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Abstract

This paper deals with an approach to security analysis of TCP/IP-based com-

puter networks. The method developed stems from a formal model of network

topology with changing link states, and deploys bounded model checking of network

security properties supported by SAT-based decision procedure. Its implementation

consists of a set of tools that provide automatic analysis of router configurations,

network topologies, and states with respect to checked properties. While the paper

aims at supporting a real practice, its form strives to be exact enough to explain

the principles of the method in detail.

1 Introduction

1.1 Motivation

Suppose a small organization running a web server that provides information to their

customers. The server is placed in the local network equipped with three routers. A path

to the Web server goes through router R2 that filters traffic by ACL1 (Access Control

List) in its input, see Figure 1.

There is a backup line between routers R1 and R3 with higher costs (lower priority).

However, when the link between R2 and R3 goes down, the traffic is not filtered any more
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Figure 1: Example of a small network

and the web server can be attacked from the outside network.

In another scenario, the priority line appears between routers R1 and R3. This line

enables to access the Web site from the PC, see Figure 1. When the link goes down,

traffic is redirected by routing tables trough R2. However, R2 entry interface is filtered

by ACL1. The connection from PC to Web server is filtered out and the Web services

are no longer available.

These two scenarios present typical situation of a real-world network with dynamic

behaviour. This paper shows an approach how to deal with such situation in order to

ensure security, safety and availability of network resources.

Our approach focuses on the area of automatic analysis of a network that consists of

L3 devices (hosts, routers, firewalls etc.) connected by links and, optionally, with firewall

rules applied on them. Based on the network configuration and considering dynamic

behaviour of the network, we can ask questions like “Is this network protected against

P2P connections?”, “What packets can be delivered to the given host?”, or “Is this WWW

service accessible under every configuration of the network?”.

These questions can be partially answered by scanning and testing tools (ping, nmap),

or vulnerability assessment tools (Nessus). However, testing can analyse the network only

in immediate state, that means, for fixed configuration in practice. When the topology

changes, the response of the network can be different as shown in the example above.

In our work we explore how security and safety properties can be verified under every

2



network configuration using model checking [5]. The model checking is a technique that

explores all reachable states and verifies if the properties are satisfied over each possible

path to those states. Model checking requires specification of a model and properties to

be verified. In our case, the model of network consists of hosts, links, routing informa-

tion and ACLs. The specification of network model is given in section 2. The network

security properties are expressed in the form of modal logics formulas as constraints over

states and execution paths. If a property is not satisfied, the model checker generates

a counterexample that reveals a state of the network that violates the property. If the

property is proved, it means, that the property is valid in every state of the systems.

In this paper we primarily focus on the automatic analysis of network security prop-

erties of the network. The challenges that we are addressing in the paper include: (a)

automatic generation of the network model using routers configuration files, (b) creating

templates for specification of network security properties, and (c) a combination of tools

that verify given properties over the model using model checking.

1.2 State of the Art

In this section, we survey common approaches to network analysis with focus on vulner-

ability analysis and network security.

Dependability [14] is that property of a system that allows reliance to be justifiably

placed on the service it delivers. Dependability measures consist namely of reliabil-

ity, availability, security, safety and survivability. Availability is the ability to deliver

shared service under given conditions for a given time, which means namely elimination

of denial-of-service vulnerabilities. Security [7] is the ability to deliver service under given

conditions without unauthorized disclosure or alteration of sensitive information. It in-

cludes privacy as assurances about disclosure and authenticity of senders and recipients.

Security attributes add requirements to detect and avoid intentional faults. Safety [10] is

the ability to deliver service under given conditions with no catastrophic affects. Safety

attributes add requirements to detect and avoid catastrophic failures.

A failure occurs when the delivered service deviates from the specified service. The
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failure occurred because the system was erroneous: an error is that part of the system

state which is liable to lead to failure. The cause of an error is a fault. Failures can

be classified according to consequences upon the environment of the system. While for

benign failures the consequences are of the same order of magnitude (e.g. cost) as those

of the service delivered in the absence of failure, for malign or catastrophic failures the

consequences are not comparable. A mishap is an unplanned event (e.g. failure or

deliberate violation of maintenance procedures) or series of events that results in damage

to or loss of property or equipment. A hazard is a set of conditions within a state from

which there is a path to a mishap.

