
On Lookup Table Cascade-Based Realizations of Arbiters

Petr Mikušek, Václav Dvořák
Faculty of Information Technology, Brno University of Technology, CZ

{imikusek, dvorak}@fit.vutbr.cz

Abstract

This paper presents a new algorithm of iterative

decomposition for multiple-output Boolean functions
with an embedded heuristics to order variables. The
algorithm produces a cascade of look-up tables (LUTs)
that implements the given function and simultaneously
a sub-optimal Multi-Terminal Binary Decision
Diagram (MTBDD). The LUT cascade can be used for
pipelined processing on FPGAs with BRAMs or at a
non-traditional synthesis of large combinational and
sequential circuits. On the other hand, suboptimal
MTBBDs can serve as prototypes for efficient firmware
implementation, especially when a micro-programmed
controller that firmware runs on supports multi-way
branching. A novel technique is illustrated on practical
examples of three types of arbiters. It may be quite
useful as a more flexible alternative implementation of
digital systems with increased testability and improved
manufacturability.

Keywords: LUT cascades, Multi-Terminal BDDs,
iterative disjunctive decomposition, arbiter circuits

1. Introduction

Design of digital systems with a degree of regularity

in physical placement of subsystems and in their
interconnection has always been a much desired goal
and is even more so at present. A regular logic has
advantages which make it more attractive: short
development time, better utilization of chip area, easy
testability and easy modifications all end up in a lower
cost. A one-dimensional cascade of look-up tables
(LUT cells) is such a regular structure.

LUTs are in fact multiple-input, multiple-output
universal logic blocks. LUTs in block RAMs may
provide support for reconfigurable architectures,
asynchronous cascades or clocked pipelines; speed is
competitive with other FPGA designs [1], layout and
wiring are very easy. The LUT cascade is a promising
reconfigurable logic device for future sub-100nm LSI
technology [1]. Sequential processing of LUT cascades

by means of micro-engines with multi-way branching
can improve firmware performance a great deal [2].

Realization of every multiple-output Boolean
function (or equivalently of an integer function of
Boolean variables) by a LUT cascade was proved
possible long time ago [3]. However, the algebraic
method of synthesis suggested then was not practical,
as it produced redundant cascades of the same length
for the simplest functions as well as for the most
complex ones, and therefore necessarily cascades too
long.

A direct synthesis of non-redundant LUT cascades
comes out easily from the known representation of
integer functions of Boolean variables in a form of
Multi-Terminal Binary Decision Diagrams (MTBDD),
[5]. Cascaded LUTs are obtained as slices (layers) of
this MTBDD. The question is how to order the
variables in the diagram, because the ordering
influences its size and shape. Among all possible
orderings of variables we should find one that produces
a diagram optimal in some sense (e.g. cost, width,
average path length). An optimum ordering of variables
can be treated as a separate problem or it can be solved
concurrently with LUT cascade synthesis by iterative
decomposition [4], [2].

Multiple-output Boolean functions have been more
recently represented by BDD_for_CF diagrams [6].
Here the top-down iterative decomposition starts from
the root and after a removal of a single variable the
whole diagram has to be reconstructed. Another
disadvantage of this approach is a large size of
BDD_for_CF diagrams.

In this paper we present a heuristic technique of the
iterative decomposition of integer-valued functions. Its
main contribution is that the bottom-up synthesis of
MTBDD/LUT cascade does not require knowledge of
optimum ordering of variables, because the order of
variables is generated concurrently. Obtained LUT
cascades can be used in hardware, firmware and
software implementation of combinational and
sequential functions.

The paper is structured as follows. Our heuristic
approach to construction of sub-optimal MTBDDs and
LUT cascades is explained in Section 2. Section 3

deals with three types of arbiters, their decomposition
and implementation. Experimental results are
summarized in Section 4 and commented on in
Conclusion.

