

TASTE: Testability Analysis Engine and Opened Libraries
for Digital Data Path

Josef Strnadel
Brno University of Technology, Faculty of Information Technology

Božetěchova 2, 612 66 Brno, Czech Republic
phone: +420 5 4114 1211, fax: +420 5 4114 1270, e-mail: strnadel@fit.vutbr.cz

Abstract

Testability is one of the most important factors that
are considered during design cycle along with
reliability, speed, power consumption, cost and
other factors important for a customer. Estimation
of testability parameter strongly depends on how
accurate information utilized for the estimation by
a testability analysis method is. In the paper, two
results of our previous, long-term research in the
area of digital circuit testability analysis are
summarized: principle of our testability analysis
engine and libraries used to store the information
outgoing from transparency models. The engine is
general and accuracy of its results strongly
depends on the information stored in the libraries.
If simple transparency model is utilized,
information about circuit testability could be far
away from real state of the circuit. Otherwise,
testability information can approximate so serious
parameter such as fault-coverage factor.

1. Introduction

Since reusable components are main building
blocks of component-based systems, developing
high quality components becomes a critical part of
component-based engineering. To generate high
quality components from diagnostic point of view,
attention must be payed not only to a classical
design cycle of each component, but also to a
diagnostic related part of the cycle like
synthesis/design for testability (S/DFT), test pattern
generation (TPG) etc. For an automation of
diagnostic related parts, design-related inputs
(library of low-level components, HDL sources,
constraints posed on final design) have to be
enriched about inputs like testability analysis (TA)
engine, test patterns and responses and other
corresponding data.

In this paper, we will not deal with TPG related
parts - they are already well-supported by major
electronic design automation (EDA) tools. Instead,

we will target parts (unjustly) neglected by
common EDA tools – a TA engine and its inputs
significantly affecting accuracy of TA results and
consequently, quality of S/DFT process. Actually,
each EDA tool is equipped with its own TA engine
that is “hardwired” into the tool. Our idea is to
offer a general TA engine that could be utilized by
any EDA tool. To be able to do this, we need
following: a portable engine (e.g., a code written in
ANSI/ISO C++) and EDA tool independent
component libraries (for each component, it stores
an information making TA process both more
efficient and precise and utilizable by any tool).

Many TA approaches have been developed in the
past. They can be classified according to several
aspects. On the basis of abstraction level, they can
be divided, e.g., to gate-level [7][14], register-
transfer level, RTL, [2][5] [8][9][20][23],
functional level [4][25], behavioral level [22] or
multilevel [11] approaches. According applicability
of results, they can be divided to general-purpose,
e.g., [2][4][7][22][23] and special-purpose (e.g.,
with results strongly tied to application of a
particular DFT technique as the partial scan in
[20]). According to a data path analysis utilized,
they can be divided to simpler probability-based
(e.g., [2][5][8][9][14]) dealing with stochastic
behavior of a data flow, and exact structural-
analysis based approaches (e.g., [7][20][23]). In
most of the approaches, testability is evaluated by
means of controllability and observability
parameters. TA approaches only differ in the way,
how controllability and observability are defined
and measured.

Our TA engine presented in the paper can be
classified as multilevel, general-purpose, structural-
based TA approach with library-driven behavior
and accuracy.

2. Our Previous Research

During our previous research activities, we tried
to take advantage of so called transparency
principles utilized for enhancement of hierarchical
TPG methods and to utilize them for design of a

PDFaid.Com
#1 Pdf Solutions

http://Pdfaid.com

novel RTL TA engine.
Functionality of the TA engine was

experimentally checked in several important areas
like

• S/DFT area, where a problem of constraint-

driven partial/full scan application combined
with other techniques was solved by means of
evolutionary approaches [23],

• test-controller synthesis area, where a problem
of test controller synthesis based on testability
analysis results was solved [21],

• synthetic benchmark generation area [18].

Moreover, in [19], it was experimentally verified
that a testability can be estimated very precisely if
appropriate conception is utilized for modelling
data transfers in a data path – it was shown there is
a very close relationship between testability values
got by our TA engine (working in linear-close time,
which is general assumption posed on any TA
algorithm [3]) and fault-coverage values got by
commercial TPG tools (generally, working in
exponential time) – e.g. for FITTest_Bench06
benchmarks [16], there was only 5% average
deviation between testability values gained by our
TA engine and fault-coverage values gained by
commercial TPG tools.