Obviously, design of any safe system requires deploying security to avoid intentional

catastrophic failures. And vice versa, system’s security can be attacked using a safety

flaw. The greater the assurance, the greater the confidence that a security system will

protect against threads, with an acceptable level of risk. The above statement deals with

trust, which is assured reliance on the character, ability, strength, or truth of someone

or something [11]. In frame of network systems, trust is a complex subject that should

be managed. Trust management entails collecting the information necessary to estab-

lish a trust relationship, and dynamically monitoring and adjusting the existing trust

relationship.

Research in the area of network security and vulnerability detection has been con-

ducted since the beginning of the Internet. Many papers concentrate on detection of

vulnerabilities of hosts and their protection against the network attack [20], [23], or [18].

Most works follow the similar scheme: (i) Network is modelled as an entity that includes

hosts, connections, user privileges, OS types, running services, and individual vulnerabili-

ties of hosts. (ii) Host vulnerabilities are revealed by external automatic tools like Nessus,

or by OVAL scanner [22]. Then, detected vulnerabilities are expressed in the language of

precondition and postcondition assertions, or rules. (iii) An important step is to deter-

mine the attacker goal – security violation (e.g., root access on the web server). The goal

is often expressed by a predicate. (iv) Having these, vulnerability analysis follows. It

includes an application of derivation rules based on the initial assumptions (i.e., network
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configuration) in order to prove a predicate (i.e., security violation). If the predicate is

true then the deduction path corresponds to the possible attack scenario.

Despite the statement of authors in [18] that “this model lets automatically verify and

proof network safety and vulnerability against the attack” (emphasis added), the method

of logic deduction and proving requires good knowledge of logics and deductive systems,

since the proof is constructive and it is made by human.

In [22], an automatic deduction of network security executed in Prolog is introduced.

The authors define reasoning rules that express semantics of different kinds of exploits.

The rules are automatically extracted from OVAL scanner and CVE database [15].

Another approach is an automatic generation of network protection in the form of

firewall rules as shown in [2]. The security policy is modelled using Model Definition

Language as the first step. Then, the model of a network topology is translated into

firewall-specific configurations. These configuration files are loaded into real devices (fire-

walls).

Ritchey and Amman [17] shows how model checking can be used to analyse network

vulnerabilities. They build a network security model of hosts, connections, an attacker

and exploits to be misused by the attacker. Security properties are described by temporal

logics and verified using SMV model checker. However, their goal is different from ours.

They verify if hosts on the stable network are vulnerable to attacks. In our case we

concentrate on dynamically changing networks and reachability of their nodes.

From the approaches mentioned above we can take following conclusions that are

important for network security analysis: (1) a model of a network includes specification

of hosts, their configurations, network topology, description of vulnerabilities; (2) a list

of host vulnerabilities and network threats can be downloaded from open databases,

or specified manually; (3) analysis can be manual or automatic, based on deductive

systems or by model checking, respectively; (4) results of the analysis can either show

specific vulnerabilities that require intervention of an administrator, generate a new safe

configuration for network devices, or prove that the property is valid under every condition

of the network.
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1.3 Contribution

Many papers in this area deal with static network configuration. If network configuration

or topology changes, a model of the network has to be rebuilt. Our approach deals with

networks with dynamic behaviour. Dynamics is modelled by routing protocols, e.g., RIP

or OSPF. Our goal is to automatically verify network security properties in a network

model. The network model is constructed accroding configuration files of network devices

and the network topology.

Our approach is close to the work of G. Xie [21], and J. Burns [6]. Unlike these works

we build a model that includes both static and dynamic behaviour, i.e. firewall rules and

routing information, see [13]. In this model, the verification of reachability properties can

be made. In comparison to Ritchey’s work [17] we do not focus on hosts vulnerability

and their resistance to attacks but on stability of services in dynamic networks.