2. Construction of LUT cascades and of
sub-optimal MTBDDs

In this section we will present a heuristic technique

of a sub-optimal LUT cascade construction. It is
generalization of the BDD construction by means of
iterative disjunctive decomposition [2]. Input variables
are selected after one another in such a way that the
width of the cascade is minimized. Simultaneously we
obtain a MTBDD, which is in fact revealing the
internal structure of LUTs in terms of decision nodes.

r3 r2 r1 r0 z
0 0 0 0 4 LUT4
0 0 0 1 0 0:= (2,2)
0 0 1 x 1 1:= (3,3) r1
0 1 x x 2 2:= (0,1)
1 x x x 3 3:= (4,1)

0 0 - 0 3 LUT3
0 0 - 1 2 0:= (3,1)
0 1 - x 0 1:= (2,1) r3
1 x - x 1 2:= (0,1)

- 0 - 0 0 LUT2
- 0 - 1 1 0:= (0,1) r0
- 1 - x 2 1:= (2,2)

- 0 - - 0 LUT1 r2
- 1 - - 1 0:= (0,1)

- - - - 0

Fig. 1. Iterative decomposition of an integer
function of 4 binary variables (PE4)

Before formulation of the algorithm, we prefer to

illustrate the synthesis technique on an example (the 4-
input priority encoder PE4). The integer function z =
F(r0, r1, r2, r3) of four binary variables is specified by
a table with input values from {0,1,x}, Fig.1. We use
symbol x to shorten the function specification;
regardless whether an associated variable will attain the
value 0 or 1, the value at output z will be the same. In
the meantime we will select a sequence of input
variables for iterative decomposition randomly, e.g. r1,
r3, r0, r2. A single variable will be removed from the
function in one decomposition step. Starting with
variable r1, we inspect column r1 (highlighted at the
top table in Fig. 1) to see how many distinct pairs of

function values (also equivalently sub-functions of a
single variable [2])

[F(r0, 0, r2, r3), F(r0, 1, r2, r3)] (1)

are produced by this variable.
We have to analyze pairs of rows in the table such

that one row has value 0 in column r1 and another one
value 1. Two such rows which are not in conflict (do
not have complementary values in the same column
except column r1) can be replaced by a single row in
the new table of a residual function F1(r0, -, r2, r3). Bit
values 0, 1 and symbol x in columns are combined as
shown in Table 1.

Table 1. Combining rows in the function table

row (v = 0) ! v 1 0 x 1 x 0 x
row (v = 1) v 1 0 x x 1 x 0
new row 1 0 x 1 1 0 0

A symbol “−“ in a certain column means that the

variable at that place has already been removed and
does not exist. A pair of function values (1) from two
rows will be replaced later by a new integer value (id).

There are two rows at the top table in Fig. 1, 1st and
3rd, that can be combined into
 00-0 (4,1).
Also the 2nd row can be combined with the 3rd row into

00-1 (0,1).
Two pairs of function values (4,1) and (0,1) with new
identities “3” and “2” correspond to two decision nodes
at the lowest level of a MTBDD that is just being
created, see Fig. 2a. For incomplete functions with
don´t care “function value” z = DC we should combine
(a, DC) = (DC, a) = (a, a), i.e. replace DC by value a.

If a row contains symbol “x” in column r1, “x”
replaced by symbol “−“ will be carried over to the new
residual table. Function values (1) are now identical (as
above for a z = DC) and variable r1 in fact does not
decide anything. A corresponding decision node in the
MTBDD has only one output and can be replaced by a
shortcut from the input to the output. There are two
such rows in the first decomposition step, rows 4th and
5th. They produce degenerate decision nodes 0 and 1 in
the lowest level of MTBDD (black dots in Fig. 2a).

By now we have exhausted all possible pairs of
rows and have replaced them by new rows in the next
(residual) function table. As a result of the removal of
variable r1 from the original function, obtained pairs of
function values can be assigned the shortest possible
code by enumeration. This transformation is shown
next to the top table at Fig. 1 and in fact it is realized
by the last LUT4 (e.g. for cell input 3, cell output will
become 4 or 1 depending on whether r1 is 0 or 1).

0

1

0
0

1

2

1

0

2

3

3

2

1

0

4
r2 r0 r3 r1

r2 r0 r3 r1

a)

b)

LUT
4

LUT
1

r3 r1

r2

r0

c)
Fig. 2. A MTBDD (a), a generic LUT cascade
(b), and a compact LUT cascade with 3-input
cells (c) obtained by iterative decomposition

(PE4 example)

The same procedure is repeated in the following

decomposition steps until all variables will be removed.
We proceed in a backward direction, from the leaves to
the root of the MTBDD or from LUT4 to LUT1,
Fig. 2a, b. In the case of LUT cascades, it is sufficient
to go on with iterative decomposition until the number
of remaining variables equals to the required number of
address inputs to the last LUT found.

