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Abstract

Network designers perform challenging tasks with so
many configuration options that it is often hard or even im-
possible for a human to predict all potentially dangerous
situations. In this paper, we introduce a formal method ap-
proach for verification of security constraints on networks
with dynamic routing protocols in use. A unifying model
based on packet-filters is employed for modelling of network
behaviour. Over this graph model augmented with filter-
ing rules over edges verification of reachability properties
can be made. In our approach we also consider topology
changes caused by dynamic routing protocols.

1. Introduction

Security and safety of computer networks against dif-
ferent types of attacks or unexpected failures is an impor-
tant task for network administrators. Network devices like
firewalls, flow monitors, or intrusion detection/prevention
systems become an important part of commercial LAN and
WAN networks. These devices can mitigate possible attacks
and failures but cannot prove that the network keeps its per-
formance and response time when topology or state of links
have changed. Traditional approaches to check the correct-
ness of the network design encompass testing and traffic
monitoring.

Using testing and network monitoring, we can analyse
only the current state of the network. Test programs like
traceroute or ping can reveal if ICMP packets can go from
one end point to the other end point of the network. How-
ever, when a link on the route goes down, the network may
converge into a new topology, and new connection between
end points may be filtered by firewall rules on an interme-
diate router. Unfortunately, this behavior cannot be guessed
using testing before the failure of the link have appeared.

An alternative approach is to build a formal model of
the computer network and make a thorough analysis of all
its behavior under certain conditions (links down, adding
packet filters, etc.). For the analysis, formal verification
techniques such as model checking [?] or static analysis [1]
can be employed. In this way the required property is ex-
amined in all possible states of the network configuration
that increases the confidence in proper functionality of the
network. In the case of property violation the problem can
be easily detected and the misconfiguration that caused the
functional failure or security risk can be tracked.

1.1. Contribution of the Paper

The main contribution of the paper consists in the devel-
opment of an analytic model and discussion on a possible
analysis approach revealing issues that relate to the prob-
lem of verification of properties in a network with variable
topology.

The network is modelled as a graph, where vertices are
network devices and edges stand for communication links.
ACLs and routing policies are reflected into the model by
means of packet filtering functions that are associated with
edges of the graph. This unified model of the network was
first introduced in [2].

We provide a procedure that converts an Access Control
List (ACL) in a packet filtering function as this representa-
tion is computationally more efficient. ACLs can be seen
as an ordered sequence of filtering rules. To evaluate such
a sequence of many rules (entries) with different policies
(deny/permit) is a complicated issue. Instead of evaluating
each rule one by one, we transform this ordered set of rules
into a single quantifier-free first-order logical formula called
a packet filter. We prove that the transformation is correct
and present an algorithm of the transformation. We also
propose to use Interval Decision Diagrams (IDDs)[3], an
efficient data structure, to implement and manipulate these



formulas.
The topology of a network may change as links go up

and down. The network state is expressed as the state of
all links on the network. We define a network transition
system as a graph of network states. This transition sys-
tem models the behaviour of the network under link fail-
ures. When a link fails, the network state changes. There
happens not only topological changes, but routes of data
flows change too, according to routing information. To re-
flect these changes we need the model of a routing process
that allows us to compute changes of network-wide routing
information for each network state. This is important for
reachability analysis of the network under link failures.

The state transition system comprises all states of the
network under different failures of links. There are2l pos-
sible network states, wherel is the number of links of the
network that can possibly fail. This finite transition system
can be analysed using model checking verification methods.
As the number of states is exponential we need to tackle the
state explosion problem. We discuss a possible approach
bounding the number of states that need to be explicitly
checked. It is based on the observation that some proper-
ties only hold in a continuous region of the state space.

1.2. Structure of the Paper

The structure of the paper is following. The next section
deals with building a formal model of a network that allows
for description of a network topology, ACLs and routing
policies. Algorithms for conversion of an ACL to a packet
filter function and routing information base to packet fil-
ter functions are defined and their correctness is proved.
The third section introduces a network transition system,
abstract model of distance vector routing protocol, and con-
siders the verification method for the network reachability
analysis computed for a complete set of network states. The
last section summarizes the paper, overviews the related
work and discusses the future work.

2. Formal Model of the Network

The aim of this section is to provide a formal model of a
network topology that allows us to specify a set of attributes
for security analysis. To do so we introduce a graph-based
formal network model with packet filter functions classify-
ing the message flow thus constraining the reachability of
the entities on the network. For the rest of the paper we
refer to the example of the network as given in figure 1.

2.1. Formal description of the network

One of contributions at this paper is the formal model
of the network from point of view of routing processes and
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Figure 1. Network topology example

filtering. Our approach combines techniques introduced in
[2], [4], and [5]. The network is modeled by a directed
graph where vertices are routing devices and edges are com-
munication channels that form abstraction of communica-
tion links. Each communication link is modeled by a pair
of unidirectional communication channel.

Definition 1 (Network). A network is a tuple N =
〈R,L,F〉, where

• R is a finite set of network devices,

• L ⊆ R × R is a finite set of links between routers,
such that for every physical link betweenR1 andR2

there is a pair of channelsl12 = 〈R1,R2〉 and l21 =
〈R2,R1〉, and

• F is a finite set of filtering rules assigned to each edge
of the graph.

Because filters can be applied in both directions of the
link, we suppose that the setL contains for every link two
items〈Ri ,Rj 〉 and〈Rj ,Ri〉.