Main contributions of this paper consists of (i) the creation of a network transition

system that models dynamic behaviour of the network, (ii) the definition of security

properties using modal logics, (iii) the algorithm for verification of specified properties

using bounded model checking and SAT-solver, and (iv) the presentation of the idea on

a small example.

1.4 Structure of the paper

The paper is composed of five basic parts. After introduction, we present a formal

model of network topology in section 2. The model was originally published in our paper

[13]. In this paper we describe in more detail how dynamic changes can be modelled

using a network transition system where transitions reflect the changes of links in the

original network (link down, up). Section 3 describes common security properties and

the way these properties can be expressed by modal logics. Section 4 shows what security

properties can be verified using model checking. SAT-solver. The section ends with

the example explaining how network security properties are verified using the proposed

approach. Last section summarizes the results and proposes future progress of network-

wide security analysis.
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2 Network Model

The aim of this section is to provide a formal model of a network topology that allows

us to specify a set of attributes for security analysis. This model was originally defined

and published in [13]. In this paper, we show a brief introduction to our graph-based

formal network model with packet filter predicates classifying the message flow and thus

constraining the reachability of the entities in the network. For the rest of the paper we

refer to the example of the network topology as given in Figure 1.

2.1 Formal description of the network

One of the contributions of this paper is the formal model of the network from point of

view of routing processes and filtering. Our approach combines techniques introduced

in [21] and [4]. The network is modeled as a directed graph where vertices are routing

devices and edges are communication channels that form abstraction of communication

links. Each communication link is modeled by a pair of unidirectional communication

channel.

Definition 1 (Network) A network is a tuple N = 〈RN ,LN ,FN 〉, where

• RN is a finite set of network devices,

• LN ⊆ RN ×RN is a finite set of links between routers, such that for every physical

link between R1, R2 there is a pair of channels l12 = 〈R1,R2〉, l21 = 〈R2,R1〉, and

• FN = {f : P → {true, false}} is a finite set of filtering predicates and P is a set

of all possible packets.

Because filters can be applied in both directions of the link, we suppose that the set L

contains for every link two items 〈Ri ,Rj 〉 and 〈Rj ,Ri〉. In real networks there are other

network device then routers. However, every end-point device , such as PC or Web server,

can be represented using a router with only one interface, and one outgoing filtering rule

representing routing all traffic to default gateway. According to the previous definition

the network model for our running example is a graph as shown in Figure 2.
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Figure 2: Model of Network N

End-point devices are distinguished from routers by different symbol only for the clarity
of the presentation.

Geoffrey G.Xie et al. in [21] show that routing information can be added to the static

model of the network using additional filtering rules. These filtering rules can be changed

as the state of links is changed, so the filtering rules depend on the actual state of the

network. We analyze the network states in section 4 of this paper.

A filtering predicate f (p) ∈ FN is able to determine whether a packet p is allowed

to be send. This function is defined so that it uniformly represents the interpretation of

Access Control List (ACL) and routing table information adequate to link l . A simple

example is a filter, f (p) = ¬(p.proto = Tcp ∧p.dstPort = 80), that denies all web traffic,

i.e. TCP packets with destination port 80. Note that dot notation is used to refer to

attributes of the current packet. Both ACL and routing information of a network node

can be translated to a filtering predicate.

A network link state s consists of a vector of boolean values representing condition

of links in the network and a function that maps the state-specific filtering predicate to

each link.

Definition 2 (Network Configuration State) A set of network configuration states

of a network N is a set SN = {〈b, δb〉|b ∈ 2|LN |, δb : LN → FN}, where

• b is a link state vector, e.g. b = (1, 1, 1). b[i ] = 1, means the i-th link is up, 0

means it is down.
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• F is a set of filtering predicates of network N , and

• δb is a mapping function that assigns a filtering predicate to each link of network

N . If the link l i is down then filtering predicate is false for every packet, i.e. for

b[i ] = 0 then ∀p ∈ P.δb(l i)(p) = false.

