
Polymorphic Gates in Design and Test of Digital Circuits∗

Lukas Sekanina, Lukas Starecek, Zdenek Kotasek, Zbysek Gajda

Faculty of Information Technology, Brno University of Technology
Bozetechova 2, 612 66 Brno, Czech Republic

sekanina@fit.vutbr.cz, starecek@fit.vutbr.cz, kotasek@fit.vutbr.cz, gajda@fit.vutbr.cz

Abstract

Polymorphic gates are unconventional logic components which can switch their logic functions
according to changing environment. The first part of this study presents an evolutionary approach to
the design of polymorphic modules which exhibit different logic functions in different environments.
The most complicated circuit that we evolved contains more than 100 gates. The second part of
this study shows how to reduce the number of test vectors of a digital circuit by replacing some of
its gates by polymorphic gates. In the first polymorphic mode, the circuit implements the original
function. When switched to the second polymorphic mode, it can be tested using fewer test vectors
than in the first polymorphic mode; however, the same fault coverage is obtained. The number
of test vectors was reduced on 50-91% of its original volume for six benchmark circuits. The
paper also discusses various obstacles which one has to deal with during a practical utilization of
polymorphic gates.

1. Introduction

A number of novel principles to implement elementary logic operations have emerged in con-
nection with nanotechnology and molecular electronics in the recent years [22, 2, 20, 6, 4]. These
principles range from technological improvements of current technology to truly new molecular
devices. Among otherspolymorphic electronicsexhibits interesting features. While it merges the
capability of performing logic operations with sensing, it can still be implemented using current
CMOS technology. Moreover, its potential is enormous with a connection to molecular electronics.

John von Neumann, inspired by neural nets introduced by McCulloch and Pitts [9], proposed
nets of digital gates to implement first processors. Stoica et al have introduced the concept of
polymorphic gatesto implementpolymorphic nets[17, 19, 18]. Polymorphic gates are configurable;
their functionality depends on some external factors, for example, on the level of the power supply
voltage (Vdd), temperature, light etc. Polymorphic gates would be very useful in building the
embodied intelligence—intelligent devices whose function emerges in an interaction with a physical
environment [1].

For example, a polymorphic gate exists which operates as NAND when Vdd=3.3V and as NOR
when Vdd=1.8V. Another gate operates as AND when temperature is 27◦C and as OR when tem-
perature is 125◦C. It was demonstrated that it is possible to use polymorphic gates together with

∗This is draft of paper: Sekanina, L., Starecek, L., Kotasek, Z., Gajda, Z.: Polymorphic Gates in Design and Test of
Digital Circuits. Int. Journal of Unconventional Computing. Vol 4, No 2, 2008, p. 125 - 142

ordinary gates to designmultifunctional digital circuits[14, 16]. These multifunctional circuits
exhibit interesting behaviors not visible in standard digital circuits. For example, a circuit was
designed that operates as a small adder in the first environment and as a multiplier in the second
environment. Its topology is invariable; the only feature which is changed is the functionalityof
some gates.

The aim of this paper is to demonstrate new principles in design and test of digital circuits which
benefit from the use of polymorphic gates. The first goal is to present the most complex multifunc-
tional circuits which can be designed at the gate level nowadays. Cartesian genetic programming
is used to perform this task. The second goal of this study is to show that by using polymorphic
gates we can reduce the number of test vectors needed to test a combinational circuit. For a given
logic circuit we are looking for such a replacement of some of its ordinary gates by polymorphic
gates which enables to perform the original function in one of polymorphic modes and easily test
the circuit in another polymorphic mode.

The rest of this paper is structured as follows. Section 2 introduces the area of polymorphic
electronics and its potential applications. In Section 3, an evolutionary approach to the design of
multifunctional circuits is presented. In particular, limits in the complexity of evolved polymorphic
circuits are discussed. Section 4 describes a new method proposed for test vector volume reduction
using polymorphic gates. Finally, conclusions and future work directions are given in Section 5.

2. Polymorphic Electronics

The concept of polymorphic electronics was proposed by Stoica et al [18]. In fact, polymorphic
circuits are multifunctional circuits. The change of their behavior comes from modifications in
the characteristics of components involved in the circuit in response to controls such as tempera-
ture, power supply voltage, light, etc. [19, 18]. These modifications are related to the transistor’s
operation point in ordinary technology, or we can speculate that electrical properties of suitable
molecules will be changed by applying voltage pulses in molecular electronics (as demonstrated
for nitroaniline by Tour [20]).