On real networks there are other network device then
routers. However, every end-point device like PC or Web
server can be described as a router with only one interface,
and one outgoing filtering rule representing routing all traf-
fic to default gateway. According to the previous definition
the network model for our running example is a graph as
shown in figure 2.

Geoffrey G.Xie et al. in [2] show that routing informa-
tion from the network can be added to the static model of
the network using additional filtering rules. These filtering
rules can change as the state of links change, so the filtering
rules depend on the actual state of the network. We analyze
the network states in section 3 of this paper.

In the rest of the paper, we thoroughly refer to the defini-
tions of IP addresses and a structure describing an IP packet
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Figure 2. Network topology example
End-point devices are distinguished from routers by differ-
ent symbol only for the clarity of the presentation.

header. In all definitions, a set of theoretical notations en-
riched by the notions of records and lists is used. A set of
records is written as〈l1 : A1, . . . , ln : An〉,

wherel i are labels andAi are sets defining domains for
fields of the record. An element of the set is a record〈l1 =
a1, . . . , ln = an 〉,

whereai ∈ Ai for all 1 ≤ i ≤ n. The list is written
as〈a1, . . . , an 〉 and two predicates are defined. Predicate
head(l , a) tests ifa is a first element of the list. Predicate
tail(l , t) tests if t is a tail of list a. Also the following
abbreviations are used. Termx ∈ (i ..j ) stands fori ≤ x ≤
j , andSeq(i ..j ) stands for the set of all possible intervals
with boundariesi andj . Term[12..45] is an example of the
element of interval setSeq(0..100).

Definition 2 (IP Address Representation). The IP address
structure is defined as four octets, usually delimited with dot
separator.

IP = {a1.a2.a3.a4 : ai ∈ (0..255), i ∈ {1, 2, 3, 4}}

The IP address interval structure represents a contiguous
address space defined as interval possibly in every octet.

IPINT = {a1.a2.a3.a4 : ai ∈ Seq(0..255), i ∈ {1, 2, 3, 4}}

The IP address with network mask is a tuple whose first
component is IP address and the second component is a
number of network bytes.

IPNET = {〈a,m〉, a ∈ IP∧ 0 ≤ m ≤ 32}

For instance, an address of interface s0/0 on routerR2,
10.10.12.2, is an entity of IP set. IPINT is a set of intervals
of IP addresses. A network connecting routersR2 andR3

can be expressed as an interval10.10.12.[0..255] ∈ IPINT.
In this case, an alternative representation uses a network
prefix length, e.g.,〈10.10.12.0, 24〉. We will use more con-
venient notation10.10.12.0/24. It is easy to see that inter-
val representation is more general as there are intervals of
addresses that cannot be represented using prefix notation.

The fields of header record defined bellow does not cor-
respond directly to the structure of a real header of IP pack-
ets. Only source and destination address fields, and proto-
col identification are considered for IP header. Source port
and destination port fields come from TCP/UDP header.
This representation abstracts from the data carried in the
IP header that are not significant for modeling and analysis
shown later.

Definition 3 (Header Structure). An L3/L4 header is de-
fined as a record of the following structure:

IPHDR = 〈proto : {ip, icmp, tcp, udp},
srcIp : IP, dstIp : IP,
srcPort : (0..65535)
dstPort : (0..65535)〉

We also define an index set of header fields

HDRITEMS = {proto, srcIp, dstIp, srcPort , dstPort}.

Note that set of protocols contains only four elements.
RFC 790[6] defines protocol numbers that can appear in the
protocol fields of IP header. In this paper only protocols
ICMP, TCP, and UDP are considered. All others are spec-
ified as just IP protocol without to distinguish upper layer
protocols.

Considering the header structure defined above, an
HTTP request message sent by devicePC to a
web browser onWWW is represented as〈proto =
tcp, srcIp = 10.10.3.2, dstIp = 10.10.1.2, srcPort =
13244, dstPort = 80〉 record.

2.2. Representation of ACL as a Filtering Function

An important issue for a formal automatic analysis is
how to represent the data to be analysed. In our case, we
need to find a way how to represent access control lists
(ACLs) that are used to filter traffic on the routers. Their
representation should be efficient for further analysis that
includes adding new rules, searching (packet matching over
the rules), test of equality over set of rules, or canonical
representation. We consider ACLs as configured on Cisco
Routers [7].

Briefly, an access control list (ACL) is an ordered se-
quence of filtering rules that permit or deny specific traffic
from/to given nodes/networks. The following example de-
scribes an ACL 1 that permits only a HTTP traffic originat-
ing from network 10.10.0.0 by the first rule. Other traffic
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from that network is prohibited by the middle rule. Nodes
with other source addresses can communicate without any
restrictions as permitted by the last rule.

permit tcp 10.10.0.0/16 any www
deny ip 10.10.0.0/16 any
permit ip any any

Our goal is to represent such ordered lists of filtering
rules in a way that is efficient for a traffic analysis on the
network. Christiansen and Fleury show in [5] that filtering
rules on firewalls can be viewed and represented as lists of
logical formulas.

Filtering function on headerh can be expressed as a
predicate in conjunctive form. For example, functions
η1, η2 andη3 are representatives for ACL rules above.