For the network N with |LN | links its state vector consists of |LN |-bits. Number of

different states is given by all possible combinations of link states, that is 2|LN |. Suppose

for our running example from Fig.1, for brevity, only links between routers. We consider

a network with three volatile links, represented by three pairs of connections in the

corresponding network graph (see Fig.2). In this network, there are following network

states: b8 = (1, 1, 1) (all links are up, network is fully connected), b5 = (1, 0, 1) ( one link

is down, in particular, link represented by pair 〈R2,R3〉, 〈R3,R2〉), etc. The number of

network states is 23 = 8.

Definition 3 (Network Transition System) Behaviour of a network N = 〈R,L,F〉,

from point of view of topology changes, can be defined by network transition system T N =

(SN , {
a

−→ |a ∈ A}), where

• SN is a finite set of network states,

• A ⊆ {{↑ 〈r 1, r 2〉} ∪ {↓ 〈r 1, r 2〉}|〈r 1, r 2〉 ∈ L} is a non-empty set of actions, such

that for each a ∈ A,
a

−→⊆ SN × SN ,

•
a

−→ is a transition relation between network states that reflects the change of one

link going down or up. Formally, for link l k :

a. s i
a

−→ s j , a =↓ l k if bi [k ] = 1, bj [k ] = 0, and bi [n] = bj [n], ∀n 6= k.

b. s i
a

−→ s j , a =↑ l k if bi [k ] = 0, bj [k ] = 1, and bi [n] = bj [n], ∀n 6= k.

In Figure 3 a transitions system for the network model from Figure 2 is depicted.

By configuration, we mean the state of the network that comprises actual states of

links, content of routing information bases, and filtering functions. Note that content of

routing information bases depends on the actual states of links, i.e. active topology of the
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network. Contrary, we can assume that filtering functions does not vary with the change

of network state. A label a ∈ A is an information telling us that a link went down or up.

For instance, a =↓〈R1,R2〉 tells us that connection from R1 to R2 is no longer available.

Figure 3: Example of Network Transition System

3 Classification of Security Properties

In the previous part of the paper, we introduced a formal model of the network. The

model is automatically taken from configuration files of network devices – routers. In our

research, we concentrate on Cisco IOS operating system and Cisco configuration files.

However, the approach can be applied to any other configurations. In this paper, we work

only with IP addressing (IP addresses, routing) and filtering rules. Other parameters and

settings are abstracted away for the sack of simplicity.

Having a formal model of the network, we show in this section, how security properties

can be formally expressed and then exploited for verification. Verification using model

checking technique is explained in the following section.

Description of network security properties is related to the classification of threats and

intrusion. There are plenty of different network security problems, like HTTP attacks,

spams, TCP flooding, DoS attacks, Web server misuse, spoofing and sniffing etc. How

to grasp the list of security problems in order to formalize security properties for the

analysis? We decided to set several categories of network security problems that can be

solved by our system.

There are several classifications of security intrusions, threats, vulnerabilities, or at-
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Property Definitions and examples (specified in modal logics1)

Ability of the system to provide service at any given time.
availability Ex.: Any external node A has access to a mail server.

SMTP ∈ NetReachϕ(A), ϕ = p.proto = Tcp ∧ p.dstPort = 25

Ability of the system to delivery service under given conditions.
safety Ex.: Web server is accessible from A even if link L is down

WWW ∈ NetReachψ(A) =⇒ [↓L]WWW ∈ NetReachψ(A),
ψ = p.proto = Tcp ∧ p.dstPort = 80

Ability of the system to protect resources resources.
security Ex.: Payroll server is not accessible from any external hosts A

Payroll 6∈ NetReachϕ(A), ϕ = ¬(p.srcIp = local ∧ p.proto = IP)

1 syntax of modal logics and function NetReach() is explained in section 4 in details

Table 1: Classification of network security properties

tacks. In [8] we can find classification of abstract signatures. Neumann and Parker [16]

propose nine categories of misuse techniques (external misuse, hardware misuse, mas-

querading, etc.). Lindquist and Jonsson [12] describe intrusion in two dimensions –

intrusion technique and intrusion result. On-line databases of vulnerabilities have their

own categories: CVE (Common Vulnerabilities and Exposures) [15] defines many cat-

egories like buffer errors, code injection, configuration. credentials, cross-site scripting,

etc. Intrusion detection database Snort [1] classifies violation rules mostly with respect

to applications – chat, nntp, mysql, pop, icmp, imap, web, etc.