Research papers indicate various areas in which polymorphic gates could be utilized. The fol-
lowing list provides some examples (see a thorough analysis in [18, 19]): (a) The automatic control
of the power consumption when a battery voltage decreases (a circuit realizes another function for
lower battery voltage; however, its structure remains unchanged). (b) Implementation of a hidden
function, invisible to the user, which can be activated in a specific environment (e.g. watermarking
at the hardware level). (c) Intelligent sensors for biometrics, robotics and industrial measurement.
(d) Reverse engineering protection. (e) Implementation of low-cost adaptive systems that are able
to adjust their behavior inherently in response to certain control variables. (f) Implementation of
novel concepts for testing and diagnosing of electronic circuits.

2.1. Polymorphic Gates

Table 1 gives examples of the polymorphic gates reported in literature. For instance, the NAND/NOR
gate is the most famous example [17]. The circuit consists only of 6 transistors. It was fabricated
in a 0.5-micron CMOS technology. The circuit is stable for±10% variations of Vdd and for tem-
peratures in the range of –20◦ to –200◦C. However, most of these gates were only simulated.

2.2. Multifunctional Modules

The use of polymorphic gates as building blocks offers the opportunity to design multifunctional
digital modules at the gate level. Once the circuit is designed at the gate level (abstracting thus

Table 1. Examples of existing polymorphic gates and their im plementation cost
Gate control values control transistors ref.
AND/OR 27/125◦C temperature 6 [18]
AND/OR/XOR 3.3/0.0/1.5V ext. voltage 10 [18]
AND/OR 3.3/0.0V ext. voltage 6 [18]
AND/OR 1.2/3.3V Vdd 8 [19]
NAND/NOR 3.3/1.8V Vdd 6 [17]
NAND/NOR/NXOR/AND 0/0.9/1.1/1.8V etx. voltage 11 [24]

In0
In1

In3
In2

In2
In1
In3
In0

Figure 1. Even-parity circuit when Vdd = 1.2V and majority in dicator when Vdd = 3.3V

from the electric level), it does not matter whether this circuit is “reconfigured” by a level of Vdd,
temperature or light.

Figure 1 shows an example – a circuit which operates as an even-parity detector when Vdd =
1.2V and as a majority indicator when Vdd = 3.3V. The parity/majority circuit was designed using
our methodology presented in [16]. The circuit utilizes ten gates; three of them are the polymorphic
NAND/NOR gates controlled by Vdd. When Vdd = 1.2, the polymorphic gates operate as NANDs
and the circuit implements the parity function. When Vdd = 3.3V, the polymorphic gates operate
as NORs and the circuit implements the majority function. In the both modes, the circuit topology
as well as functionality of other gates remains unchanged. Figure 2 shows the four inputs and the
output of this circuit for the both levels of Vdd.

In some cases, simulated multifunctional modules contain hypothetical polymorphic gates; in
other cases they are composed solely of physically existing polymorphic gates. Research results
indicate that it is very difficult to discover circuit topologies for nontrivial multifunctional modules
[14, 16]. Evolutionary design techniques are utilized in this process.

2.3. Single-Function Polymorphic Circuits

In another research [25, 15], the goal was to propose self-checking circuits which use polymor-
phic gates. These circuits perform the same function in both modes of polymorphic gates; however,
some of their outputs oscillate when a fault is present in the circuit and the mode of polymorphic
gates is periodically changed. These changes in the polymorphic mode represent the state when
the circuit is under test. In particular, various evolved adders containing conventional as well as
polymorphic gates were proposed with less than duplication overhead which are able to detect a
reasonable number of stuck-at-faults by oscillations at the carry-out output when the control signal
of polymorphic gates oscillates [15].

Figure 2. PSpice simulation: (A) even-parity circuit when Vd d = 1.2V, (B) majority indicator
when Vdd = 3.3V

3. Evolutionary Synthesis of Polymorphic Modules

Having the polymorphic gates and ordinary gates, our task is to find a digital circuit which per-
forms the first desired function under the first environment and the second desired function under the
second environment. Unfortunately, standard methods for logic synthesis are not able to solve this
problem. The reason is that these standard methods (such as Espresso, Binary Decision Diagram-
based methods etc.) suppose special representations (e.g. a disjunctive normal form) and a set of
transformations that manipulate these representations in order to find an optimal implementation
of a circuit. Currently, it is unknown how to neither represent polymorphic circuits formally nor
perform useful transformations over these representations. A formal background for polymorphic
circuit synthesis is needed. In order to find multifunctional circuits at the gate level, an evolution-
ary design approach is presented which has allowed us to obtain the most complex multifunctional
circuits to our best knowledge. This method extends the original work [14].

