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Abstract 

Testability is one of the most important factors that 
are considered during design cycle along with 
reliability, speed, power consumption, cost and 
other factors important for a customer. Estimation 
of testability parameter strongly depends on how 
accurate information utilized for the estimation by 
a testability analysis method is. In the paper, two 
results of our previous, long-term research in the 
area of digital circuit testability analysis are 
summarized: principle of our testability analysis 
engine and libraries used to store the information 
outgoing from transparency models. The engine is 
general and accuracy of its results strongly 
depends on the information stored in the libraries. 
If simple transparency model is utilized, 
information about circuit testability could be far 
away from real state of the circuit. Otherwise, 
testability information can approximate so serious 
parameter such as fault-coverage factor. 

1. Introduction 

Since reusable components are main building 
blocks of component-based systems, developing 
high quality components becomes a critical part of 
component-based engineering. To generate high 
quality components from diagnostic point of view, 
attention must be payed not only to a classical 
design cycle of each component, but also to a 
diagnostic related part of the cycle like 
synthesis/design for testability (S/DFT), test pattern 
generation (TPG) etc. For an automation of 
diagnostic related parts, design-related inputs 
(library of low-level components, HDL sources, 
constraints posed on final design) have to be 
enriched about inputs like testability analysis (TA) 
engine, test patterns and responses and other 
corresponding data.  

In this paper, we will not deal with TPG related 
parts - they are already well-supported by major 
electronic design automation (EDA) tools. Instead, 

we will target parts (unjustly) neglected by 
common EDA tools – a TA engine and its inputs 
significantly affecting accuracy of TA results and 
consequently, quality of S/DFT process. Actually, 
each EDA tool is equipped with its own TA engine 
that is “hardwired” into the tool. Our idea is to 
offer a general TA engine that could be utilized by 
any EDA tool. To be able to do this, we need 
following: a portable engine (e.g., a code written in 
ANSI/ISO C++) and EDA tool independent 
component libraries (for each component, it stores 
an information making TA process both more 
efficient and precise and utilizable by any tool). 

Many TA approaches have been developed in the 
past. They can be classified according to several 
aspects. On the basis of abstraction level, they can 
be divided, e.g., to gate-level [7][14], register-
transfer level, RTL, [2][5] [8][9][20][23], 
functional level [4][25], behavioral level [22] or 
multilevel [11] approaches. According applicability 
of results, they can be divided to general-purpose, 
e.g., [2][4][7][22][23] and special-purpose (e.g., 
with results strongly tied to application of a 
particular DFT technique as the partial scan in 
[20]). According to a data path analysis utilized, 
they can be divided to simpler probability-based 
(e.g., [2][5][8][9][14]) dealing with stochastic 
behavior of a data flow, and exact structural-
analysis based approaches (e.g., [7][20][23]). In 
most of the approaches, testability is evaluated by 
means of controllability and observability 
parameters. TA approaches only differ in the way, 
how controllability and observability are defined 
and measured.  

Our TA engine presented in the paper can be 
classified as multilevel, general-purpose, structural-
based TA approach with library-driven behavior 
and accuracy.  

2. Our Previous Research 

During our previous research activities, we tried 
to take advantage of so called transparency 
principles utilized for enhancement of hierarchical 
TPG methods and to utilize them for design of a 

PDFaid.Com
#1 Pdf Solutions

http://Pdfaid.com


novel RTL TA engine.  
Functionality of the TA engine was 

experimentally checked in several important areas 
like  

 
• S/DFT area, where a problem of constraint-

driven partial/full scan application combined 
with other techniques was solved by means of 
evolutionary approaches [23], 

• test-controller synthesis area, where a problem 
of test controller synthesis based on testability 
analysis results was solved [21], 

• synthetic benchmark generation area [18].  
 

Moreover, in [19], it was experimentally verified 
that a testability can be estimated very precisely if 
appropriate conception is utilized for modelling 
data transfers in a data path – it was shown there is 
a very close relationship between testability values 
got by our TA engine (working in linear-close time, 
which is general assumption posed on any TA 
algorithm [3]) and fault-coverage values got by 
commercial TPG tools (generally, working in 
exponential time) – e.g. for FITTest_Bench06 
benchmarks [16], there was only 5% average 
deviation between testability values gained by our 
TA engine and fault-coverage values gained by 
commercial TPG tools.  