Our network model deals with only IP addresses and services (ports). Therefore the

analysis does not reflects hardware or OS attacks. We also don’t examine the contents of

TCP/UDP packets. Our primary goal is safety or resistance of the network with respect

to dynamic behaviour of the network.

Our classification is based on the taxonomy systems mentioned above. It includes

three basic categories of network security properties as described in Table 1. Predicate ϕ

defines packet property that is verified on the model. Since it includes typical fields from

IP, TCP, or UDP headers (source/destination IP address, service/port) [13] it allows us

to specify wide range of different communications to be analyzed in the network.
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4 Model-Checking of Security Properties

In this section, we define a framework suitable for implemention of a model-checking algo-

rithm based on the intepretation of a dynamic network as a state system with transitions

induced changes of link conditions. The employed query language is propositional modal

logic [19]. For the computation of the model and evaluation of properties in this model

we assume a representation of ACLs and routing rules in the form of filtering predicates

FN for network N .

We define state predicates that can be interpreted in each state of the model and

state functions that can be evaluated in each state of the model. In our case, we use

NetReachϕ(R) function that determines a set of routers reachable from router R under

packet property ϕ. Evaluating this function in network states s1, s2 can give different

results because dynamic routing information varies with network topology.

We can put restrictions on the path between two routers, for example, we verify if

there exists a path between two routers for Web traffic. This is called network path under

packet property.

Definition 4 (Network Path under packet property) A path under packet prop-

erty ϕ between two routers R,R′ ∈ R on the network N = 〈R,L,F〉 in state s =

〈b, δb〉 ∈ SN is a sequence of routers r i ∈ R, links l i ∈ L with filters F i = δb(l i) ∈ F as

follows:

πs
ϕ(R,R

′) = (R, 〈R,R1〉,R1, 〈R1,R2〉,R2, . . . ,Rk , 〈Rk ,R
′〉,R′)

where F 〈R,R1〉(p) ∧ . . . ∧ F 〈Rk ,R
′〉(p) ∧ ϕ(p) for some packet p holds.

The definition above restricts the set of possible paths from R to R′ to those paths where

packet property ϕ is satisfied on every link of the path in network state s .

Definition 5 (Network Reachability under packet property) Network Reachabil-

ity under packet property ϕ on the network N = 〈R,L,F〉 in network state s, NetReachs
ϕ(R),

12



is a set of routers reachable from router R for packet satisfying property ϕ:

NetReachs
ϕ(R) = {R′ ∈ R | ∃πs

ϕ(R,Rk),Rk = R′}

Network reachability under packet property can be computed by a least fixed-point

algorithm. We use a language of modal logic to express security properties. Modal logic

allows us to reason with validity of packet properties (protocol = TCP, port = 80) in

different network states. For example, a statement in modal logic describes properties in

different network states where links can change their states, which cannot be expressed by

basic propositional logic. In modal logic, a network property can be specified using box

and diamond operators. Modalized formula [a]ϕ is valid in network state s1, s1 |= [a]ϕ, if

packet property ϕ is valid in network state s2, s2 |= ϕ, and s1

a
−→ s2. The dual operator

called diamond is defined as 〈a〉ϕ
def
= ¬[a]¬ϕ. A language of modal logic enables us to

specify and verify various network properties. For instance, network property ψ says

that the problem with link between routers R1 and R2 has no influence on the web traffic

between host PC 1 and web server WWW .

ψ
def
= WWW ∈ NetReachϕ(PC ) =⇒ [↓〈R1,R2〉]WWW ∈ NetReachϕ(PC )

ϕ
def
= proto = Tcp ∧ dstPort = 80

Figure 4 shows a case in which property ψ obviously does not hold.

A formula of modal language is interpreted in network transition system T N . For non-

modal fragments we need to interpret atomic sentences. For model checking we define a

modal model on the network transition system T N as a pair MN = 〈T N ,VN 〉 where VN

is a valuation which assigns to each atomic sentence Q a subset of states of T N . Truth

at state s of an arbitrary formula ψ under MN is inductively defined using the notation
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Network model for the state s3 = 〈0, 1, 1〉.
Property WWW ∈ NetReachϕ(PC ) holds in
this state because of path via router R2.