3.1. Problem Formulation

Let Γ(1) denote a set of ordinary gates. LetΓ(2) denote a set of polymorphic gates. A poly-
morphic gate implements two1 functions according to a control signal which can hold two different
values. A gate is inmode j(and so performing thej-th function) in the case whenj-th value of
the control signal is activated. For purposes of this paper, we will denote a polymorphic gate as
X1/X2, whereXi is its i-th logic function. For example, NAND/NOR denotes the gate operating
as NAND in themode 1and as NOR in themode 2. Note that ordinary gates can perform only
one function; however, their functionality must be fully defined for each mode. For example, the
conventional NAND gate considered for polymorphic circuits must perform the NAND function in
the both modes (denoted as NAND/NAND). LetΓ denote a set of all gates,Γ = Γ(1) ∪ Γ(2).

A polymorphic circuit can formally be represented by a graphG = (V,E,ϕ), whereV is a set
of vertices,E is a set of edges between the vertices,E = {(a, b)|a, b ∈ V }, andϕ is a mapping
assigning a function (gate) to each vertex,ϕ : V → Γ. As usually,V models the gates andE
models the connections of the gates. A circuit (and also its graph) is in themode jin the case when
all gates are in themode j.

Given Γ and logic functionsf1 andf2 required in different modes, the problem of the multi-
functional circuit synthesis at the gate level is formulated as follows: Find a graphG representing
the digital circuit which performs logic functionf1 in its first mode and logic functionf2 in its
second mode. Additional requirements can be specified, e.g. to minimize the delay, area, power
consumption etc.

3.2. Evolutionary Algorithm

The problem defined in the previous section is approached using Cartesian genetic programming
(CGP) which has recently been applied by several researchers especially for the evolutionary design
of combinational circuits [11]. In CGP, a circuit is modeled as an array ofu (columns)× v (rows)
of programmable elements (gates). The number of circuit inputs,ni, and outputs,no, is fixed.
Feedback is not allowed. Each gate input can be connected to the output of a gate placed in the
previousL columns or to some of circuit inputs. TheL parameter, in fact, defines the level of
connectivity and thus reduces/extends the search space. For example, ifL=1 only neighboring
columns may be connected; ifL = u, the full connectivity is enabled. Each gate is programmed

1This can naturally be extended fork different functions.

0

1

2

1
31

2
50

2
70

1

41
0

0
60 81

0

90
1

100

Figure 3. An example of a 3-input circuit. CGP parameters are as follows: L = 3, u = 4,
v = 2, Γ = {AND (0), OR (1)}. Gates 5 and 9 are not utilized. Chromosome: 1,2,1, 0,0,1, 2,3 ,0,
3,4,0 1,6,0, 0,6,1, 1,7,0, 6,8,0, 6, 10. The last two integer s indicate the outputs of the circuit.

to perform one of functions defined in the setΓ. Figure 3 shows an example and a corresponding
chromosome. Every individual is encoded usingu × v × 3 + no integers.

CGP operates with the population ofλ individuals (typically,λ = 5−20). The initial population
is randomly generated. Every new population consists of the best individual and its mutants. In
case when two or more individuals have received the same fitness score in the previous population,
the individual which did not serve as a parent in the previous population will be selected as a new
parent. This strategy is used to ensure the diversity of population. In case when the evolution has
found a solution which produces correct outputs for all possible input combinations, the number of
gates is getting to minimize. Delay is not optimized in this research. The evolution isstopped when
the best fitness value stagnates or the maximum number of generations were exhausted.

The fitness value is defined as follows:

fitness = B1 + B2 + (u.v − z) (1)

whereB1 (resp. B2) is the number of correct output bits forf1 (resp. f2) obtained as response
for all possible input combinations,z denotes the number of gates utilized in a particular candidate
circuit andu.v is the total number of programmable gates available. The last term is considered
only if the circuit behavior is perfect in the both modes; otherwiseuv − z = 0.

3.3. Results

We evaluated proposed algorithm using difficult benchmark circuits – Multiplier/Sorting Net-
work circuits of 4 – 7 inputs. These circuits multiply two operands in the first mode and sort an
input vector in the second mode. These circuits were chosen because multipliers are standard (and
nontrivial) benchmark circuits for evolutionary circuit design techniques. The best-known results
(implementation costs) for small multipliers (evolved solutions with up to 4-bit operands) are given
in [21]. Implementation costs of sorting networks (SN) are given in [8] (one comparator is imple-
mented using two gates – AND and OR).