η1(h) = (h.proto ∈ Tcp) ∧ (h.srcIp ∈ 10.10.0.0/16)

∧(h.destPort = www)

η2(h) = (h.proto ∈ Ip) ∧ (h.srcIp ∈ 10.10.0.0/16)

η3(h) = (h.proto ∈ Ip)

We defineIp = {ip, udp, tcp} since every TCP or UDP
traffic can be classified as IP traffic as well, and therefore
eligible to be filtered by an IP rule. For uniform representa-
tion we similarly defineTcp = {tcp}, Udp = {udp},and
Icmp = {icmp}.

Definition 4 (ACL Rule). An ACL rule is given as follows:

RULE = 〈action : {permit , deny},
match : IPHDR → BOOLEAN〉

Matching functionr .match over rule r is defined as a
boolean expression in the conjunctive normal form:

r .match(h) =
∧

x i ,i∈HDRITEMSh.x i ∈ ci

Constantsci are sets such thatci ⊆ Dom(x i).

An ACL (or packet filter) is an ordered sequence of rules
r i . For ACL 1 (see above), filterϕ1 is given as follows:

ϕ1 = 〈r1, r2, r3〉
r1 = 〈action = permit ,match = η1〉
r2 = 〈action = deny,match = η2〉
r3 = 〈action = permit ,match = η3〉

Definition 5 (Access Control List (ACL)). An Access Con-
trol Lists (ACL) is a list of ACL rules. A set of ACLs is
defined as follows:

ACL = {l : l = 〈r1, . . . rn〉, r i ∈ RULE, 1 ≤ i ≤ n}

Such a representation requires a strict evaluation method.
The order of the rules is important because if there is a

match on the headerηi , the corresponding policyπi is
taken and no other matching is done. Ifηi does not match
a packet, the following rules are tested for matching un-
til a match is found, or the last rule is examined. If no
rule matches, no policy is applied on a packet, and the
packet is allowed to pass. However, a real implementation
of ACLs adds a default rule at the end. This rule of the form
r∞ = 〈action = deny,match = (h 7→ TRUE)〉 drops
every traffic. Further we assume that ACL always contains
such implicit deny rule.

Definition 6 (ACL Evaluation). An algorithm that eval-
uates ACL for the given header is a recursive function
AclEval : IPHDR × ACL → {Permit ,Deny} defined
as follows:

• AclEval(h, a) = Deny if a is empty list,

• AclEval(h, a) = if r .Match(h) then r .Action

else AclEval(h, t)
if head(a, r) andtail(a, t).

We show how to represent ACL as a single quantifier-
free predicate formula that is more suitable for efficient
memory representation and evaluation, for instance, using
BDD like structures.

The procedure that computes such a predicate from the
ACL structure takes iteratively all the rules from the begin-
ning to the end of an ACL list, and for each rule it gives a
boolean expression as follows:

• If an action of the rule is permit, it yields disjunction
of a match expression of the rule with the rest of the
ACL.

• If the action of the rule is deny, it yields conjunction of
negation of a match part of the rule with the rest of the
ACL.

When the end of the ACL is reached, an implicit deny rule
is processed at the same way.

Definition 7 (Filter Function). A packet filter functionψa :
IPHDR → BOOLEAN for ACL a is a function defined as
follows:

• ψa(h) = FALSE if a is an empty ACL list, or

• ψa(h) = ψt (h)∨ r .Match(h) if r .Action = Permit ,
or

• ψa(h) = ψt(h) ∧ ¬r .Match(h) if r .Action = Deny

whenr is the head andt is the tail of ACLa, andψt(h)
is a packet filter function for ACLt .
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Using this procedure, we can express filterϕ1 by equiv-
alent predicateψ1 that is equivalent to ACL 1.

ψ1(h) = η1(h) ∨ (¬η2(h) ∧ η3(h))

Theorem 1 (Filter Function Correctness). Assume that
TRUE = Permit andFALSE = Deny. Then, for any ACL a
and any header h functionsψa(h) andAclEval(h, a) give
the same result. Formally,

(∀h ∈ IPHDR, a ∈ ACL)ψa(h) = AclEval(h, a)

Proof is done by induction on the ACL list and then by case
analysis.

2.3. IDDs as an efficient data structure for ACL

As showed before, ACL can be expressed as a single
first-order logic formula. For computation of conjunction,
disjunction, etc., we can represent this formula using dif-
ferent data structures – Binary Decision Diagrams (BDDs,
[8]), Difference Bound Matrices (DBMs, [9]), Covering
Sharing Trees (CSTs, [10]), Difference Decision Diagrams
(DDDs, [11]), etc. By operations defined over these data
structures, we can easily manipulate the formula.

Filtering rules usually work with a range of IP addresses
or port numbers. To represent a range of such kinds, in-
tervals can be very efficient in the matter of space storage
and computational time. The structureinterval decision di-
agrams(IDD) [3] allows us to perform an easier classifica-
tion on integer numbers within a finite domain.

Definition 8 (Interval Decision Diagram). An Interval De-
cision Diagram (IDD) is a rooted, directed acyclic graph
with two types of nodes (terminal and non-terminal) such,
that

• One or two terminal nodes of out-degree zero are la-
beled 0 or 1.

• Nonterminal nodes form a set ofu of out-degree
deg(u) ≤ |Dom(u)|. Variablevar(u) is associated
with each node.

• val(u, v) = c is a valuation of the edge from nodeu
to nodev , c ∈ Dom(u).