Network model for the state s2 = 〈0, 1, 0〉.
Property WWW ∈ NetReachϕ(PC ) does not
hold in this state as there is not path between
the two end devices.

Figure 4: Counterexample of property

s |= Mψ.

s |= MN
Q iff s ∈ VN (Q)

s |= MN
¬ψ iff s 6|= MN

ψ

s |= MN
ψ1 ∧ ψ2 iff s |= MN

ψ1 and s |= MN
ψ2

s |= MN
[a]ψ iff ∀s ′.if s

s
−→ s ′ then s ′ |= MN

ψ

For simplification, we consider Q = R ∈ NetReachϕ(R
′).

4.1 Decision procedure

In this section, we aim to explain how to construct a general decision procedure for modal

model in the realm of the network transition system T N . The small modal property of the

logic guarantees the decidability of the procedure that tests the satisfiability of a formula

[?]. We adopted bounded model checking [3] that limits state space by reachability

diameter. In our case, the reachability diameter equals to the number of links. In the

rest of this section, the translation of the model-checking problem to SAT based problem

is shown.

We have modal-model MN and modal-formula ψ. The bound k is given by number

of links. As shown above, we are able to evaluate expression R ∈ NetReachs
ϕ(R

′) in every
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state s . SAT-based decision procedure evaluates propositional formula [[MN , ψ]]k . This

formula consists of a propositional representation of transition system T N and network

property ψ:

[[MN , ψ]]k
def
= [[MN ]]k ∧ [[ψ]]0k

The interpretation of the formula is as follows:

[[MN ]]k
def
=

∧

k−1

i=0
(s i

a
−→ s j )

[[Q ]]ik
def
= s i ∈ V(Q)

[[¬Q ]]ik
def
= s i 6∈ V(Q)

[[ϕ ∧ ψ]]ik
def
= [[ϕ]]ik ∧ [[ψ]]ik

[[[a]ϕ]]ik
def
= (s i

a
−→ s j ) =⇒ [[ϕ]]jk

4.2 Example

Assume the network model drawn in Figure 2, network transition system shown in Figure

3 and routing rules that generate filtering predicates as listed in Figure 5. Then the

decision procedure that evaluates property ψ as defined in this section works as follow.

Using Kleene’s Algorithm (see, for instance, [9, p.66]), the reachability matrix for the

network at any given state is computed.

b WWW R1 R2 R3 PC

WWW > > f 1,2 ∨ (f 1,3 ∧ f 3,2) f 1,3 ∨ (f 1,2 ∧ f 2,3) f 1,3 ∨ (f 1,2 ∧ f 2,3)

R1 > > f 1,2 ∨ (f 1,3 ∧ f 3,2) f 1,3 ∨ (f 1,2 ∧ f 2,3) f 1,3 ∨ (f 1,2 ∧ f 2,3)

R2 f 1,2 ∨ (f 1,3 ∧ f 3,2) f 1,2 ∨ (f 1,3 ∧ f 3,2) > f 2,3 ∨ (f 1,2 ∧ f 2,3) f 2,3 ∨ (f 1,2 ∧ f 2,3)

R3 f 1,3 ∨ (f 1,2 ∧ f 2,3) f 1,3 ∨ (f 1,2 ∧ f 2,3) f 3,2 ∨ (f 3,1 ∧ f 1,2) > >

PC f 1,3 ∨ (f 1,2 ∧ f 2,3) f 1,3 ∨ (f 1,2 ∧ f 2,3) f 3,2 ∨ (f 3,1 ∧ f 1,2) > >

Each cell of the reachability matrix defines a formula consisting of filtering predicates.

The formula specifies overall filtering predicate for the whole path. Therefore, proposition

WWW ∈ NetReachϕ(PC ) is translated to (f 1,3∨(f 1,2∧ f 2,3))∧ϕ. The network transition

system is translated into the following propositional formula:

M
def
= s7

↓〈R1,R2〉
−→ s6 ∧ s7

↓〈R1,R3〉
−→ s3 ∧ . . . s1

↓〈R1,R2〉
−→ s0 ∧ s4

↓〈R1,R3〉
−→ s0
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Mapping function δ assigns to each link a label as defined in the
following table.