Table 2 summarizes parameters of experiments and obtained results. In all experiments, the
population size was 15 and up to 100 million generations were produced in each run. The numbers
of generations correspond to other experiments with the evolutionary multiplier design using CGP
in which, for example, 100 million generations are needed to evolve a4 × 3-bit multiplier [21].

Similarly to the evolution of multipliers [21], we can observe that the average number of gener-
ations grows exponentially with the growing number of inputs. It is difficult to evolve 7-input and
more input circuits. No correct solution was obtained for 8-input circuits at the gate level. Figure 4
shows the best implementation of2 × 2-bit multiplier/4-bit sorter which utilizes 23 gates (18 poly-
morphic NAND/NOR gates and 5 conventional AND gates). Moreover, two NAND/NOR gates can

Table 2. Parameters and results of the evolutionary design u sing CGP and circuit simulator.
Gates in “Gate set” are numbered as: (1) NAND/NOR, (2) AND, (3) OR, (4) XO R, (5) NAND,
(6) NOR, (7) NOT A, (8) NOT B, (9) MOV A and (10) MOV B, where MOV denotes t he identity
operation.

Multiplier/Sorter 2b × 2b/4b 3b × 2b/5b 3b × 3b/6b 4b × 3b/7b

u × v 10 × 12 100 × 1 120 × 1 16 × 16
L-back 1 100 120 16
Mutation (genes) 1 2 4 4
Gate set 1, 2, 9, 10 1–4, 9, 10 1–10 1, 2, 9, 10
Runs 10 10 10 10
Successful runs 10 10 9 3
Generations (average) 52,580 854,900 26,972,648 62,617,151
Min. # of gates 23 30 52 113

Table 3. Comparison of the implementation cost (# of gates) fo r polymorphic modules im-
plemented by (a) multiplexing conventional solutions and (b) using CGP and polymorphic
gates

Inputs (bits) (1) Multiplier (2) Sorter (a) Multiplexing (1), (2) (b) CGP
2 + 2 7 10 17 + 4cm 23
3 + 2 13 18 31 + 5cm 30
3 + 3 23 24 47 + 6cm 52
3 + 4 38 32 70 + 7cm 113

be replaced by a single inverter. This implementation has 2 gates less than the best known solution
reported in [14].

The computation time can be expressed as follows. In order to generate 1 million generations for
a 4-input multifunctional circuit, 80 seconds are spent at Athlon64 3200+ processor. For 7-input
multifunctional circuit, 207 seconds have to be spent at the same processor.

3.4. Discussion

The 7-input multiplier/sorter is the most complex multifunctional module evolved so far. We
probably reached the limit of this method in terms of generated circuit complexity. A similar limit
was reported for the evolution of ordinary combinational circuits using CGP where the4 × 4-bit
multiplier is the most complicated circuit evolved directly at the gate level [21]. Note that this is
valid for a direct evolution at the gate level; for example, incremental evolution is not takeninto
account.

Another approach to the implementation of multifunctional circuits is to use conventional im-
plementations for both required modes and perform multiplexing their outputs by polymorphic
multiplexers (or by a standard multiplexer controlled by a Vdd sensor). Table 3 compares the num-
ber of gates required for the both implementations (no sharing of gates is assumed herein). It is
evident that in some cases the evolved circuits are more gate-efficient than the circuits multiplexing
conventional implementations.cm denotes the cost of a polymorphic two-input multiplexer which
must be taken into account (it is assumed thatcm = 8 − 14 transistors, i.e. approx. 2–3 gates).

Only the NAND/NOR polymorphic gate has been considered in our designs because only for this
gate a transistor-level implementation is available. It is assumed that more efficient implementations

In0

In1

In3

In2

In2

In1

In3
In0

In2
In1

In3
In0

Y0

Y1

Y2

Y3

Figure 4. The best evolved 2b-Multiplier/4b-Sorter

would be evolved if other polymorphic gates were available for CGP. Definitely, the most-area
efficient implementations of multifunctional modules would be obtained if the evolutionary design
operates directly at the transistor level. However, as the evolutionary design of simple polymorphic
gates clearly demonstrates [17], it is very difficult to find a reliable implementation even of a two-
input polymorphic gate.

The solution to the multifunctional circuit synthesis problem is still an open question. As we
do not know how to solve this problem by means of conventional methods, evolutionary design
approaches have been utilized. However, the gate level evolution is not scalable.

4. Reduction of Test Vectors Volume

The goal of the second study is to demonstrate that by replacing some standard gates by suitable
polymorphic gates we can improve testability of a given digital circuit. We will again work at the
gate level, assuming that suitable polymorphic gates exist.