To be serious, also drawbacks of our TA engine
developed for RTL data paths should be mentioned
here. First, it worked with fixed library of
components (adders, multipliers, multiplexers,
registers and substractors). Because the engine was
well-optimized for such a type of components, it
could generate precise testability results able to
estimate commercially gained parameters very
closely.

However, it suffered by this advantage –
because of a limited number of supported
components, it was practically unusable. Second,
the library was part of engine’s executable. Thus, it
was impossible to add new component or to change
properties of any component without recoding and
recompiling the engine.

3. Research Motivation

Both above-mentioned pluses and minuses of
our previous RTL engine gave us an enthusiasm for
new research, results of which are presented in
following part of the paper. Main goal of our new
research was to develop general TA engine not
limited neither by number and types of components
nor to its applicability to RTL data path.

Our idea is as follows: for given general TA
engine, its user (not only its vendor) is allowed (in

an easy way) to add and/or modify transparency
properties of each component and thus affect the
quality of TA results related to a particular
component and to an analyzed design. In addition
to the above-mentioned goal, there is another not-
less important goal: portability and usability of
both engine and libraries among EDA tools.

4. Paper Structure

The structure of the paper is as follows. First,
transparency principles are presented. Next, syntax
of library language used to describe transparency
information for each component is presented
together with illustrative examples. After that, a
native net-list format (describing circuit structure
by means of components from the library) utilized
by the engine will be presented together with
illustrative examples. Then, a principle of our TA
engine is presented in brief, together with results
gained by the engine in several areas. At the end of
the paper, a brief summary is presented together
with possible future research perspectives.

5. Concepts Related to Our Approach

5.1. Introduction to Transparency

A lot of research efforts have been dedicated to
an importance of modeling a data flow in a digital
data-path in order to estimate diagnostic parameters
of a circuit more precisely.

Probably, the first (so-called I/T-Path) model
was published in [1]. The model supposed transfer
of n-bit diagnostic data is possible in a direction
from a n-bit port x to a n-bit port y in a circuit data
path iff an one-to-one (i.e., bijective) mapping
exists between x-data and y-data; in such a case, so-
called i-path exists (in the direction) from x to y. As
the first illustrative example, see Fig. 1a) – an i-
path from port a to port y of a multiplexer MX
exists iff MX’s selection input sel is set to 0.

Alike, in Fig. 1b) – an i-path from d to y of
register R exists iff a rising edge appears on R’s
clk.

In Fig. 1c), an i-path from a to y of adder ADD
exists iff ADD’s b is set to all 0’s.

Fig. 1. Illustration to i-paths

Other works tried to enhance properties of the
above-mentioned model. E.g., in a conception
referred to as S/F-Path conception [5], it was
shown the I/T-Path conception is easy to
understand and implement, but it is too strict in
definition of a data path suitable for diagnostic
data-flow – I/T-Path’s strict “bijective mapping
requirement” leads to an unneeded restriction of a
data path portion suitable for transferring
diagnostic data (especially when port bit-widths in
a component interface differ or some bits in
interface are uncontrollable and/or unobservable).

The strict requirement can be soften by
analyzing a data path separately for transferring
test vectors/patterns (responses) between x and y.
The idea of such a separate analysis is as follows:
test vectors/patterns (responses) can be transferred
from x to y iff a surjective (injective) mapping
exists between x-data and y-data. Using this less-
strict principle, much greater data path portion can
be considered suitable for diagnostic data flow than
in a case of I/T-Path conception.

Several variations of the above-mentioned
approaches have been used in the area of
generating so-called hierarchical tests: ambiguity
sets [7], transparency modes [11], or transparency
channels [5, 6] etc. All of the approaches are often
referred to as transparency conceptions, because
they deal with modeling of situations, in which data
path portion is “transparent” to transported
diagnostic data.