δ R1 R2 R3

R1 ⊥ f 1,2 f 1,3

R2 f 2,1 ⊥ f 2,3

R3 f 3,1 f 3,2 ⊥

Routing tables of devices are altered with each topology change.
The following table shows a dynamic content of routing tables for
selected network states.

state R1 R2 R3

〈1, 1, 1〉
10.10.3.0/24 → R3

10.10.23.0/24 → R3

10.10.23.0/24 → R2

10.10.3.0/24 → R3

10.10.13.0/24 → R3

10.10.13.0/24 → R1

10.10.1.0/24 → R1

10.10.1.0/24 → R1

10.10.12.0/24 → R1

10.10.12.0/24 → R2

〈1, 1, 0〉
10.10.3.0/24 → R3

10.10.23.0/24 → R3

10.10.3.0/24 → R3

10.10.13.0/24 → R3

10.10.1.0/24 → R3

10.10.1.0/24 → R1

〈0, 1, 1〉
10.10.3.0/24 → R2

10.10.23.0/24 → R3

10.10.23.0/24 → R2

10.10.3.0/24 → R3

10.10.1.0/24 → R1

10.10.1.0/24 → R2

10.10.12.0/24 → R2

Mapping δb for some state b defines the assignment of filtering
predicates to labels fi assigned to links of the network as listed
bellow:

b = 〈1, 1, 1〉 (All links are up)
f 1,2 = dstIp ∈ 10.10.12.0/24 ∨ dstIp ∈ 10.10.23.0/24
f 1,3 = dstIp ∈ 10.10.13.0/24 ∨ dstIp ∈ 10.10.23.0/24 ∨ dstIp ∈ 10.10.3.0/24
f 2,1 = dstIp ∈ 10.10.12.0/24 ∨ dstIp ∈ 10.10.1.0/24 ∨ dstIp ∈ 10.10.13.0/24
f 2,3 = dstIp ∈ 10.10.23.0/24 ∨ dstIp ∈ 10.10.3.0/24 ∨ dstIp ∈ 10.10.13.0/24
f 3,1 = dstIp ∈ 10.10.13.0/24 ∨ dstIp ∈ 10.10.12.0/24 ∨ dstIp ∈ 10.10.1.0/24
f 3,2 = dstIp ∈ 10.10.23.0/24 ∨ dstIp ∈ 10.10.12.0/24
b = 〈1, 1, 0〉 (Link between R1 and R2 is down)
f 1,2 = ⊥
f 1,3 = dstIp ∈ 10.10.13.0/24 ∨ dstIp ∈ 10.10.23.0/24 ∨ dstIp ∈ 10.10.3.0/24
f 2,1 = ⊥
f 2,3 = dstIp ∈ 10.10.1.0/24 ∨ dstIp ∈ 10.10.3.0/24 ∨ dstIp ∈ 10.10.13.0/24
f 3,1 = dstIp ∈ 10.10.13.0/24 ∨ dstIp ∈ 10.10.1.0/24
f 3,2 = dstIp ∈ 10.10.23.0/24
b = 〈0, 1, 1〉 (Link between R1 and R3 is down)
f 1,2 = dstIp ∈ 10.10.12.0/24 ∨ dstIp ∈ 10.10.23.0/24 ∨ dstIp ∈ 10.10.3.0/24
f 1,3 = ⊥
f 2,1 = dstIp ∈ 10.10.12.0/24 ∨ dstIp ∈ 10.10.1.0/24
f 2,3 = dstIp ∈ 10.10.23.0/24 ∨ dstIp ∈ 10.10.3.0/24
f 3,1 = ⊥
f 3,2 = dstIp ∈ 10.10.23.0/24 ∨ dstIp ∈ 10.10.12.0/24 ∨ dstIp ∈ 10.10.1.0/24