• val(u, v) = ⊥ if there is not an edge between nodesu

andv .

Now, we recall how IDD can be used for encoding a
range of IP addresses. The IP address fields in ACLs are
given using wildcard masks. For these fields, the intervals
are deduced according to these wildcard masks, e.g.,

10.10.0.0/16 → {10}.{10}.[0− 255].[0 − 255]

The advantage of such representation will become evident
when combining several IDDs. If some octets have the
same value they can be merged. Octets whose values form
a continuous range are represented by one interval. The fol-
lowing interval representation combines10.10.0.0/16 and
10.11.0.0/16.

{10}.[10− 11].[0 − 255].[0 − 255]

A filter function matches IP headers on the basis of several
parameters, e.g, source address, destination address, proto-
col type, and port numbers. For IDD representation, it is
important that we are able to define an interval cover on the
domain of every header field. That allows us to split the
domain into intervals that are covered in the IDD graph.

{10}

{www}

{tcp}

{10}

proto

srcIp1

srcIp2

port

1

{10}

{ip, tcp, udp}

{10}

proto

srcIp1

srcIp2

0

proto

1

{ip, tcp, udp}

η1 η2 η3

Figure 3. Example of IDD representation of
ACL rules

Definition 9 (Intervals in Domains). The setI (IPHDRi) =
{I 1, I 2, . . . , I r} represents aninterval cover of a domain
IPHDRi (for i ∈ HDRITEMS) iff (i) ∀j , k ∈ {1, . . . , r} :
I j ∩ I k = ∅ (disjoint intervals), and (ii)IPHDRi = I 1 ∪
I 2 ∪ . . . ∪ I r (a complete cover).

Every matching function of the rule can be represented
using IDD. For instance, the IDD representations of a
matching functionsη1, η2, η3 are depicted in Figure 3.

Definition 10 (IDD Match). Let x = 〈x 1, . . . , xn〉,n =
|HDRITEMS| is an ordering of elements from the set
HDRITEMS. IDD structureσx

r with nonterminals nodes
x i ∈ HDRITEMS represents a matching function of ACL
rule r if ∀i , 1 ≤ i ≤ n − 1:

• val(x i , x i+1) = ci if r .match containsh.x i ∈ ci ,

• val(x i , 0) = Dom(x i) \ ci otherwise.

• val(xn , 1) = cn if r .match containsh.xn ∈ cn ,
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• val(xn , 0) = Dom(xn) \ cn otherwise.

Similarly to the construction ofψ function, the corre-
sponding IDD can be built using basic logical operators.
The existence of an equivalent IDD structure for an arbitrary
packet filter function is stated by the following theorem.

Theorem 2 (IDD Filter). For any orderingx of elements
from setHDRITEMS, is is possible to construct an IDD
structureσx

l for an arbitrary packet filter functionψl such
thatσx

l (h) = ψl (h).

Proof is done by construction of IDD structureσl that fol-
lows recursive structure ofψl predicate function. It assumes
that all used logical operators (∨,∧,¬) are defined over
IDD structure, and preserve the intended semantics.

Figure 4 shows an example of IDD representation for
ϕ1 using the orderingx = 〈proto, srcIp, dstIp, srcPort ,
dstPort〉. The IDD is a result of combination of matching
functionsη1, η2, η3 and optimization steps that removed du-
plicities.

{10}

{www}

{tcp}

{10}

srcIp1

srcIp2

port

{10}

{ip, udp}

{10}

proto

srcIp1

srcIp2

1

0

*

*

*

*

*

Figure 4. Example of IDD representation

It is known that the structure of IDD depends on the order
of variables.

It is apparent from the example above, that using differ-
ent order of variables can lead to more efficient represen-
tation. The study of the methods for determining the best
ordering of variables is beyond the topic of this paper.

2.4. Converting a Routing Table to a Packet Filter Func-
tion

On real networks, data is delivered over various links
connecting a transmitting device with an end host. Layer

3 of OSI model provides end to end connection over inter-
mediate nodes. It uses special network devices, routers, to
find ”the best route” to the receiver. Router has usually sev-
eral interface cards that interconnect neighbors networks.
Router also keeps routing table—a list of known networks
with corresponding outgoing interface. If a router receives
a packet, it lookups its destination network in the routing
table. If found, it sends it by the best route on the corre-
sponding interface.

A packet is forwarded to the destination based on the
routing table entries. If no route is found in the table,
packet is discarded and ICMP message is sent to the origi-
nator of the packet. The routing table in Table 1 contains
routes to the networks 10.10.12.0/24, 10.10.23.0/24, and
10.10.13.0/24 with outgoing interfaces Fast Ethernet 0/1
(f0/1), serial 0/0 (s0/0), and serial 0/1 (s0/1) see Figure 1.

In Table 1, we can see that there are two routes to the
same destination network 10.10.23.0—via interfaces s0/1
and s0/0. These routes are equivalent because they have the
same metric. If one of the routes fails, the table keeps only
an entry to the working network. If both links fail, there
will not be any route to the destination network and packets
headed to this network will be discarded.