5.2. Language Utilized in the Library

Actual syntax of a language utilized by our TA
engine to describe transparency properties of
components can be expressed by means of Backus
Naur Form (BNF):

<lib_element> ::= MODULE_TYPE <mt> INTERFACE
<it><info> <lib_element>
<mt> ::= <identifier> | <identifier>"<"<parameters>">" |
 "<"<parameters>">"<identifier>
<parameters> ::= <identifier>|<identifier>_<parameters>
<it>::= <identifier>@<it_range>|<identifier>@<it_range> <it>
<it_range> ::= [<number>]|(<number>:<number>)
<info>::= SUR <sur> INJ <inj> BIJ <bij>
<sur>:=<identifier><map_range>|<identif.><map_range><sur>
<inj>:=<identifier><map_range>|<identif..><map_range> <inj>
<bij>:=<identifier><map_range>|<ident.r><map_range> <bij>
<map_range> ::= [<expression>]|(<expression>:<expression>)

By means of the above-described language, it is
possible to assign all bijective, surjective and
injective mappings to each component. E.g., for a
generally known 1-bit full adder (FA) with an
interface depicted in Fig. 2, information stored in
the library could be written in a following way:

MODULE_TYPE FA1
INTERFACE in@x(0) in@y(0) in@cin(0) out@z(0)
out@cout(0)
SUR x(0)y(0)cin(0)|z(0)cout(0)|-
INJ
BIJ x(0)|z(0)|y(0)cin(0) y(0)|z(0)|x(0)cin(0) cin(0)|z(0)|x(0)y(0)
cin(0)|cout(0)|x(0)y(0) y(0)|cout(0)|x(0)cin(0)
x(0)|cout(0)|y(0)cin(0)

Fig. 2. One-Bit Full-Adder Interface

Let us explain a meaning of the above-

mentioned information now. In the first line,
component type (FA1) is identified after the
“MODULE_TYPE” keyword.

In next line, an interface of FA1 is defined after
“INTERFACE” keyword, i.e., an input bit 0
allocated for a port x (can be also written as
in@x[1], which means an input port x of bit-width
equal to 1) etc.

After “SUR”, “INJ” and “BIJ” keywords,
information about surjective, injective and bijective
mappings among particular interface bits is stored.
Each part of the information is in the “s|t|c” form
consisting of sub-parts s, t, c separated by “|”
character, where “s” is a mapping source (domain),
“t” is a mapping target (co-domain, image) and “c”
is a condition required to enable the mapping.

Above-mentioned example describes
transparency information for one particular
component only (1-bit FA). This is the simplest
way of utilizing the library. However, by means of
the language, it is possible to describe a more
general information covering entire class of circuits
– e.g. n-bit registers or adders with interfaces
depicted in Fig. 1a, Fig. 1b. Below, only part of the
information is given:

MODULE_TYPE R_<n> // one template for R_4, R_32, …
INTERFACE in@d(n-1:0) in@clk(0) out@y(n-1:0)
SUR d(n-1:0)|y(n-1:0)|clk(0)

MODULE_TYPE ADD_<n>a // ADD_4a, ADD_16a, …
INTERFACE in@a[n] in@b[n] out@y(0:n-1)
SUR a(n-1:0)|y(n-1:0)|b(n-1:0) b(n-1:0)|y(n-1:0)|a(n-1:0)

5.3. Net-list Format

After transparency-related information is stored
in the library for each component-type or class of
component-types, it can be assigned to particular
components design consists of.

The structure of particular design can be
described in native net-list format, of which syntax
can be expressed by means of following BNF
(simplified because of space limit for the paper):

<design> ::= DESIGN <identifier> <it> <com> <link>
<it> ::= <identifier>(<port_type>)|<identif.>(<port_type>) <it>
<port_type> ::= in|out|inout|clk|sel
<com> ::= COM <identifier> (<com_type>)|
 <identifier>(<com_type>) <com>
<link> ::= LINK <identifier> -> {<identifier>}|
 <identifier> -> {<identifier>} <link>

As an example, let us present the net-list
describing the circuit depicted in Fig. 3 (let us
suppose component-types ADD_<n>a, MUL_<n1,
n2> and REG_<n> are stored in the library):

// C++ comments supported
//
// design name and interface:
DESIGN nl in(in,4) clk(clk,1) out(out,4)
// components within the design (interfaces and properties are
given // by component-type):
COM ADD1(ADD_4a) // component of type ADD_<n>a
COM ADD2(ADD_4a) // component of type ADD_<n>a
COM MUL1(MUL_4_8comb) //c. of type MUL_<n1, n2>comb
COM R1(REG_4) // component of type REG_<n>
COM R2(REG_4) // component of type REG_<n>