The remaining question not addressed as yet is,
which variable should be used in any given step. We
use a heuristics that strives to minimize the LUT
cascade width. At each step a variable is selected that
generates the minimum number of rows in the sought
LUT or equivalently the minimum number of decision
nodes (including degenerate ones) in the sought level
of the MTBDD. In the case of a tie the lowest cost
criterion is applied: a variable producing the lowest
number of true (non-degenerate) decision nodes in the
current level of the MTBDD is taken (this corresponds
to a minimum number of rows with distinct function
values in the pair (1)). In the case of a tie again, a
variable is selected randomly.

3. Arbiter circuits

 LUT cascades have been applied to many useful

digital function modules and their effectiveness and
performance has been compared to benchmark circuits
[6]. Here we are going to apply LUT cascades to
arbiter circuits, i.e. to the area not addressed as yet.

We will synthesize three representative types of
arbiters, namely
1. Fixed priority arbiter (also known as a Priority

Encoder PE)
2. Round robin arbiter (also known as a Last Granted

Lowest Priority scheme, LGLP)
3. Matrix arbiter (Least Recently Served scheme,

LRS).
A key property of an arbiter is its fairness. For the
purpose of our case study we will understand two
concepts of fairness. A weak fairness means that every
request is eventually served and with a strong fairness
requesters will be served equally often. A traditional
design of arbiters is discussed in [7] and [8].

3.1. The priority encoder (PE)

The PE is a combinational circuit that according to a

subset of active requests produces the address of the
request input with the highest priority in the subset.
This is the simplest arbiter of all, but its usefulness in
practice is limited because it is not fair, not even in the
weak sense. The input request r(n-1) has the highest
fixed priority and then the priority decreases to the
lowest priority level for input r0. If one request is
continuously asserted, none of lower priority requests
will ever be served. An n-input PE has log2 n + 1
outputs which provide the address of an active request
input with the highest priority. One combination of
address bits denotes the case of no active request.

The decomposition of our running example PE4
leads to the MTBDD shown at Fig. 3a and to the
cascade of two LUTs. The MTBDD can be simplified
to a form at Fig. 3b. This diagram has a very simple
linear form and terminal values are generated very
early along the main path and do not have to propagate
to the end of cascade. Allowing outputs from
intermediate cells is a more general version of the
binary cascade and can lead to the reduced number of
rails between cells in the LUT cascade. Such
configuration may be useful e.g. for firmware
implementation discussed later on. Comparison of Fig.
2a and Fig. 3a,b shows that the used heuristics really
works and reduces cost and width of the MTBDD with
a random order of variables in Fig. 2a.

r1 r0

r3

r2

0 2 3 1

3 2 1 0

4

a)

b)

r3 r1 r0 r2

0
1 2 0

3

0 1
2

0
1

0

4

1

2

3

r3

r2

r1

r0

Fig. 3. PE4 arbiter a) MTBDD with degenerate

nodes b) MTBDD with terminal values not
restricted to the last level

A larger arbiter PE8 with eight request inputs and

four address outputs is defined by Table 2. Iterative
decomposition leads to the homogenous cascade of a
constant width depicted at Fig. 4. Generally, however,
the width of a cascade is not constant. At construction
of LUT cascades we try to combine adjacent LUTs
together to get LUTs of uniform size as often as
possible. For example the PE8 cascade at Fig. 4 may be
reduced to 3 cells with capacity of 96, 96 and 64 bits.

LUT cascades of this kind can be used for pipelined
implementation of general combinational logic
systems. The LUT cascade would have to be completed
by pipeline registers between cells. These registers
would serve also for storing variables used at vertical
cell inputs. The performance of the pipeline under the
continuous stream of input vectors would then be
determined by a single cell delay. One arbitration result
would be generated every clock cycle.

Let us note that one way how to implement multi-
output LUTs is to compose them out of single-output
LUTs. For example LUT cascade at Fig. 5a could be
assembled of 16 single-output, 4-input LUTs. Even
though HDL synthesis tools can do better than that, the
advantage of the cascade is the regular layout that can
eventually lead to a smaller occupied area on a chip.