To be serious, also drawbacks of our TA engine 
developed for RTL data paths should be mentioned 
here. First, it worked with fixed library of 
components (adders, multipliers, multiplexers, 
registers and substractors). Because the engine was 
well-optimized for such a type of components, it 
could generate precise testability results able to 
estimate commercially gained parameters very 
closely.  

However, it suffered by this advantage – 
because of a limited number of supported 
components, it was practically unusable. Second, 
the library was part of engine’s executable. Thus, it 
was impossible to add new component or to change 
properties of any component without recoding and 
recompiling the engine.  

3. Research Motivation 

Both above-mentioned pluses and minuses of 
our previous RTL engine gave us an enthusiasm for 
new research, results of which are presented in 
following part of the paper. Main goal of our new 
research was to develop general TA engine not 
limited neither by number and types of components 
nor to its applicability to RTL data path.  

Our idea is as follows: for given general TA 
engine, its user (not only its vendor) is allowed (in 

an easy way) to add and/or modify transparency 
properties of each component and thus affect the 
quality of TA results related to a particular 
component and to an analyzed design. In addition 
to the above-mentioned goal, there is another not-
less important goal: portability and usability of 
both engine and libraries among EDA tools. 

4. Paper Structure 

The structure of the paper is as follows. First, 
transparency principles are presented. Next, syntax 
of library language used to describe transparency 
information for each component is presented 
together with illustrative examples. After that, a 
native net-list format (describing circuit structure 
by means of components from the library) utilized 
by the engine will be presented together with 
illustrative examples. Then, a principle of our TA 
engine is presented in brief, together with results 
gained by the engine in several areas. At the end of 
the paper, a brief summary is presented together 
with possible future research perspectives. 

5. Concepts Related to Our Approach 

5.1. Introduction to Transparency  

A lot of research efforts have been dedicated to 
an importance of modeling a data flow in a digital 
data-path in order to estimate diagnostic parameters 
of a circuit more precisely.  

Probably, the first (so-called I/T-Path) model 
was published in [1]. The model supposed transfer 
of n-bit diagnostic data is possible in a direction 
from a n-bit port x to a n-bit port y in a circuit data 
path iff an one-to-one (i.e., bijective) mapping 
exists between x-data and y-data; in such a case, so-
called i-path exists (in the direction) from x to y. As 
the first illustrative example, see Fig. 1a) – an i-
path from port a to port y of a multiplexer MX 
exists iff MX’s selection input sel is set to 0.  

Alike, in Fig. 1b) – an i-path from d to y of 
register R exists iff a rising edge appears on R’s 
clk.  

In Fig. 1c), an i-path from a to y of adder ADD 
exists iff ADD’s b is set to all 0’s. 

 

 
Fig. 1. Illustration to i-paths 

 



Other works tried to enhance properties of the 
above-mentioned model. E.g., in a conception 
referred to as S/F-Path conception [5], it was 
shown the I/T-Path conception is easy to 
understand and implement, but it is too strict in 
definition of a data path suitable for diagnostic 
data-flow – I/T-Path’s strict “bijective mapping 
requirement” leads to an unneeded restriction of a 
data path portion suitable for transferring 
diagnostic data (especially when port bit-widths in 
a component interface differ or some bits in 
interface are uncontrollable and/or unobservable).  

The strict requirement can be soften by 
analyzing a data path separately for transferring 
test vectors/patterns (responses) between x and y. 
The idea of such a separate analysis is as follows: 
test vectors/patterns (responses) can be transferred 
from x to y iff a surjective (injective) mapping 
exists between x-data and y-data. Using this less-
strict principle, much greater data path portion can 
be considered suitable for diagnostic data flow than 
in a case of I/T-Path conception.  

Several variations of the above-mentioned 
approaches have been used in the area of 
generating so-called hierarchical tests: ambiguity 
sets [7], transparency modes [11], or transparency 
channels [5, 6] etc. All of the approaches are often 
referred to as transparency conceptions, because 
they deal with modeling of situations, in which data 
path portion is “transparent” to transported 
diagnostic data. 