4.1. Test Generation

In diagnostics and testing of conventional digital electronic systems two areas of problems exist:
test generation and test application. One possibility how to generate test for a sequential circuit is by
means of automatic test pattern generator for sequential circuits (SATPG). Automatic test pattern
generation for sequential circuits is generally considered to be a hard problem. Full scan design
techniques attempt to alleviate this problem by connecting all flip-flops (FFs) or latches intoa scan
path during test mode so that all these elements become easily controllable and observable. Then,
in a full scan based design, the portion of the circuit excluding the scan path is fully combinational
which allows to use automatic test pattern generator (ATPG) to generate a test for unit under test
(UUT) restructured in this way. Two reasons against the full-scan techniques exist:

1. The test application time associated with full-scan may be extremely high.

2. The full scan may be prohibitively expensive due to high area overhead.

The solution to the second objection can be seen in partial scan techniques which require analysis
to choose which registers are best for scan [12, 7, 23, 5] while the reduction of test application time
has been addressed in arranging scan flip-flops in parallel scan chains. Implementing full scan into
UUT brings an important consequence, namely thereduction of test vectors volumebecause UUT
is subdivided into structures which are seen as purely combinational components and the test can be
generated by ATPG. Numerous activities exist to reduce the number of test vectors needed and thus
reduce the test application time. These considerations become important in such implementations
which contain thousands of flip-flops structured into full or partial scan chains. They are useful
in designs which consist of complex combinational components (either being part of sequential
designs or purely combinational circuits). Thus, it is reasonable to develop methodologies which
reduce the number of test vectors needed to test combinational nets. Other activities the objective of
which is the reduction of test data volume, can be also recognized in the field of test data compaction
[3, 13].

The methodology presented in this study can be combined with any above mentioned method-
ology which result in test application time reduction. The methodology can be classified as ”test
generation strategies”, which when combined with ”test application strategies” can reduce both test
application time and power consumption during its application.

The basic assumption of the proposed method is that ATPG tools do not inspect internal failures
of gates because only the circuit structure is tested in which gates are considered as black boxes.
In general, test generation methods and tools are based on the assumption that failures which arise
in the internal structure of a component are propagated to component output as either stuck-at-zero
or stuck-at-one values. This is the principle which is widely accepted and expresses the relation
between internal and external failures of an electronic component (e. g. gate) and thus allows to
generate test vectors for its external nodes only. Therefore, in our research we do not study a failure
model of polymorphic gates.

4.2. Problem Formulation

Given a conventional circuit which performs functionf1 and whose topology is represented by
G(1) = (V,E, ε), ε : V → Γ(1), the problem targeted in this paper is to findϕ which will constitute
G = (V,E,ϕ), ϕ : V → Γ, with the following properties: (1)G performs logic functionf1

in its first polymorphic mode. This ensures that the original circuit function will be kept. (2) In
polymorphic mode 2,G represents such a circuit which exhibitsbetterdiagnostic properties than
the circuit switched to the first polymorphic mode.

Therefore, the goal is to find a circuit which can be tested using fewer test vectors in the second
polymorphic mode compared with the first polymorphic mode; however, still providing the same
fault coverage. Replacing standard gates by polymorphic gates (i.e. replacingε by ϕ) increases
the cost of the circuit. Hence there could be a trade off between the level of testability and the
implementation cost.

4.3. Proposed Method

In order to confirm that the use of polymorphic gates can reduce the number of test vectors when
a circuit is switched to the second polymorphic mode, we developed an algorithm which identifies
and modifies some gates of the circuit and aims to achieve the same fault coverage with fewer test
vectors. The following conditions have to be ensured during the replacements of gates:

1. Only those ordinary gates can be replaced which have the same interface as corresponding
polymorphic gates (e.g. a two-input ordinary gate can be replaced only by a two-input poly-
morphic gate).

2. In order to keep the original circuit function in the first polymorphic mode, it is important
to ensure that an ordinary gate with logic functiong can be replaced only by a polymorphic
gateg/h which performs logic functiong in its first polymorphic mode.

For benchmark circuitC which contains gates only fromΓ(1), the procedure is as follows:

1. ForC, find the minimum number of test vectors,Nmin(C), which ensurep% fault coverage.

2. Generate all possible replacements (respecting conditions (1) and (2)) inC to obtain poly-
morphic circuitsC/R1 . . . C/Rmax which have the same topology asC but contain gates
from Γ.

3. For each circuitC/Ri which is switched to the second polymorphic mode, find the minimum
number of test vectors,Nmin(C/Ri), which guarantees thep% fault coverage.