COM R3(REG_4) // component of type REG_<n>
// physical connections among bits in component interfaces:
LINK nl.in(3:0) -> ADD1.a(0:3) //explicit wiring
LINK nl.clk -> R1.clk // implicit full-width connections
LINK nl.clk -> R2.clk
LINK nl.clk -> R3.clk
LINK ADD1.y -> R1.d
LINK R1.y -> ADD2.a
LINK ADD2.y -> R2.d
LINK R2.y -> MUL1.a
LINK MUL1.y(7:4) -> R3.d // source bit-range selection
LINK R3.y -> ADD1.b ADD2.b MUL1.b nl.out(3:1) nl.out(0)
// multiple full or partial bit-width targets and destinations
allowed

5.4. Principle of our TA Engine

Having the information (stored in the net-list)
about how interfaces of various modules are
interconnected and information (stored in the
library) about mapping of data between each pair of
adjacent ports in a data-path, it is possible to
construct two special digraphs for the data-path:
• test pattern data-flow digraph GS = (VS , ES)

and
• test response data-flow digraph GI = (VI , EI).

A set of vertices of GS (GI) consists of ports. An

oriented edge exists between two vertices iff a
surjection (injection) exists between the start-vertex
and end-vertex data (i.e., iff it is possible to transfer
test vectors (responses) in the direction from the
start-vertex to end-vertex). Also, each edge in GS
(GI) is evaluated by a “transfer-condition” function
µE: E → 2V, where E = ES ∪ EI, V = VS ∪ VI. Using
µE, set of ports necessary to control an edge e ∈ E
is assigned to the edge (see Fig. 5 as an example).

Let us suppose now that modification of the NL
circuit (Fig. 3) according to Fig. 4 (the multiplexer
MUX1 is added to a data path between the
MUL1.y(7:4) and R3.d in order to enhance
testability of NL by breaking the most-nested loop).
Let us denote modified circuit as NL*.

In Fig. 5, portion of GS (Fig. 5a) for adjusting
test data from the PI tst_in to the input b of the
ADD1 (ADD1.b) is presented together with a
portion of GI (Fig. 5b) for observing test data from

the output y of the MUL1 (MUL1.y) at the PO out.
In the figure, following graphical notation is used.
In full-line circles, ports of in-circuit components
are depicted, in dash-line circles, PIs/POs are
depicted and in a double-line circle, port the
digraph portion belongs to is depicted. Circles
connected by a full-line represent test path for the
double-lined port and circles connected by dash-
line represent paths to be controlled in order to
ensure the data flow through full-line path. Each
edge is evaluated by means of µE.

Proposed TA algorithm is constructed as a
graph-searching algorithm over GS and GI [23].
During the search process, accessibility of ports
from PIs is analyzed and evaluated in GS
(controllability analysis step) first and after that,
accessibility of ports at POs is analyzed and
evaluated in GI (observability analysis step).

Fig. 3. NL circuit

Fig. 4. Modification of NL circuit

For GS analysis, mapping µS: V → (V∪{□})×R

is defined assigning an ordered tuple (p*, c*) to an
input port p, where
• p* is a set of ports, from an accessibility mark

has been propagated for an input port p and
• c* is controllability value of the mark after its

propagation.

In an informal way, principle of propagating

marks through GS can be described in a following
way:

[Initialization] Assign marks to primary input vertices of
GS; leave other nodes markless.
[Edge selection] Select such edges from GS, whose start-
vertex together with edge condition inputs are marked
and whose end-vertex is either markless nor it has worse
mark than the mark to be transported; continue with step
3. If there is no such an edge, finish the algorithm.
[Marking] Assign a mark to end-vertices of selected
edges and go to step 2.