 

5.2. Language Utilized in the Library 

Actual syntax of a language utilized by our TA 
engine to describe transparency properties of 
components can be expressed by means of Backus 
Naur Form (BNF): 
 
<lib_element> ::= MODULE_TYPE <mt> INTERFACE 
<it><info> <lib_element> 
<mt> ::= <identifier> | <identifier>"<"<parameters>">" | 
   "<"<parameters>">"<identifier> 
<parameters> ::= <identifier>|<identifier>_<parameters> 
<it>::= <identifier>@<it_range>|<identifier>@<it_range> <it> 
<it_range> ::= [<number>]|(<number>:<number>) 
<info>::= SUR <sur> INJ <inj> BIJ <bij> 
<sur>:=<identifier><map_range>|<identif.><map_range><sur> 
<inj>:=<identifier><map_range>|<identif..><map_range> <inj> 
<bij>:=<identifier><map_range>|<ident.r><map_range> <bij> 
<map_range> ::= [<expression>]|(<expression>:<expression>) 
 

By means of the above-described language, it is 
possible to assign all bijective, surjective and 
injective mappings to each component. E.g., for a 
generally known 1-bit full adder (FA) with an 
interface depicted in Fig. 2, information stored in 
the library could be written in a following way: 

 
MODULE_TYPE FA1 
INTERFACE in@x(0) in@y(0) in@cin(0) out@z(0) 
out@cout(0)  
SUR x(0)y(0)cin(0)|z(0)cout(0)|-  
INJ 
BIJ x(0)|z(0)|y(0)cin(0) y(0)|z(0)|x(0)cin(0) cin(0)|z(0)|x(0)y(0)            
cin(0)|cout(0)|x(0)y(0) y(0)|cout(0)|x(0)cin(0) 
x(0)|cout(0)|y(0)cin(0) 
 

 
Fig. 2. One-Bit Full-Adder Interface 

 
Let us explain a meaning of the above-

mentioned information now. In the first line, 
component type (FA1) is identified after the 
“MODULE_TYPE” keyword.  

In next line, an interface of FA1 is defined after 
“INTERFACE” keyword, i.e., an input bit 0 
allocated for a port x (can be also written as 
in@x[1], which means an input port x of bit-width 
equal to 1) etc.  

After “SUR”, “INJ” and “BIJ” keywords, 
information about surjective, injective and bijective 
mappings among particular interface bits is stored. 
Each part of the information is in the “s|t|c” form 
consisting of sub-parts s, t, c separated by “|” 
character, where “s” is a mapping source (domain), 
“t” is a mapping target (co-domain, image) and “c” 
is a condition required to enable the mapping. 

Above-mentioned example describes 
transparency information for one particular 
component only (1-bit FA). This is the simplest 
way of utilizing the library. However, by means of 
the language, it is possible to describe a more 
general information covering entire class of circuits 
– e.g. n-bit registers or adders with interfaces 
depicted in Fig. 1a, Fig. 1b. Below, only part of the 
information is given: 

 
MODULE_TYPE R_<n>  // one template for R_4, R_32, … 
INTERFACE in@d(n-1:0) in@clk(0) out@y(n-1:0)  
SUR d(n-1:0)|y(n-1:0)|clk(0) 

 
MODULE_TYPE ADD_<n>a // ADD_4a, ADD_16a,  … 
INTERFACE in@a[n] in@b[n] out@y(0:n-1)  
SUR a(n-1:0)|y(n-1:0)|b(n-1:0) b(n-1:0)|y(n-1:0)|a(n-1:0) 

5.3. Net-list Format 

After transparency-related information is stored 
in the library for each component-type or class of 
component-types, it can be assigned to particular 
components design consists of.  