4. Select thoseC/Ri which exhibitNmin(C/Ri) < Nmin(C).

As the proposed algorithm is deterministic, it always finds the optimum solution. Unfortunately,
its computational requirements are high. Consider thatC containsk gates and each of them can be
replaced by one ofm polymorphic gates. Then the number of possible replacements iskm. Hence
the approach is applicable only for relatively small circuits. The algorithm was evaluated on a set
of benchmark circuits. All test vectors are calculated using ATPG FlexTest.

4.4. Results

Table 4 shows ordinary and polymorphic gates used in resulting circuits. The cost of ordinary
gates in terms of the number of transistors is given by AMI 1.2um library [10]. Note that Table 4
shows only those polymorphic gates which were utilized in discovered solutions; in fact, we tested
20 different polymorphic gates in our experiments. As utilized polymorphic gates have not been
described in literature so far, their cost is estimated. In most cases we have simply added the
transistor costs of both functions. With respect to Table 1, it is reasonable to believe that this
cost might be significantly reduced in a real implementation. For example, the NAND/NOR gate
controlled by Vdd costs 6 transistors; however, the NAND usually costs 4 transistors, the NOR
usually costs 4 transistors and some transistors have to be used to implement multiplexing according
to Vdd. A conventional transistor-level implementation of NAND/NOR controlled by another logic
signal would cost 10 transistors. Note that AO denotes the AND-OR logic structure and AOI
denotes AND-OR-Invert logic structure.

Table 5 shows results obtained for six benchmark circuits of size 4–13 gates which include three
implementations of a full 1-bit adder, 3-bit comparator, 8-to-3-bit encoder and 3-to-8-bit decoder
(see examples in Figs 5 and 6 in which polymorphic gates are shown as boxes labelled using the
X/Y notation). Because the proposed algorithm is deterministic, only these relatively small circuits
could be utilized in this initial study. In Table 5, ’pg’ denotes the number of polymorphic gates
used in modified circuits, ’tr’ denotes the number of transistors, ’trp’ is the number of transistors
in modified circuits and ’cmb’ is the number of combinations evaluated by the FlexTest (forp =
100%). Column ’rcmb’ gives the fraction of combinations which lead to some reductions in the
test vectors volume. We can observe that the number of test vectors was reduced to 50-91 % and
the estimated cost increased by 11-60 %. Only a few replacements out of all possible replacements
have led to some reduction of test vectors volume.

Table 4. The cost of conventional and polymorphic gates
gate transistors gate transistors polymorphic gate transistors
INV01 2 NOR03 6 INV01/BUF02 6
INV02 2 NOR04 8 INV02/BUF02 6
BUF02 4 XOR2 12 AND02/XNOR2 16
AND02 6 XNOR2 10 AND03/NOR03 14
AND03 8 AO21 12 OR02/XNOR2 16
OR02 6 AOI21 10 AO21/AOI21 22
OR03 8 AO22 10 XNOR2/OR02 16
NAND02 4 OAI21 6 XOR2/NAND02 16
NOR02 4 OAI32 10

Table 5. Properties of benchmark circuits and their modifica tions

circuit gates pg Nmin(C) Nmin(C/R) Nmin(%) tr. trp. tr(%) cmb rcmb(%)
fulladd1 4 1 6 5 83% 32 38 119% 216 8.33
fulladd2 6 3 6 4 67% 40 64 160% 15 552 16.94
fulladd3 5 2 6 4 67% 42 54 129% 7 776 17.00
comp3bit 11 2 11 9 82% 62 70 113% 124 416 1.40
enc8to3 13 1 11 10 91% 74 82 111% 165 888 0.02
dec3to8 11 4 8 4 50% 56 74 132% 524 288 2.05

Table 6. Original test vectors and modified test vectors for b enchmark circuits

circuit original test vectors→ new test vectors
fulladd1 100, 000, 111, 110, 001, 010→ 100, 000, 111, 110, 101

fulladd2 100, 000, 111, 110, 001, 010→ 100, 000, 111, 110

fulladd3 100, 000, 111, 110, 001, 010→ 100, 111, 110, 001

comp3 100011, 000110, 001100, 011000, 000000, 011011, 110110, 000010, 100101, 010001, 010011→
100011, 000110, 011000, 110110, 101100, 100111, 100100, 110111, 110100

enc8to3 10001100 00011000 00110000 01100000 11000000 00000000 00100000 01000000 00001001 00000111 00000010→
10001100 00011000 001100000 01100000 00000000 00100000 01000000 00001001 00000111 00000010

dec3to8 100, 000, 111, 110, 011, 101, 010, 001→ 100, 000, 010, 001

Figure 5. Circuit fulladd1 after modification

Figure 6. Circuit dec3to8 after modification

4.5. Discussion

The basic hypothesis behind this experiment has been confirmed: Yes, the number of test vectors
needed to test a combinational component can be reduced if a possibility of converting the function
of selected gates is available during test generation. We have shown how polymorphic gates can be
used for this purpose. Now we have to deal with possible objections.