Alike, mapping µI (as well as propagating
mechanism) exist for GI analysis. As an example
for above-depicted circuit, accessibility marks are
serially propagated through edges in GS in a
following way (“a → b (c)” notation means
propagation of accessibility mark with
controllability value c through an edge (a, b) from
ES):

NL*.in → ADD1.a (1.0),
NL*.tst_in → MUX1.a (1.0),
NL*.sel → MUX1.sel (1.0),
NL*.clk → R3.clk (1.0),
NL*.clk → R2.clk (1.0),
NL*.clk → R1.clk (1.0),
MUX1.a → MUX1.y (0.989),
MUX1.y → R3.d (0.989),

R3.d → R3.y (0.733),
R3.y → NL*.out (0.733),
R3.y → MUL1.b (0.733),
R3.y → ADD2.b (0.733),
R3.y → ADD1.b (0.733),
ADD1.b → ADD1.y (0.670),
ADD1.y → R1.d (0.670),
R1.d → R1.y (0.497),
R1.y → ADD2.a (0.497),
ADD2.b → ADD2.y (0.733),
ADD2.y → R2.d (0.332),
R2.d → R2.y (0.219),
R2.y → MUL1.a (0.219),
MUL1.a → MUL1.y (0.146),
MUL1.y → MUX1.b (0.146).

Because of limited space in the paper,

illustrative examples are presented instead of
formal description of the TA algorithm. Worst-case
time complexity of the algorithm is
O(|V(GS)|×|E(GS)|+|V(GI)|×|E(GI)|), i.e. quadratic.

However, the complexity can be achieved only
to very small class of synthetic circuits. For
practice circuits, it is usually reduced to better
linear time complexity (see Fig. 6 depicting
experimentally measured average execution time as
a function of number of components in analyzed
designs from [18] synthetic benchmark suite).

Fig. 5. Illustration to GS

6. Experimental results

In this section, possible applications of results
achieved by proposed TA engine are presented.

6.1. Fault-Coverage Estimation

It can be said TA is utilized in the areas where
information about testability is required in pre-
defined limited time and accuracy. If a precise
information is needed, a TPG tool can be applied to

a design in order to produce, e.g., a fault-coverage
parameter of the design. However, TPG algorithms
are of exponential time complexity in general.
Problem arise if an information is to be evaluated,
e.g., in each iteration of design space exploration
algorithm in order to evaluate quality of a particular
solution from testability point of view. In such a
situation, a TPG algorithm would be too expensive.
To solve the problem, fault-coverage parameter can

be estimated (ideally, in linear-close time), e.g. by
means of a TA method. To verify applicability of
our TA results for fault-coverage estimation
purposes, we have experimentally measured an
average deviation between results gained by our
TA engine and fault-coverage results gained by the
commercial TPG tool (FlexTest from
MentorGraphics company).

Fig. 6. Experimentally measured time-complexity of TA

After a deep analysis of FITTest_Bench06

benchmarks [16], there was only 5% average
deviation between testability results (see Fig. 7). Of
course, we do not expect this will hold generally
for all classes of circuits, so further experiments are
needed in this area.

Fig. 7. TA results utilized for fault-

coverage estimation

6.2 Design Space Exploration Results

In the following, an applicability of TA results
in S/DFT areas is presented in brief.

In S/DFT, it is necessary to explore the search-
space of possible solutions in order to be able to
discover the solution with properties as close as
possible to desired (optimal) properties. Because it

is necessary to find out an optimal or optimum-
close solution, one of the most important problems
that should be solved is the problem of evaluating
quality of the solutions.

Usually, the evaluation is done by means so
called fitness function (fit). The higher fit is for
particular design given as its parameter, the closer
the design is to desired optimum. Because
testability is a very important factor in S/DFT, fit is
evaluated by means of TA results. Of course, there
can be extra requirements posed on final design
like maximal allowed area/pin overhead caused
by S/DFT application, maximal allowed power
consumption etc. Also all those factors play role
during fit evaluation. Fitness function utilized in
our approach can be expressed by following
formula:

,
where aoconstr (poconstr) are maximal area (pin)

overheads to be payed for testability enhancement
of the original circuit structure and aoact, poact, tstact
denote area overhead, pin overhead (both in %
divided by 100) and testability (real number from
<0.0; 1.0> interval) values of particular solution
from the state space. E.g., DFT process driven by
means of fitness values given by means of the

above-mentioned formula, can be expressed by the
following steps:

1. [DFT implementation] new solution with built-in
DFT techniques is generated
a) [Selection of DFT modification] particular
configuration based on user-selected DFT techniques is
generated randomly (special mutation of previously
gained solutions is utilized for the purpose)
b) [Implementation of DFT modification]
configuration from point 1a) is built into the origina
circuit structure
2. [Evaluation] fitact value iassigned to the solution
3. [Detection] if fitact > fitbest, the best solution is found
4. [DFT removal] DFT techniques are removed from the
circuit structure

In Fig. 8, result of the following DFT

experiment is presented. The objective of the
experiment was to check whether solutions with
lower aoact, poact values and higher tstact value are
assigned higher fit value than solutions with higher
values of overhead parameters and lower value of
testability parameter.