The structure of particular design can be 
described in native net-list format, of which syntax 
can be expressed by means of following BNF 
(simplified because of space limit for the paper): 
 
<design> ::= DESIGN <identifier> <it> <com> <link> 
<it> ::= <identifier>(<port_type>)|<identif.>(<port_type>) <it> 
<port_type> ::= in|out|inout|clk|sel  
<com> ::= COM <identifier> (<com_type>)|
 <identifier>(<com_type>) <com> 
<link> ::= LINK <identifier> -> {<identifier>}| 
 <identifier> -> {<identifier>} <link> 
   

As an example, let us present the net-list 
describing the circuit depicted in Fig. 3 (let us 
suppose component-types ADD_<n>a, MUL_<n1, 
n2> and REG_<n> are stored in the library): 
 
// C++ comments supported 
// 
// design name and interface: 
DESIGN nl in(in,4) clk(clk,1) out(out,4) 
// components within the design (interfaces and properties are 
given // by component-type): 
COM ADD1(ADD_4a) // component of type ADD_<n>a 
COM ADD2(ADD_4a) // component of type ADD_<n>a 
COM MUL1(MUL_4_8comb) //c. of type MUL_<n1, n2>comb 
COM R1(REG_4)     // component of type REG_<n> 
COM R2(REG_4)  // component of type REG_<n> 

COM R3(REG_4)     // component of type REG_<n> 
// physical connections among bits in component interfaces: 
LINK nl.in(3:0) -> ADD1.a(0:3) //explicit wiring 
LINK nl.clk -> R1.clk  // implicit full-width connections 
LINK nl.clk -> R2.clk 
LINK nl.clk -> R3.clk 
LINK ADD1.y -> R1.d 
LINK R1.y -> ADD2.a          
LINK ADD2.y -> R2.d 
LINK R2.y -> MUL1.a           
LINK MUL1.y(7:4) -> R3.d  // source bit-range selection 
LINK R3.y -> ADD1.b ADD2.b MUL1.b nl.out(3:1) nl.out(0)                                       
// multiple full or partial bit-width targets and destinations 
allowed 
 

5.4. Principle of our TA Engine  

Having the information (stored in the net-list) 
about how interfaces of various modules are 
interconnected and information (stored in the 
library) about mapping of data between each pair of 
adjacent ports in a data-path, it is possible to 
construct two special digraphs for the data-path:  
• test pattern data-flow digraph GS = (VS , ES) 

and  
• test response data-flow digraph GI = (VI , EI).  

 
A set of vertices of GS (GI) consists of ports. An 

oriented edge exists between two vertices iff a 
surjection (injection) exists between the start-vertex 
and end-vertex data (i.e., iff it is possible to transfer 
test vectors (responses) in the direction from the 
start-vertex to end-vertex). Also, each edge in GS 
(GI) is evaluated by a “transfer-condition” function 
µE: E → 2V, where E = ES ∪ EI, V = VS ∪ VI. Using 
µE, set of ports necessary to control an edge e ∈ E 
is assigned to the edge (see Fig. 5 as an example). 

Let us suppose now that modification of the NL 
circuit (Fig. 3) according to Fig. 4 (the multiplexer 
MUX1 is added to a data path between the 
MUL1.y(7:4) and R3.d in order to enhance 
testability of NL by breaking the most-nested loop). 
Let us denote modified circuit as NL*. 

In Fig. 5, portion of GS (Fig. 5a) for adjusting 
test data from the PI tst_in to the input b of the 
ADD1 (ADD1.b) is presented together with a 
portion of GI (Fig. 5b) for observing test data from 

the output y of the MUL1 (MUL1.y) at the PO out. 
In the figure, following graphical notation is used. 
In full-line circles, ports of in-circuit components 
are depicted, in dash-line circles, PIs/POs are 
depicted and in a double-line circle, port the 
digraph portion belongs to is depicted. Circles 
connected by a full-line represent test path for the 
double-lined port and circles connected by dash-
line represent paths to be controlled in order to 
ensure the data flow through full-line path. Each 
edge is evaluated by means of µE. 

Proposed TA algorithm is constructed as a 
graph-searching algorithm over GS and GI [23]. 
During the search process, accessibility of ports 
from PIs is analyzed and evaluated in GS 
(controllability analysis step) first and after that, 
accessibility of ports at POs is analyzed and 
evaluated in GI (observability analysis step).  

 

 
Fig. 3. NL circuit 



 

 
Fig. 4. Modification of NL circuit 

 
For GS analysis, mapping µS: V → (V∪{□})×R 

is defined assigning an ordered tuple  (p*, c*) to an 
input port p, where 
• p* is a set of ports, from an accessibility mark 

has been propagated for an input port p and  
• c* is controllability value of the mark after its 

propagation. 
 