As test is not generated for the original circuit it says nothing about the original circuit.It is a
fact, that one possibility how to generate a test is based on developing a test sequence for stuck-at-0
and stuck-at-1 faults on the internal connections of the component. It is evident that these faults
are then the same for both versions of the circuit (i. e. the original and the modified one) as far as
internal connections and I/O ports of both of them are concerned. Thus, it can be stated that the test
of one of them covers the faults of the other one.

The control signal of polymorphic gates can influence the testability.It is reasonable to assume
that the control signal of polymorphic gates can be either an external logic signal or Vdd. In the
first case, this signal is considered as another input of the circuit which will probably influence the
test generated by ATPG. Future research will be devoted to analyze this phenomenon. In case of
controlling via Vdd, all circuit elements have to work correctly for two different levels of Vdd. If it
is possible then the concept is valid as proposed.

Experiments were performed on small circuits.As the proposed algorithm is deterministic, its
time requirements are too high. The computation time ranges from 2 minutes for the smallest circuit
to 2.5 days for the largest circuit when measured on a server equipped with Opteron2216 and 4GB
RAM. On the other hand the method provides an optimal solution for a given specification. To
be able to evaluate the methodology on more complex circuits, we do plan to utilize a stochastic
algorithm based on a genetic algorithm. A candidate solution could be encoded as a string of
k.log2m bits (wherek is the number of gates and each of them can be replaced by one ofm

polymorphic gates). It is reasonable to assume that this approach could provide a good suboptimal
solution for circuits consisting of thousands of gates andm ≤ 32 in a reasonable time.

The method works only for some circuits.Experiments performed so far indicate that a small
reduction can be obtained in all types of circuits that we tested. Of course, the method can fail for
some other circuits.

Suitable polymorphic gates could be expensive.Depending on the type of circuit, the obtained
reduction could be insignificant in relation to the cost of inserted polymorphic gates. The utilization
of this method depends on a particular application.

5. Conclusions

In this article we have described some of possible applications of polymorphic electronics.
Firstly, it was shown that evolutionary design can generate gate-level polymorphic modules with
the complexity of around 100 gates. Thus, the most complex gate-level multifunctional circuits,to
our best knowledge, were obtained. Secondly, a new application of polymorphic electronics was
demonstrated in the area of circuit testing. We were able to reduce the number of test vectors for six
circuits when some of gates were replaced by polymorphic gates. We discussed various obstacles
which one has to deal with during a practical utilization of this method. Another important conse-
quence of the proposed methods is that by using unconventional circuit components we can solve
traditional problems in a new way. Without the use of polymorphic gates, the proposed methods
make no sense.

Our direction for future research is closely connected to potential applications of this technology.
The class of applications that we can see now is related to a new generation of field programmable
gate arrays in which some parts (such as interconnection switches, global reset functions or test
circuits) could be implemented using area-efficient polymorphic gates reducing thus the area on
the chip while maintaining multiple functionality and good testability. It would require reliable
implementations of elementary polymorphic gates and, of course, much more work in this area.

In future, with the development of molecular electronics and synthetic biology, we could observe
a class of polymorphic gates implemented in a unconventional way (e.g. as molecules changing
their logic function according to the level of illumination). Then, circuits composed of those poly-
morphic gates could fully exploit advantages of simultaneous logic operation and the capability
of sensing. We do believe that it is the main reason why the development of the methods for the
multifunctional circuit synthesis and testing is important right now.

Acknowledgements

This work was partially supported by the Grant Agency of the Czech Republic under contract
No. 102/06/0599Methods of polymorphic digital circuit designand the Research Plan No. MSM
0021630528Security-Oriented Research in Information Technology.

References

[1] R. Brooks. The relationship between matter and life.Nature, 409(6816):409–411, 2001.

[2] J. Chen, N. Jonoska, and G. Rozenberg.Nanotechnology: Science and Computation. Springer, 2006.

[3] S. R. Das, C. V. Ramamoorthy, M. H. Assaf, E. M. Petriu, J. Wen-Ben, and M. Sahinoglu. Fault simulation and
response compaction in full scan circuits using HOPE.IEEE Transactions on Instrumentation and Measurement,
54(6):2310–2328, 2005.