C 10.10.12.0/24 is directly connected, s0/1
R 10.10.23.0/24 via 10.10.12.2, s0/1

via 10.10.13.3, s0/0
C 10.10.13.0/24 is directly connected, s0/0
C 10.10.1.0/24 is directly connected, f0/0
R 10.10.3.0/24 via 10.10.13.2, s0/0

Table 1. Routing table for router R1

Routing tables may contain static and dynamic routing
information. If we use dynamic routing and network topol-
ogy is changed, routing process on the router detects the
change. Then routing protocol distributes this change to all
other routers on the network within an administrative do-
main. Distribution of routing information depends on type
of the protocol–distance vector, or state link protocol. For
our analysis, it means that the contents of routing tables can
be changed at any time. We have to consider it in our anal-
ysis of the network behaviour.

It is very efficient to hold routing information as a special
kind of packet filters – see unifying model by [2]. If a route
to the destination exists in the routing table, we can add a
permit rule as a new ACL to the outgoing interface. Other
traffic is denied by a default deny rule.

Now we will formally define the routing table and show
how to convert routing table into packet filter function de-
fined in the previous section.

Definition 11 (Routing table entry). A routing table entry
is a tuplert i = 〈d i , l〉, whered i ∈ IP is a destination net-
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work address with its mask,l ∈ L represents an outgoing
interface, andi is an index of the entry in the routing table.

Definition 12 (Routing table). The routing tablert(R) =
{rt1, . . . , rtn} is a set of routing table entries on routerR ∈
R, n is the number of routing table entries.

Every routing table entry of the formrt i = 〈d i , l〉 can be
converted into ruler(h) = ((h.proto = ip) ∧ (h.dstIp =
d i))

1. This transformation is straightforward—the rule ex-
presses semantically the same thing, i.e., a routing table en-
try forwarding packets with destination addressd i to the
interfacel corresponds to a firewall rule, that permit onl

only packets with the destination addressd i .
If the ruler(h) is applied on the interface connected by

link l ∈ L, we writer l (h).
Similarly, routing tablert(R) of the routerR ∈ R (i.e.,

a set of rules) can be converted into a set of packet filters
ψl i(h), l i ∈ L, that are applied on all interfacesl i ∈ L.
Each packet filterψl i(h) may contain routes to different
networks that use the same outgoing interface.

Formally, routing tablert(R) is transformed to a set of
filter predicatesψl(h):

ψl (h) =
∨

〈d i ,l〉∈rt(h.proto = ip ∧ h.dstIp = d i)

wherel ∈ L is a link connected to the routerR.
Consider the routing tablert(R1) from Table 1. This ta-

ble can be converted into three packet filter functionψ1(h)
(for s0/1),ψ2(h) (for s0/0), andψ3(h) (for f0/0):

ψ1(h) = (h.proto = ip ∧ h.dstIp = 10.10.12.0/24)

∨ (h.proto = ip ∧ h.dstIp = 10.10.23.0/24)

ψ2(h) = (h.proto = ip ∧ h.dstIp = 10.10.13.0/24)

∨ (h.proto = ip ∧ h.dstIp = 10.10.23.0/24)

∨ (h.proto = ip ∧ h.dstIp = 10.10.3.0/24)

ψ3(h) = (h.proto = ip ∧ h.dstIp = 10.10.1.0/24)

2.5. Classless Inter–Domain Routing

Transformation of packet filter as showed in the previous
part works fine for classful routing. However, if we consider
classless routing with a variable subnet mask, it will give
unprecise results. Suppose two networks—10.10.12.0/24
pointing to interface f0/0, and 10.10.12.192/26 pointing
to interface f0/1. Packet filter functions for these net-
works will be ψf 0/0(h) = (h.proto = ip ∧ h.dstIp =
10.10.12.0/24), and ψf 0/1(h) = (h.proto = ip ∧
h.dstIp = 10.10.12.192/26). If there is a packet with des-
tination address10.10.10.12.193, it will match both predi-
cates. However, the router should provide the longest prefix

1We suppose routing protocols over IP only.

match on the IP address. That means, if the packet matches
more than one rule, the rule with more matched bits is se-
lected. In our case, only the second function should be ap-
plied.

To deal with classless routing, we first need to define a
function that will test if an IP address A is a subnet of an IP
address B.

Definition 13 (isSubnet function). Let isSubnet :
IPNET × IPNET → BOOLEAN be a function such that
isSubnet(A,B) = TRUE if and only if network addressA
is subnet of network addressB .

In our case,isSubnet(10.10.12.192/26, 10.10.12.0/24)
is true because 10.10.12.192/26 is a subnet of
10.10.12.0/24.

Then, the packet filter functionψl (h) has to contain a
rule that permits the network address but forbids all its
possible subnets that exist in routing tablert . Formally,
ψl(h) =

(i)
∨

〈d i ,l〉∈rt

(

(h.proto = ip ∧ h.dstIp = d i)
∧

〈d j ,k〉∈rt,k 6=l¬(h.proto = ip ∧ h.dstIp = d j )
)

iff ∃〈d j , k〉 : isSubnet(d j , d i)
(ii)

∨

〈d i ,l〉∈rt (h.proto = ip ∧ h.dstIp = d i)
otherwise

In our example above,ψf 0/1 will not be changed. Only
packet filter functionψf 0/0 will be extended as follows:
ψf 0/0 = ((h.proto = ip ∧ h.dstIp = 10.10.12.0/24)) ∧
¬(h.proto = ip ∧ h.dstIp = 10.10.12.192/26).