In an informal way, principle of propagating 

marks through GS can be described in a following 
way:  

 
[Initialization] Assign marks to primary input vertices of 
GS; leave other nodes markless. 
[Edge selection] Select such edges from GS, whose start-
vertex together with edge condition inputs are marked 
and whose end-vertex is either markless nor it has worse 
mark than the mark to be transported; continue with step 
3. If there is no such an edge, finish the algorithm. 
[Marking] Assign a mark to end-vertices of selected 
edges and go to step 2. 
 

Alike, mapping µI (as well as propagating 
mechanism) exist for GI analysis. As an example 
for above-depicted circuit, accessibility marks are 
serially propagated through edges in GS in a 
following way (“a → b (c)” notation means 
propagation of accessibility mark with 
controllability value c through an edge (a, b) from 
ES):  
 
NL*.in → ADD1.a (1.0),  
NL*.tst_in → MUX1.a (1.0),  
NL*.sel → MUX1.sel (1.0),  
NL*.clk → R3.clk (1.0),  
NL*.clk → R2.clk (1.0),  
NL*.clk → R1.clk (1.0),  
MUX1.a → MUX1.y (0.989),  
MUX1.y → R3.d (0.989),  

R3.d → R3.y (0.733),  
R3.y → NL*.out (0.733),  
R3.y → MUL1.b (0.733),  
R3.y → ADD2.b (0.733),  
R3.y → ADD1.b (0.733),  
ADD1.b → ADD1.y (0.670),  
ADD1.y → R1.d (0.670),  
R1.d → R1.y (0.497),  
R1.y → ADD2.a (0.497),  
ADD2.b → ADD2.y (0.733),  
ADD2.y → R2.d (0.332),  
R2.d → R2.y (0.219),  
R2.y → MUL1.a (0.219),  
MUL1.a → MUL1.y (0.146),  
MUL1.y → MUX1.b (0.146). 

 
Because of limited space in the paper, 

illustrative examples are presented instead of 
formal description of the TA algorithm. Worst-case 
time complexity of the algorithm is 
O(|V(GS)|×|E(GS)|+|V(GI)|×|E(GI)|), i.e. quadratic.  

However, the complexity can be achieved only 
to very small class of synthetic circuits. For 
practice circuits, it is usually reduced to better 
linear time complexity (see Fig. 6 depicting 
experimentally measured average execution time as 
a function of number of components in analyzed 
designs from [18] synthetic benchmark suite). 
 
 

 
Fig. 5. Illustration to GS 

6. Experimental results 

In this section, possible applications of results 
achieved by proposed TA engine are presented.  

6.1. Fault-Coverage Estimation 

It can be said TA is utilized in the areas where 
information about testability is required in pre-
defined limited time and accuracy. If a precise 
information is needed, a TPG tool can be applied to 



a design in order to produce, e.g., a fault-coverage 
parameter of the design. However, TPG algorithms 
are of exponential time complexity in general. 
Problem arise if an information is to be evaluated, 
e.g., in each iteration of design space exploration 
algorithm in order to evaluate quality of a particular 
solution from testability point of view. In such a 
situation, a TPG algorithm would be too expensive. 
To solve the problem, fault-coverage parameter can 

be estimated (ideally, in linear-close time), e.g. by 
means of a TA method. To verify applicability of 
our TA results for fault-coverage estimation 
purposes, we have experimentally measured an 
average deviation between results gained by our 
TA engine and fault-coverage results gained by the 
commercial TPG tool (FlexTest from 
MentorGraphics company).  

 
 

 
Fig. 6. Experimentally measured time-complexity of TA 

 
After a deep analysis of FITTest_Bench06 

benchmarks [16], there was only 5% average 
deviation between testability results (see Fig. 7). Of 
course, we do not expect this will hold generally 
for all classes of circuits, so further experiments are 
needed in this area. 

 

 
Fig. 7. TA results utilized for fault-

coverage estimation 

6.2 Design Space Exploration Results 

In the following, an applicability of TA results 
in S/DFT areas is presented in brief.  

In S/DFT, it is necessary to explore the search-
space of possible solutions in order to be able to 
discover the solution with properties as close as 
possible to desired (optimal) properties. Because it 

is necessary to find out an optimal or optimum-
close solution, one of the most important problems 
that should be solved is the problem of evaluating 
quality of the solutions.  