Figure 5: Routing information and filtering for selected network states
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Variable Expression
v 1 dstIp ∈ 10.10.1.0/24
v 3 dstIp ∈ 10.10.3.0/24
v 12 dstIp ∈ 10.10.12.0/24
v 13 dstIp ∈ 10.10.13.0/24
v 23 dstIp ∈ 10.10.23.0/24
v 4 proto = Tcp
v 5 dstPort = 80

Variable Transition

t7,6 s7

↓〈R1,R2〉
−→ s6

t7,3 s7

↓〈R1,R3〉
−→ s3

t7,5 s7

↓〈R2,R3〉
−→ s5

...
...

t4,0 s4

↓〈R1,R3〉
−→ s0

Figure 6: Assignment of Boolean variables to predicates

Next, the property ψ is translated into a propositional formula:

P j
i

def
= (f si

1,3 ∨ (f si

1,2 ∧ f si

2,3)) ∧ ϕ
i =⇒

(

(s i

↓〈R1,R2〉
−→ s j ) =⇒ (f

sj

1,3 ∨ (f
sj

1,2 ∧ f
sj

2,3)) ∧ ϕ
j
)

The formula M ∧ P j
i for every i , j ∈ {0 . . . 7} is a result of translation procedure. SAT

solver takes a boolean proposition and attempts to find a valuation of the boolean vari-

ables such that the formula is satisfied. To allow application of SAT solver the predicates

need to be represented as boolean variables. This is defined by tables in Figure 6. The

propositional formula for the network model and a fragment of the formula specifying

the property ψ are written as follows:

M ′ def
= t7,6 ∧ t7,3 ∧ t7,5 ∧ t5,1 ∧ t5,2 ∧ t3,1 ∧ t3,2 ∧ t6,2 ∧ t6,4 ∧ t1,0 ∧ t2,0 ∧ t4,0

P ′3
7

def
=

(

(

(v 13 ∨ v 23 ∨ v 3) ∨ (v 12 ∨ v 23) ∧ (v 23 ∨ v 3 ∨ v 13)
)

∧ v 4 ∧ v 5

)

=⇒
(

t7,3 =⇒
(

((v 12 ∨ v 23 ∨ v 3) ∧ (v 23 ∨ v 3)) ∧ v 4 ∧ v 5

)

)

Finally, the formula M ′ ∧
∧

7

i ,j=0
P ′j

i is evaluated by SAT procedure with result either

true or false.

5 Conclusions

5.1 Summary

The presented verification method aims at validating network design against the absence

of security and configuration flaws. The method does not require the deployment of the
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network. On the other hand it is not capable of revealing security problems that are

incurred by the presence of hardware errors or bugs in software. The network model

allows us to describe the effect of static and dynamic routing and access control lists

configured on the network devices. The verification technique based on the bounded

model checking counts for varying link conditions checks whether a given property holds

in the network model. It was shown that the method is able to deal with various class of

properties. In particular, properties were classified into availability, safety and security

classes. In all cases, a language of modal logic was used to express the property formally

and served as an input to the model checking algorithm. Although we did not explicitly

stated the complexity of the problem it can be ssen that the application of this technique

is feasible for a large class of network models and properties.

5.2 Future Work

In this paper we demonstrated the problem of automatic security analysis of TCP/IP-

based computer networks. It was shown that bounded model checking is a useful method

in this area. The developed experimental tools provided reasonable data convincing us

that the method is applicable in practice. Nevertheless, the experiments with real-size

models are still in progress at the moment of writing this paper and further analysis

is required to fully evaluate the method. There are also a lot of possible extensions to

the method. First, the specification language is rather minimalist and it is challenging

to show whether all important security properties can be specified in it. In the case of

negative answer the further work should be oriented on refined classification of proper-

ties and proposing an adequate extension of the language and the verification method.

Second, a lot can be done in the area of optimization of the method. It requires deeper

understanding of the relation of dynamic routing protocols behavior to the network tran-

sition system for various network topologies. From the simple example provided it is

evident that netowork states share much common information. Therefore it is possible to

avoid recomputing all filtering predicates for each state. Finally, for conducting practical

experiments it is necessary to implement reliable and effective tools.
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