Table 2. The 8-input priority encoder

r7 r6 r5 r4 r3 r2 r1 r0 a3 a2 a1 a0
0 0 0 0 0 0 0 0 1 0 0 0
1 × × × × × × × 0 1 1 1
0 1 × × × × × × 0 1 1 0
0 0 1 × × × × × 0 1 0 1
0 0 0 1 × × × × 0 1 0 0
… … … … … … …
0 0 0 0 0 0 0 1 0 0 0 0

r4 r3

a3
a2
a1
a0

r2 r1 r0

r7
r6
r5

 Fig. 4. LUT cascade-based PE8

3.2. The round robin (LGLP) arbiter

 This is a Moore type sequential state machine with

dynamic priority allocation scheme based on Last
Granted Lowest Priority (LGLP) strategy that ensures
strong fairness. It has n input requests, 2n states S0, S1,
…, S(2n-1) and n grant outputs. Even-numbered states
monitor request inputs and odd-numbered states
generate grant outputs (one grant per state). Priority
vector that determines priorities of inputs is modified
by cyclic shift in such a way, that the request just
satisfied goes to the lowest priority position.

r3 r1

3
r2

r0 s6 clk

reg.

s4 s5

g1
g2
g3
g4

a)

r3 r1

r2

r0 s6 clk

reg.

s4 s5

g1
g2
g3
g4

b)

s6

s4

 Fig. 5. LUT cascade implementation of the 4-
input LGLP arbiter

a) 4-input LUTs b) 5-input LUTs

Let us consider a 4-input LGLP arbiter with 8 states.
Priority vectors and grants generated in various states
are (the highest priority requests are in bold):

S0: r3 r2 r1 r0 S1: g3
S2: r2 r1 r0 r3 S3: g2
S4: r1 r0 r3 r2 S5: g1
S6: r0 r3 r2 r1 S7: g0

State transitions for even numbered states are easy to
specify; e.g. for state S0 we have

old state r3 r2 r1 r0 new state
000 (S0) 1 x x x 001 (S1)
000 (S0) 0 1 x x 011 (S3)
000 (S0) 0 0 1 x 101 (S5)
000 (S0) 0 0 0 1 111 (S7)

An odd-numbered state S(2k+1) issuing grant g(3-k)
transits to the even-numbered state S[(2k+2) mod 8] as
soon as request r(3-k) terminates (goes low).

Function tables of LGLP arbiters have been
generated automatically for 3, 4, 6, 8 and 12 request
inputs and decomposed as before. Fig. 5 shows for
example two implementations of the LGLP4 that differ
in clock speed. Grant signals g1 to g4 are generated
from the state code (s6 s5 s4) in the last 3-input cell.
Clock speed is determined by the delay of 4 or 2 cells
in Fig. 5a and 5b. For comparison, VHDL synthesis
tool for Xilinx FPGA generates this arbiter with 17 4-
input LUTs in 4 logic levels.

3.3. The matrix arbiter with LRS (Least
Recently Serviced) strategy

The LRS strategy cannot be implemented by a

dynamically changing priority vector; it has to use
priority matrix P, where pik = 1 means that the i-th
request has priority over the k-th request [7]. Currently
asserted grant output g(j) resets the j-th row to all zeros
and sets the j-th column of P to all ones. Thus the
request r(j) will have priority over no other requests
and all requests will have priority over r(j).

The priority matrix P initialized and updated
according to above rules is anti-symmetric: elements pik
under the main diagonal are complements of elements
pki above it. It is therefore sufficient to store only
elements of P above the main diagonal. For n requests
we will thus need (n2 – n)/2 state variables.

As an example we will use arbiter LRS4 that is
implemented in matrix form in [7]. It has 6 state
variables s9, s8, s7, s6, s5, s4 and 4 request inputs r3,
r2, r1, r0. We will let the LUT cascade generate 4 grant
outputs g3, g2, g1, g0, which will be then used to reset
and set selectively 6 state flip-flops.

This time we have implemented LRS4 arbiter in
firmware. We have used HIDET tool (described below)
to decompose function LRS4: (Z2)10 → Z4. The result is
shown as MTBDD at Fig. 6.