[4] A. DeHon and H. Naeimi. Seven strategies for tolerating highly defective fabrication.IEEE Design and Test of
Computers, 22(4):306–315, 2005.

[5] A. Efthymiou, J. Bainbridge, and D. A. Edwards. Test pattern generation and partial-scan methodology for an
asynchronous soc interconnect.IEEE Trans. VLSI Syst., 13(12):1384–1393, 2005.

[6] International technology roadmap for semiconductors, 2005. URL: http://public.itrs.net.

[7] P. Kalla and M. J. Ciesielski. A comprehensive approach to the partial scan problem using implicitstate enumera-
tion. IEEE Trans. on CAD of Integrated Circuits and Systems, 21(7):810–826, 2002.

[8] D. E. Knuth. The Art of Computer Programming: Sorting and Searching (2nd ed.). Addison Wesley, 1998.

[9] W. S. McCulloch and W. H. Pitts. A logical calculus of the ideas immanent in nervous activity.Bulletin of
Mathematical Biophysics, 5(1):115–133, 1943.

[10] Mentor graphics, adk html data book, 2007. URL:
http://germanium.cs.wustl.edu/HEP/ADK/HTMLdatabook/AMI12databook.htm.

[11] J. Miller, D. Job, and V. Vassilev. Principles in the Evolutionary Design of Digital Circuits – Part I. Genetic
Programming and Evolvable Machines, 1(1):8–35, 2000.

[12] S. Park. A partial scan design unifying structural analysis and testabilities.Int. J. Electronics, 88(12):1237–1245,
2001.

[13] I. Pomeranz and S. M. Reddy. Static test compaction for multiple full-scan circuits. In21st International Con-
ference on Computer Design (ICCD 2003), VLSI in Computers and Processors, pages 393–396. IEEE Computer
Society, 2003.

[14] L. Sekanina. Evolutionary design of gate-level polymorphic digital circuits. InApplications of Evolutionary
Computing, volume 3449 ofLNCS, pages 185–194, Lausanne, Switzerland, 2005. Springer Verlag.

[15] L. Sekanina. Design and Analysis of a New Self-Testing Adder Which Utilizes Polymorphic Gates.In Proc. of the
10th IEEE Design and Diagnostics of Electronic Circuits and Systems Workshop DDECS 2007, pages 246–246,
Krakow, Poland, 2007. IEEE Computer Society.

[16] L. Sekanina, L. Starecek, Z. Gajda, and Z. Kotasek. Evolution of multifunctional combinational modules controlled
by the power supply voltage. InProc. of the 1st NASA/ESA Conference on Adaptive Hardware and Systems, pages
186–193. IEEE Computer Society, 2006.

[17] A. Stoica, R. Zebulum, X. Guo, D. Keymeulen, I. Ferguson, and V. Duong. Taking Evolutionary CircuitDesign
From Experimentation to Implementation: Some Useful Techniques and a Silicon Demonstration.IEE Proc. Comp.
Digit. Tech., 151(4):295–300, 2004.

[18] A. Stoica, R. S. Zebulum, and D. Keymeulen. Polymorphic electronics. InProc. of Evolvable Systems: From
Biology to Hardware Conference, volume 2210 ofLNCS, pages 291–302. Springer, 2001.

[19] A. Stoica, R. S. Zebulum, D. Keymeulen, and J. Lohn. On polymorphic circuits and their designusing evolutionary
algorithms. InProc. of IASTED International Conference on Applied Informatics AI2002, Insbruck, Austria, 2002.

[20] J. M. Tour.Molecular Electronics. World Scientific, 2003.

[21] V. Vassilev, D. Job, and J. F. Miller. Towards the automatic design of more efficient digital circuits. InProc. of the
2nd NASA/DoD Workshop of Evolvable Hardware, pages 151–160, Los Alamitos, CA, US, 2000. IEEE Computer
Society.

[22] R. Waser.Nanotechnology: Science and Computation. Wiley-VCH, 2005.

[23] D. Xiang and J. H. Patel. Partial scan design based on circuit state information and functional analysis.IEEE Trans.
Computers, 53(3):276–287, 2004.

[24] R. S. Zebulum and A. Stoica. Four-Function Logic Gate Controlled by Analog Voltage.NASA Tech Briefs, 30(3):8,
2006.

[25] R. S. Zebulum and A. Stoica. Multifunctional Logic Gates for Built-In Self-Testing.NASA Tech Briefs, 30(3):10,
2006.