It can be seen that solutions evaluated by higher
fit values are those with good cost/quality trade-off
between costs of S/DFT application and testability
enhancement achieved by the application. As an
example of such solutions, see values for iterations
683, 716 or 721. As an ”opposite” example, see
values for iterations 687, 688 or 703.

Fig. 8. Cutout of DFT search space exploration for a00 benchmark

• A great diversity of quality (measured by

means of fit values) of solutions generated
during the search process can be achieved,
which is important for S/DFT ability to find
solutions with high cost/quality trade-off.
Other experiments showed 1) time S/DFT
needs to find the solution for particular
benchmark is proportional to the complexity of
a circuit, 2) for all tested benchmarks
,”average-quality” solutions “quickly” while it
takes much more iterations to find optimum-
close solutions.

7. Conclusion

In the paper, principles of our TA engine,
together with syntax and illustrative examples of
related component-libraries were presented in brief.
Main goal of the paper was to present TA engine
usable by any EDA tool and applicable to common
S/DFT areas. Comparing to its predecessor, the

engine is portable (implemented in ANSI/ISO C++)
and not limited neither by number and types of
components nor to its applicability to RTL data
path. There are two inputs required by the engine:
library of components and net-list. Both of the
inputs are stored in separate plain-text files and
thus can be easily modified by both human and
machine.

Library of components (containing information
about interfaces and transparency properties of
particular components) can be provided by a
component vendor or can be created or modified by
a user. It is important to know that accuracy of TA
results is significantly affected by accuracy of
information stored in the library.

Second input (the net-list) is utilized to describe
inter-connections between interfaces of particular
component instances involved in the design. The
net-list can be created manually by a user or it can
be easily generated, e.g., from VHDL, Verilog or
EDIF file utilized by an EDA tool. Actually, TA

results produced by our TA engine can be stored in
a plain-text file, TEX file and HTML file to be
easily published by common publishing systems.
Extension to further file-formats is possible in a
simple way. Our further research will be dedicated
especially to TA and S/DFT of hierarchical and
system-on-a-chip (SOC) digital and mixed-signal
designs, which belong to the most popular
approaches at present. Also, further experiments
are planned.

The work related to the paper has been
financially supported by the Research Plan No.
MSM, 0021630528 – Security-Oriented Research
in Information Technology.

9. References

[1] M. S., Abadir and M. A., Breuer: A Knowledge-
Based System for Designing Testable VLSI
Chips, IEEE Design and Test of Computers, Vol.
2, No. 4, 1985, pp. 56-68.

[2] P., Bukovjan: Allocation for Testability in High-
Level Synthesis. PhD thesis, Institute National
Polytechnique de Grenoble, 2000, 124 p.

[3] M. L., Bushnell and V. D., Agrawal: Esentials of
Electronic Testing for Digital, Memory and
Mixed VLSI Circs, Springer Verlag, 2000, p. 129.

[4] C. H., Chen, P. R., Menon: An Approach to
Functional Level Testability Analysis. In:
Proceedings of the International Test Conference,
1999, pp. 373—380.

[5] J., Fernandes, M. B. Dos Santos, A. Oliveira, J. P.
Teixeira and R. Velazco: Sensitivity to SEUs
Evaluation using Probabilistic Testability
Analysis at RTL, In: Proceedings of 8th LATW,
Cusco, 2007, 6 p.

[6] S., Freeman: Test Generation for Data-Path Logic:
The FPath Method, IEEE JSSC, 23(2), 1998, pp.
421-427.