Evaluation of Boolean functions at the firmware
level can use nicely the LUT cascade paradigm. By
making use of hardware micro-engines with a support
for multi-way branching, we can speed up evaluation of
Boolean functions with respect to a general purpose
CPU core. A suitable architecture of a micro-engine,
a modified version of the one in [2], is depicted in
Fig. 7.

 s9

s5

s8

s4

s7

r2

r3

r1

s6

r0

no_g g3 g2 g1 g0

0

0 1

0 1 2

0 1 2

0 1 2 3

0 1 2 3 4

0 1 2 3

4 0 1 2 3

4 0 1 2 3 5

4 0 1 2 3 5

L1

L2 L4 L3

L5 L6 L7 L8

Fig. 6. MTBDD of the 4-input LRS arbiter

Out of all microinstructions formats supported by

the micro-engine architecture, two formats are essential
for fast evaluation of multiple-output Boolean
functions:
1) the jump to an address specified in micro-

instruction and modified by BCU; symbolic µI :
Ln: exit Lm@x1...xk;

2) conditional output and the jump to an address
specified in micro-instruction (no modification),

Ln: c_output exit Lm.
The first format includes jumps to the target address

obtained from the address specified in the micro-
instruction; this latter address is modified by external
variables, by up to 4 variables at a time, including 0
variable (no modification), by means of 16-way Branch

Control Unit (BCU). Input variables are selected by
multiplexers, so that a microinstruction contains MXs
control field and a BCU mask field.

r1
rn

M
X

ROM

M
X
s

16-way
Branch
Ctrl Unit

µ
I
P

address
sources

+1
Decoder/
Seqencer

µ
I
R

4

Wired
OR

FI

 4

gi

sj

Fig. 7. Micro-programmed controller
architecture with multi-way branching

 The task of the BCU (such as Am 29803A) is to

shift active inputs, selected by a 4-bit mask, to the
lowest positions of the 4-bit BCU output vector. This
vector is then wire-ORed with the address obtained
from the micro-instruction. Replacement of up to 4 bits
in the address is denoted by operator “@”. If wired-OR
is used for replacement, the bits being replaced must be
first reset to 0.

LRS: exit L1@s9s5
L1@00: exit L2@s8s4s7r2
L1@01: exit L2@s8s4s7r2
L1@10: exit L3@s8s4s7r2
L1@11: exit L4@s8s4s7r2
L2@0000: exit L5@r3r1s6r0
L2@0001: exit L5@r3r1s6r0
L2@0010: exit L6@r3r1s6r0
…..
…..
L8@1111: g0 exit Next
L8@1110: g0 exit Next
Next:

Fig. 8. A symbolic microprogram for the
LRS4 arbiter

If there are more than 4 external variables, LUT

cascade paradigm is used. We will illustrate rewriting a
MTBDD at Fig. 6 into the micro-program with multi-
way branching. The symbolic micro-program targeted
for the micro-engine in Fig. 7 is shown in Fig. 8. The
micro-program is composed of 8 dispatch tables, one of

size 4 (node L1) and 7 of size 16. The total number of
micro-instructions is thus 4 + 7 × 16 + 1 = 117 and an
arbitration decision is produced after execution of four
microinstructions. The state of the arbiter is kept in 6
R-S flip-flops and these flip-flops are selectively set
and reset by signals gi:

R4 = R5 = R6 = g0, R7 = R8 = g1, R9 = g2,
S4 = g1, S5 = S7 = g2, S6 = S8 = S9 = g3.

Out of 6 state variables and 4 input requests up to 4
signals are selected by 4 multiplexers, fed into BCU
and used in the least significant positions for address
modification, as shown in Fig. 7.

Had we used only single variable tests (a binary
program with 2-way branching), we would need 40
dispatch tables of size 2, i.e. 80 microinstructions in
total. However, the performance would be almost 3
times lower due to execution of 11 microinstructions,
one in each level of the MTBDD, for one decision.

4. Experimental results

To aid LUT cascade synthesis, the program tool

HIDET (Heuristic Iterative DEcomposition Tool) has
been developed. It basically implements the following
algorithm (letters S stand for sets, M and L for tables,
w for local MTBDD width and d for “discount”):

Input:

Min, input function table;
Sv, the set if input variables
n = |Sv|, number of input variables;

Output: i in 1 to n
Mi, function tables ;
Li, LUTs;
vi, variable removed in step i ;

Initialize i ← 1, M0 ← Min;
for i in 1 to n do

// Determine the best variable
vbest ← arbitrary variable from Sv,
wbest ← size(Mi-1), dbest ← 0;
for all variables v ∈ Sv do

Mp ← make_pairs(Mi-1, v);
Sp ← unique_pairs(Mp);
Sm ← merge_compatible_pairs(Sp);
w ← size(Sm);
d ← number of constant pairs in Sm;
if (w < wbest) or (w == wbest and d > dbest) then

vbest ← v, wbest ← w, dbest ← d;
endif

endfor
vi ← vbest;