2.6. Adding Routing Information and ACLs into the
Network Model

In the previous text, we showed how both ACL and rout-
ing information can be represented by a packet filter func-
tionψl(h) applied on the interfacel ∈ L. Now we can join
these two packet filter function together, i.e., we create a
unified network model that contains both filtering and rout-
ing information. LetR is a set of routers of the network
andL is a set of all links. Then, a unified model is a triple
N = 〈R,L,F〉, where∀l ∈ L : ψ′

l (h) ∧ ψl (h) ∈ F l ,
ψ′

l (h) represents ACL related to interfacel and ψl(h)
specifies routing information bound withl . If there is no
ACL related tol , we omitψ′

l (h). If there is no routing
information bound withl , we have to add a default rule
ψl(h) = ¬((h.proto = ip) ∧ (h.dstIp = any)) to l that
filters out all possible traffic. In our examples, we omit this
default rule for brevity.

Suppose the network from Figure 5 with one ACL called
ACL1 allowing DNS traffic2 on link 〈R3,R2〉 only. Then,

2protocol UDP, destination port 53
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Figure 5. Model of the network N with one
ACL

we get the following model:N 1 = 〈R,L,F〉, whereR =
{R1,R2,R3,WWW ,PC}, L = {〈R1,R2〉, 〈R2,R1〉,
〈R1,WWW 〉, 〈WWW ,R1〉, 〈R1,R3〉, 〈R3,R1〉, 〈R2,R3〉,
〈R3,R2〉, 〈R3,PC 〉, 〈PC ,R3〉}, and ∀i ∈ L,F i ∈ F
whereF i is defined as follows:

F〈R1,R2〉(h) =
∨ (h.proto = ip ∧ h.dstIp = 10.10.12.0/24)
∨ (h.proto = ip ∧ h.dstIp = 10.10.23.0/24)

F〈R1,WWW 〉(h) =
(h.proto = ip ∧ h.dstIp = 10.10.1.0/24)

F〈R1,R3〉(h) =
∨ (h.proto = ip ∧ h.dstIp = 10.10.13.0/24)
∨ (h.proto = ip ∧ h.dstIp = 10.10.23.0/24)
∨ (h.proto = ip ∧ h.dstIp = 10.10.3.0/24)

. . .
F〈R3,R2〉(h) =
∧ (∨ (h.proto = ip ∧ h.dstIp = 10.10.23.0/24)

∨ (h.proto = ip ∧ h.dstIp = 10.10.12.0/24))
∧ (h.proto = udp ∧ h.dstPort = 53)

. . .

This model describes how packets on the network are fil-
tered with respect to both current ACLs applied on links
and routing information. However, that model describes
only one network state where all links are up and work-
ing correctly. We will cover the case of failures within the
following discussion about analysis approach.

3. Analysis Approach

For the network state shown above, we can verify reach-
ability between any two routers fromR. Suppose we are
interested if there is a path for WWW requests (destination

port number 80) coming fromPC toWWW . This property
can be expressed by the formulaϕ(h) = (h.proto = tcp)∧
(h.srcIp = PC )∧(h.dstIp = WWW )∧(h.dstPort = 80)
stating, that every packeth with required header fields sat-
isfies the property.

Before presenting how our network model can be anal-
ysed, we need to define several terms.

Definition 14 (Path). A path between two routersR,R′ ∈
R on the networkN = 〈R,L,F〉 is a sequence of routers
r i ∈ R and linksl i ∈ L with filtersF i ∈ F as follows:

π(R,R′) = (R, 〈R,R1〉,R1, 〈R1,R2〉,R2, . . . ,Rk ,

〈Rk ,R
′〉,R′)

where F 〈R,R1〉 ∧ . . . ∧ F 〈Rk ,R′〉 holds.

There can be more than one path between two routers.

Definition 15 (Network Reachability). We define network
reachabilityNetReach(R) on the network〈R,L,F〉 to be
a set of routers reachable from routerR:

NetReach(R) = {R′ ∈ R | ∃π(R,Rk ),Rk = R′}

Usually we put restrictions on the path between two
routers, e.g., we verify if there exists a path between two
routers for Web traffic. This restriction can be expressed by
a formula that extends our definition of path, resp. reacha-
bility in the following way:

Definition 16 (Path under property). A path under property
ϕ between two routersR,R′ ∈ R on the networkN =
〈R,L,F〉 is a sequence of routersr i ∈ R and linksl i ∈ L
with filtersF i ∈ F as follows:

πϕ(R,R′) = (R, 〈R,R1〉,R1, 〈R1,R2〉,R2, . . . ,Rk ,

〈Rk ,R
′〉,R′)

where F 〈R,R1〉 ∧ . . . ∧ F 〈Rk ,R′〉 ∧ ϕ holds.

The definition above restricts the set of possible paths
fromR to R′ to those paths where propertyϕ is satisfied on
every link of the path.

Definition 17 (Network Reachability under property). Net-
work Reachability under propertyϕ on the networkN =
〈R,L,F〉NetReachϕ(R) is a set of routers reachable from
routerR under propertyϕ:

NetReachϕ(R) = {R′ ∈ R | ∃πϕ(R,Rk),Rk = R′}

3.1. Reachability Analysis

To analyse security property on the networkN =
〈R,L,F〉 we at first (i) define a property of the network
by means of a packet filterϕ, and then (ii) compute a net-
work reachability set from the starting pointR under the
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given propertyϕ, i.e., NetReachϕ(R). If the set is non-
empty, there is a path that covers the given property, and the
property is valid on that path starting fromR of the network
N .