Usually, the evaluation is done by means so 
called fitness function (fit). The higher fit is for 
particular design given as its parameter, the closer 
the design is to desired optimum. Because 
testability is a very important factor in S/DFT, fit is 
evaluated by means of TA results. Of course, there 
can be extra requirements posed on final design 
like maximal  allowed area/pin  overhead  caused 
by S/DFT application, maximal allowed power 
consumption etc. Also all those factors play role 
during fit evaluation. Fitness function utilized in 
our approach can be expressed by following 
formula: 

, 
where aoconstr (poconstr) are maximal area (pin) 

overheads to be payed for testability enhancement 
of the original circuit structure and aoact, poact, tstact 
denote area overhead, pin overhead (both in % 
divided by 100) and testability (real number from 
<0.0; 1.0> interval) values of particular solution 
from the state space. E.g., DFT process driven by 
means of fitness values given by means of the 



above-mentioned formula, can be expressed by the 
following steps: 

 
1. [DFT implementation] new solution with built-in 
DFT techniques is generated 
a) [Selection of DFT modification] particular 
configuration based on user-selected DFT techniques is 
generated randomly (special mutation of previously 
gained solutions is utilized for the purpose) 
b) [Implementation of DFT modification] 
configuration from point 1a) is built into the origina 
circuit structure 
2. [Evaluation] fitact value iassigned to the solution 
3. [Detection] if fitact > fitbest, the best solution is found 
4. [DFT removal] DFT techniques are removed from the 
circuit structure 
 

 
In Fig. 8, result of the following DFT 

experiment is presented. The objective of the 
experiment was to check whether solutions with 
lower aoact, poact values and higher tstact value are 
assigned higher fit value than solutions with higher 
values of overhead parameters and lower value of 
testability parameter. 

It can be seen that solutions evaluated by higher 
fit values are those with good cost/quality trade-off 
between costs of S/DFT application and testability 
enhancement achieved by the application. As an 
example of such solutions, see values for iterations 
683, 716 or 721. As an ”opposite” example, see 
values for iterations 687, 688 or 703.  

 
Fig. 8. Cutout of DFT search space exploration for a00 benchmark 

 
• A great diversity of quality (measured by 

means of fit values) of solutions generated 
during the search process can be achieved, 
which is important for S/DFT ability to find 
solutions with high cost/quality trade-off. 
Other experiments showed 1) time S/DFT 
needs to find the solution for particular 
benchmark is proportional to the complexity of 
a circuit, 2) for all tested benchmarks 
,”average-quality” solutions “quickly” while it 
takes much more iterations to find optimum-
close solutions. 

7. Conclusion 

In the paper, principles of our TA engine, 
together with syntax and illustrative examples of 
related component-libraries were presented in brief. 
Main goal of the paper was to present TA engine 
usable by any EDA tool and applicable to common 
S/DFT areas. Comparing to its predecessor, the 

engine is portable (implemented in ANSI/ISO C++) 
and not limited neither by number and types of 
components nor to its applicability to RTL data 
path. There are two inputs required by the engine: 
library of components and net-list. Both of the 
inputs are stored in separate plain-text files and 
thus can be easily modified by both human and 
machine.  

Library of components (containing information 
about interfaces and transparency properties of 
particular components) can be provided by a 
component vendor or can be created or modified by 
a user. It is important to know that accuracy of TA 
results is significantly affected by accuracy of 
information stored in the library.  

Second input (the net-list) is utilized to describe 
inter-connections between interfaces of particular 
component instances involved in the design. The 
net-list can be created manually by a user or it can 
be easily generated, e.g., from VHDL, Verilog or 
EDIF file utilized by an EDA tool.  Actually, TA 



results produced by our TA engine can be stored in 
a plain-text file, TEX file and HTML file to be 
easily published by common publishing systems. 
Extension to further file-formats is possible in a 
simple way. Our further research will be dedicated 
especially to TA and S/DFT of hierarchical and 
system-on-a-chip (SOC) digital and mixed-signal 
designs, which belong to the most popular 
approaches at present. Also, further experiments 
are planned. 

The work related to the paper has been 
financially supported by the Research Plan No. 
MSM, 0021630528 – Security-Oriented Research 
in Information Technology. 
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