[7] L. H. Goldstein and E. L. Thigpen. SCOAP:
Sandia controllability/observability analysis
program. In DAC ’80: Proceedings of the 17th
conference on Design automation, pp. 190–196.
ACM Press, 1980.

[8] J., Grason: TMEAS - a Testability Measurement
Program. In Proc. of IEEE/ACM Design
Automation, 1979. pp. 156–161.

[9] X., Gu: RT Level Testability Improvement by
Testability Analysis and Transformations. Ph.D.
Thesis, Linköping University, 1996. 160 p.

[10] V. I. Hahanov, M. A. Kaminska and O. Lavrova:
Testability Analysis of the VHDL Structure for
Fault Coverage Improving, Electronics and
Electrical Eng., Vol. 74, No. 2, 2007, pp. 29-32

[11] J., Hlavička, Z., Kotásek, R., Růžička and J.,
Strnadel: Interactive Tool for Behavioral Level
Testability Analysis, In: Proceedings of the IEEE
ETW 2001, Stockholm, SE, 2001, pp. 117-119.

[12] Y., Makris, Orailoglu, A.: RTL Test Justification
and Propagation Analysis for Modular Designs,
JETTA, Vol. 13, No. 2, 1998, pp. 105-120.

[13] Y., Makris, V., Patel and A., Orailoglu: Efficient
Transparency Extraction and Utilization in
Hierarchical Test. In: Proceedings of the IEEE
VLSI Test Symposium, 2001, pp. 246-251.

[14] C. M., Maunder, R. G., Bennetts and G. D.,
Robinson: CAMELOT: A Computer-Aided
Measure for Logic Testability. In Proceedings of
Intenational Conference on Computer
Communication, 1980. pp. 1162–1165.

[15] B. T., Murray, and J. P., Hayes: Test Propagation
through Modules and Circuits, In: Proceedings of
International Test Conference, 1991, pp. 748-757.

[16] Pečenka, T., Kotásek, Z., Sekanina, L.:
FITTest_Bench06: A New Set of Benchmark
Circuits Reflecting Testability Properties, In:
Proceedings of 9th IEEE Design and Diagnostics
of Electronic Circuits and Systems Workshop,
Prague, 2006, pp. 285-289.

[17] T., Pečenka: Tools and Methods for Automated
Generating of Benchmark Circuits. PhD thesis,
Brno University of Technology, 2007. 124 p.

[18] T., Pečenka, Z., Kotásek, L., Sekanina and J.,
Strnadel: Automatic Discovery of RTL
Benchmark Circuits with Predefined Testability
Properties, In: Proceedings of the 2005
NASA/DoD Conference on Evolvable Hardware,
Los Alamitos, ICSP, 2005, pp. 51-58.

[19] T., Pečenka, J., Strnadel, Z., Kotásek and L.,
Sekanina.: Testability Estimation Based on
Controllability and Observability Parameters, In:
Proceedings of the 9th EUROMICRO Conference
on Digital System Design, Cavtat, IEEE CS,
2006, pp. 504-514.

[20] R., Růžička: Formal approach to the Testability
Analysis of RT Level Digital Circuits. PhD thesis,
Brno University of Technology, 2002, 102 p.

[21] R., Růžička, J. Strnadel.: Test Controller
Synthesis Constrained by Circuit Testability
Analysis, In: Proceedings of 10th Euromicro
Conference on Digital System Design,
Architectures, Methods and Tools, Los Alamitos,
US, ICSP, 2007, pp. 626-633

[22] S. Seshadri and M. Hsiao. Behavioral-level dft via
formal operator testability measures. Journal of
Electronic Testing, 18(6):596–611, 2002.

[23] J., Strnadel: Testability Analysis and
Improvements of Register-Transfer Level Digital
Circuits, Computing and Informatics, Vol. 25, No.
5, Bratislava, 2006, pp. 441-464.

[24] V. M., Vedula and J. A., Abraham: FACTOR: A
Hierarchical Methodology for Functional Test
Generation and Testability Analysis. In
Proceedings of Design, Automation and Test in
Europe Conference and Exhibition, IEEE, 2002.
pp. 730–735.

[25] V., Vishakantaiah, J. A., Abraham and M. S.,
Abadir: Automatic Test Knowledge Extraction
From VHDL (ATKET), In: Proceedings of DAC,
1992, pp. 273-278.