Suppose the networkN = 〈R,T ,F 〉 from Fig.5 and
property allowing WWW traffic fromPC to WWW :
ϕ(h) = (h.proto = tcp) ∧ (h.srcIp = 10.10.3.2/32) ∧
(h.dstIp = 10.10.1.2/32) ∧ (h.dstPort = 80). Then,
we compute a set of destination reachable from the
sourcePC under propertyϕ, i.e., NetReach(PC )ϕ =
{R3,R1,R2,WWW }.

There are two paths between PC and WWW,π1, going
over R3 andR1, resp. π2, going overR3,R2, andR1.
By adding propertyϕ that represents WWW request from
PC to WWW, we get only one path under that property
πϕ = π1, that goes over links〈PC ,R3〉, 〈R3,R1〉, and
〈R1,WWW 〉. For the pathπ1 the formulaF 〈PC ,R3〉 ∧
F 〈R3,R1〉 ∧ F 〈R1,WWW 〉 ∧ ϕ is satisfied because destina-
tion address10.10.1.2 is in the range of intervaldstIP set
by filtering rules, and no other restrictive rules are applied.
The pathπ2 is not valid underϕ becauseF 〈R3,R2〉 ∧ ϕ is
not satisfied (DNS filtering on the link).

What happens if the link〈R3,R1〉 goes down? The rout-
ing tables are recomputed. Still, all the networks inN are
reachable fromPC . However,NetReachϕ(PC ) = {R3}
since pathπ2 does not satisfiesϕ. Under such link states
the propertyϕ is not satisfied.

This transient behaviour of the network cannot be found
by testing or simulation. In the example above we consider
only one state of the network where all links are up. In
the following text we will discuss transient behaviour. We
will also show how this behaviour can be expressed using
network statess , and analysed.

3.2. Transient Behaviour of the Network

If the state of any link changes, i.e. link goes down or
up, it will alter the network topology and routing informa-
tion may become obsolete. At that time it is necessary to
recompute packet filtering functions on interfaces to reflect
new routing information. This subsection introduces the no-
tation of a state of the network and identifies the basic prop-
erties of the structure of states that aids in formal analysis.

For simplicity, we restrict now our model to converged
states only, where the link is up or down, and the routing
process successfully distributed converged routes into every
router. Later we will show, that this abstraction is correct
even for momentary unstable network. This simplification
allows us to represent network states as a bit vector.

Definition 18 (Network State). A network states is a vector
of boolean values representing states of all links. A link
state is a boolean value representing either “link up” or
“link down” state.

For the network withl = |L| links the states is repre-
sented by anl -bit vector. Number of different states is given
by all possible combinations of link states, that ism = 2l .
Suppose our running example from Fig.1, for brevity, only
links between routers. We have a network with three links,
represented by three pairs of connections in the correspond-
ing network graph (see fig.2).

In this network, there are following network states:s8 =
(0, 0, 0) (all links are down, network is disconnected),s5 =
(0, 0, 1) (only one link is up, in particular, link represented
by pair 〈R2,R3〉, 〈R3,R2〉), etc. The number of network
states is23 = 8.

Definition 19 (Network Transition System). Behaviour of
a networkN = 〈R,L,F〉 from point of view of topology
changes, can be defined bynetwork transition systemT N =
(SN ,→), where

• SN 1
= {s1, s2, . . . , sm},m = 2l is a finite set of net-

work states,

• → is a transition relation between network states
such that s i → s j iff ∀n ∈ {1, . . . , k −
1, k + 1, . . . , l} : s i

n = s j
n and s i

k 6=

s
j
k , where s i = (s i

1, . . . , s
i
k , . . . , s

i
l ) and s j =

(s j
1, . . . , s

j
k , . . . , s

j
l ), s i , s j ∈ SN 1

.

m
1

s1

s8

s2 s3 s4

s5 s6 s7

m
1

m
3

m2
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s1 = 〈1, 1, 1〉
s2 = 〈0, 1, 1〉
s3 = 〈1, 0, 1〉
s4 = 〈1, 1, 0〉
s5 = 〈0, 0, 1〉
s6 = 〈0, 1, 0〉
s7 = 〈1, 0, 0〉
s8 = 〈0, 0, 0〉

m1 = 〈l12, l21〉
m2 = 〈l23, l32〉
m3 = 〈l13, l31〉

Figure 6. Network transition system

Transition systemT N 1
in Fig. 6 precisely describes sub-

set of possible network states of the networkN . The focus
is only on the state of links among the routers.

In general, verification of propertiesΨ on networkN re-
quires analysis of the every network state. Formally, the
verification of propertiesΨ of the systemN is ∀s ∈ S :
N (s) |= Ψ. For such analysis, a model checking technique
can be applied. As the number of states is exponential to the
number of links, the model checking faces the state explo-
sion problem. The expected result of property verification is
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a set of states for which the property holds. Above defined
transition system can help to reduce a number of states that
have to be checked.

A network transition system constructed according the
definition above forms a lattice. If the verified property is
closed under lattice operations the states we have to visit
form a sub-lattice. We plan to examine these properties
deeply in our future work.

