentstatementfor signal or port assignment statement, which is used to change the
value of signal or port, (6)iir signalinterfacedeclarationfor port declaration, which is used to define an
input/output port, and finally (7)iir signaldeclarationfor internal core signal declaration.

The names of the lexem types come from the VHDL language description.

3.2 Ports and signals extraction

The information on the state control location can be identified from ports or signals of the core. As a
result of this step, a table is formed which contains ports and signals recognized in the core. Input/output
ports of the core are ofiir signalinterfacedeclarationtype, internal signals are ofiir signaldeclaration
type. Both of lexem types are searched in the vertices setV , creating a new subsetW ⊂ V called register
table.

3.3 Evaluation methods

For the analysis, two evaluation methods were used, the third one is under development. As a result of
applying this step on the table and abstract syntax tree (formed in the previous two steps), two attributes
are added to each row of the table which reflect the possibility that the particular port/signal belongs to
the state control. As a conclusion of this step, the state control of the core is determined.

1TR evaluation method

This method is based on the identification of transitive closures in an abstract syntax tree. Evaluation
method computes the values ofnC andnN attributes. ThenC value of arbitrary registers (nC(s)) is



computed as follows:
nC(s) = |Ts| (2)

whereTs is a set of orderedn-tuples of the setE:

Ts = {[(u, t1, 1)(t1, t2, x1)(t2, t3, x2) . . . (ti, s, xi)]} (3)

whereu is of theiir ifstatementor iir casestatementtype.
ValuenN of arbitrary registers (nN (s)) is computed as follows:

nN (s) = |As| (4)

whereAs is the set of all items fromE, where:

A = {(u, s, 1)} (5)

and whereu is of theiir signalassignmentstatementtype.

2CA evaluation method

2CA method is an extension over1TR method with different algorithm for the current state register
(nC) computation. The extension takes into account the number ofcasestatement alternatives which
reflect the nature of the statement. Because2CA’s results are always better than that of the1TR method,
it supersedes the1TR method. The algorithm fornN is same as in the1TR method, and thenC for
arbitrary registers is computed as:

nC(s) = |Ts|+ |Vs| (6)

whereTs is the set of orderedn-tuples of items fromE, where:

Ts = {[(u, t1, 1)(t1, t2, x1)(t2, t3, x2) . . . (ti, s, xi)]} (7)

whereu is of theiir ifstatementtype.Vs is the set of ordered triplets of items fromE, where:

Vs = {[(u, s, 1)(u, t, 2)(t, v, x)]} (8)

whereu is of theiir casestatementtype,t is of theiir casestatementalternativelistandv is of theiir case-
statementalternativebyexpressiontype.

3PE evaluation method

At the moment, the third method is under research which uses similar algorithms fornC andnN atributes
as2CA method. In addition to this, it uses heuristics to determine which registers are uncapable to be
either current or next state registers and, according to this heuristics, thenC or nN attribute of the register
are reset, so they cannot be chosen as the state control of the core. This heuristic is based on locating the
assignment operator, from core next state register to the core current state register. Nonexistence of this
assignment classifies this core as NAC. Because this method is still under research, there are no formal
algorithms.



State control types

NAC (not a controller) is a core, which has no FSM be controlled by. Because the input of the analysis
can be any core, even that one, which is not a controller, the analysis has to identify this kind of cores.

The 1TR and2CA methods have no concept of detecting NAC cores, so using defined algorithms
on any core with at least one port and/or one internal signal (that means any practical core) will be
addressed as controller with one of the signals selected as state control. The result of this analysis is
evidently wrong.

If the core is a controller, then there are more possibilities of FSM coding in the core. The state
register can be a port (external; E) or a signal (internal; I). The state register can be coded as one register,
or two registers, one for the current state and one for the next state of the FSM. Therefore there are six
variants of controller cores: E, I, EE, EI, II, IE (the first letter is for the current state register, the second
for the next state register).

State register selection

In the1TR and2CAmethods, the register with the greatestnC or nN attribute is selected as the register
of the current or next state, respectively.

In method3PE the registera with the greatestnC (nC(a)) is selected as the register of the current
state. If the greatestnN is nN (a), the state register proposed isa, if it is another registerb, the tree
is searched for ann-tuple starting withirr signalassignmentstatementand eventually ending in theb
register. If the tuple is recognized,a is the current state register,b the next state register, otherwise the
core is NAC. This method is still under research, so the presented approach may be modified.

4 Experimental results

The methods described in this paper were evaluated in terms of successful state register identification.
Success rateis given by the ratio of successful identifications to the total number of experiments. There
are two methods of success rate computation, the first one counts successes only if both current and
next state registers are correctly identified (called pessimistic), and the second one which counts partial
success, i.e. when only one of the registers is correctly identified (called optimistic). Optimistic success
rate logically equals or is greater than pessimistic rate.

Five different cores from different sources were selected for the experimental testing, along with three
synthetic cores created for experimental testing purposes only (these cores are marked with asterisk).
Results are shown in Table 1. Table columns show the name of the core, number of core input/input
ports, number of core internal signals, type of the controller as defined in 3.3, and the result of the core
analysis by respective evaluation methods, where Y means correct analysis and N wrong analysis.

5 Conclusions and future research

The methods proposed in this paper are able to analyse controller softcores with the success rate men-
tioned, the first two methods (1TR and2CA) are already implemented. Success rates of the1TR method
are up to 13% pessimistic and up to 38% optimistic, 2CA method is up to 38% pessimistic and 56% up
to optimistic and finally3PE method is between 71 to 86% optimistic. The goal of the research is that
the target success rate should be 95% on the set of twenty selected cores.

It is expected that the3PEmethod will be able to analyse the set of softcores with the requested 95%
success rate and it will be able to identify NAC cores. This method is currently in the state of testing and



IP core
ports

signals
controller

type
1TR
nC

1TR
nN

2CA
nC

2CA
nN

3PE
nC

3PE
nN

TC01* 3 + 1 I Y Y Y Y Y Y
TC02* 3 + 4 NAC N N N N NAC, Y
TC03* 3 + 0 EE Y N Y N NAC, N
UART 16 + 14 I N Y N Y ?
STEP 5 + 4 I N N Y N Y N
ATAC 11 + 5 II N Y N Y Y Y
ITTC 17 + 17 I N Y Y Y Y Y
ZBYS 8 + 2 II N Y Y Y ?

Table 1: Experimental results

formalisation so the implementation of this method will be available soon.
Based on the cooperation with a company developing IP cores, it is supposed that the methodology

will be further developed in accordance with the needs of practical design area.
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