3.3. Computing Routing Table Content

Computation of routing tables in routers that uses RIP, a
dynamic routing protocol, is based on Bellman-Ford algo-
rithm [12]. The implementation of this algorithm on routers
is asynchronous, iterative and distributed. Distributivity
comes from the behavior of RIP on the routers. Each router
R receives information from one or more directly connected
routers and calculates new routing table based on this re-
ceived information. For link cost calculation RIP protocol
uses hop count as metric that represents a number of nodes
through which the message must go to reach the destina-
tion. Even in the case of more metrics, such as delay, band-
with, reliability, that are used by more complex protocols,
the main requirement that it must be possible to represent
the total metric as the sum of individual one hop metrics
has to be satisfied. For our demonstration we use a variant
of the distance vector algorithm described in [13].

Definition 20 (Distance Vector Algorithm). Distance vec-
tor algorithm computes a minimum reachable distance
D i(j ) from nodesRi to Rj . It is defined to satisfy the fol-
lowing constraints:

• D i
0(i) = 0, for all nodesRi ,

• D i
0(j ) = ∞, for i 6= j , and

• D i
n+1(j ) = mink [d(i , k) + Dk

n(j )], for i 6= j , all
neighborsRk of Ri , andd(i , k) to be the cost of the
direct connection betweenRi andRk .

Figure 7 shows the two interative steps needed to com-
pute routing tables for individual routers. In figure 8 the
resulting routing tables are presented. Note that the compu-
tation is for the cases5 = (1, 0, 1), i.e. link between routers
R1 andR3 is down.

An analysis in [14] gives a proof that this algorithm will
converge to the correct estimates in finite time. As the as-
sumption the authors consider that entities are reliable, i.e.
they will not crash. If there is a problem with the entity
it can be modelled as topology change. Also there are no
constraints on the communication and it can be considered
that entities can send updates asynchronously. The proved
convergence under these assumptions make this abstraction
suitable for the analysis considered in this paper.

DR1

0 R2 R3

(R1,R2) 0 ∞
(R1,R3) ∞ ∞

DR1

1 R2 R3

(R1,R2) 0 1
(R1,R3) ∞ ∞

DR2

0 R1 R3

(R2,R1) 1 ∞
(R2,R3) ∞ 0

DR2

1 R1 R3

(R2,R1) 0 1
(R2,R3) 1 0

DR3

0 R1 R2

(R3,R1) ∞ ∞
(R3,R2) ∞ 0

DR3

1 R1 R2

(R3,R1) ∞ ∞
(R3,R2) 1 0

Figure 7. Distance Vector Routing Database
for s=(101).

Values on vertical axis represent interfaces, values on hor-
izontal axis represent destinations, i.e. arguments for the
distance vector function.

rtR1 next cost
R2 R2 0
R3 R2 1

rtR2 next cost
R1 R1 0
R3 R3 0

rtR3 next cost
R1 R2 1
R2 R2 0

Figure 8. Resulting Routing Tables for
s=(101)

4. Conclusions

This paper introduces a new methodology how to anal-
yse dynamic behaviour of the network. The approach is
based on graph theory. The paper shows how to create a
network model extracted from routers’ configurations and
suggests how to automatically analyse it. In the model we
consider access control lists and dynamic routing protocols.
We show how ACLs and routing can be added to the graph
model using quantifier-free first-order formulas. We present
an algorithm that transforms a set of ACL rules to the for-
mula and prove that the transformation is correct. We also
show how routing information can be added to the model.
We recommend interval decision diagrams for internal rep-
resentation of such formulas. Using IDDs we can easily
provide conjunction, disjunction, or inclusion of routingin-
formation and ACLs specified with formulas.

In the analysis part we show how network reachability
can be computed. We consider not only static topology of
the network but also link failures. Our model is general and
can be used for verification of reachability properties even
if some links go down.
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4.1. Related work

The tools for testing and simulation of network behavior
is well established. Instead the contributions on verification
of network behavior by means of formal methods are rare.
The closest work to ours is by Xie et.el. [2]. They pro-
vide a unified framework for reasoning about the effects of
packet filters, routing policy, and packet transformationson
the network’s reachability. In that work system states are
not explicitly evaluated nor examined by automatic meth-
ods, but lower and upper bounds on the reachability are de-
fined by means of a set of packets allowed to pass through
the network between given nodes.

The work on the packet classification is thoroughly ex-
amined for many years and many works were published,
e.g. [15], [16],[17],or [18]. The use of IDD has been pro-
posed as the efficient implementation of packet filter func-
tions for resource constrained devices. In our work we con-
sider to use it in a different context of model checking tool.

4.2. Future Work

Our future work is oriented mainly toward research of
analysis techniques for the given network model. One issue
has been already mentioned in the paper. We want to study
the class of properties whose satisfiability is closed under
lattice operations of the network transition system. The aim
is to set criteria that would guarantee that the property be-
longs to this class. From the practical viewpoint, we want
to experiment with model checking tools to show the feasi-
bility of the proposed analysis technique. In the paper we
considered a general distance vector protocol. For better ap-
proximation of the network behavior the models of different
routing protocols, such as RIP, OSPF, EIGRP, and BGP, will
be created and used in the verification procedures.

The other direction is to incorporate the routing policies
different than those based on static routing information or
routing information provided by dynamic routing protocol.
It includes policy based routing, for instance. Finally, we
plan to employ probabilistic verification techniques for net-
works with dynamic metrics, such as congestion or link re-
liability, appearing in routing information.
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