// Decompose
Mp ← make_pairs(Mi-1, vi);
Sp ← unique_pairs(Mp);
Sm ← merge_compatible_pairs(Sp);
Li ← enumerate_pairs(Sm);
Mi ← replace pairs in Mp by new id numbers in Li;
Sv ← Sv \ {vi};

endfor

Sequential as well as parallel (OpenMP) versions of
the program were compiled, ran and gave the same
results. The parallel version was tested on 4- and 8-
cores SMPs with a speedup about 80%. We could not
test the program on a standard benchmark set, because
most of the benchmark circuits used to be specified by
function tables with overlapping sub-domains (rows).
As yet, HIDET tool can process only disjunctive sub-
domains; the next version of HIDET should address the
more general case, too.

Function tables of many instances of three types of
arbiters have been generated and then processed by
HIDET tool. Iterative decomposition of this class of
functions was a matter of seconds (LRS10). The
sample results for LGLP and LRS arbiters are
summarized in Table 3. PE arbiters are the easiest to
decompose and have not been included; optimum
ordering of variables for PEs copies the one from the
headings of the function table, Fig. 4. Parameters of
generic cascades are displayed, cell after cell, from left
to right (i.e. in the opposite order than they were
obtained by the decomposition procedure) in Table 3.

Each column represents one cell, from the top down:
1. index of a variable (higher indices: state variables,

lower indices: request inputs)
2. the number of all rows in the LUT (the local width of

the MTBDD)
3. the number of LUT rows with the same values in

pair (1) (degenerate decision nodes).
Table 3 thus describes profiles of generic cascades.

From Table 3 one can obtain two global parameters
of the cascades: cost (the number of true decision
nodes) and the maximum number of rails between cells,
Table 4. A large variety of LUT cascades can be
designed, examples given in column "LUTs" use the
same size LUTs with specified cascade length x
number of inputs (in). It is interesting to compare these
results with designs obtained by Xilinx FPGA synthesis
tool. The number of 4-input LUTs compares to the
number of true decision nodes (cost); one decision
node can be mapped to a 3-input LUT and can be taken
approximately as one half of the 4-input LUT. Also, if
we take the delay of FPGA’s 4-input LUTs plus wiring
delay approximately equal to cascaded LUTs´ delay,

we can compare logic levels of FPGA with cascade
length. This way it comes out that we should be able to
get the same or better performance with LUT cascades.

Table 3. Parameters of generic LUT cascades

for LGLP and LRS arbiters

LGLP3 Legend:
4 3 1 2 5 0 ← index of variable
1 2 4 6 8 9 ← # all LUT rows
0 0 1 2 3 4 ← # LUT rows [x,x]

LGLP4
5 4 2 3 1 6 0 0 = last LUT
1 2 4 6 9 13 13 13 → 4 rails in
0 0 0 2 5 2 6 var 0 removed first

LGLP6
7 6 0 1 9 5 2 3 4 8
1 2 4 6 9 13 15 16 18 17
0 0 1 2 0 7 7 7 9 8

LGLP8
10 8 7 5 6 9 4 3 2 1 0 11
1 2 4 6 8 11 14 16 19 22 25 25
0 0 1 3 3 3 9 10 12 14 15 8

LGLP10
11 10 9 8 6 7 12 5 4 3 13 2
1 2 4 6 8 11 15 19 23 27 31 32
0 0 1 3 4 6 2 13 17 19 6 16

LRS3
1 0 14 5 2 4 1 3 0
32 35 25 1 2 3 3 4 5
15 17 17 0 1 1 2 1 4

LRS4
9 5 8 4 7 2 3 1 6 0
1 2 3 3 4 5 4 5 6 6
0 1 1 2 1 4 3 4 2 5

LRS6
20 14 19 13 18 9 12 8 17 5 11 7
1 2 3 3 4 5 4 5 6 6 5 6
0 1 1 2 1 4 3 4 2 5 4 5

16 4 2 10 6 3 15 1 0
7 8 7 6 7 8 9 9 8
2 7 6 5 6 7 4 8 7

The area for wiring LUT cascades promises to be

much lower, whereas the area of cascaded LUTs
themselves slightly higher due to their coarser
granularity. The large area for the interconnections in
an FPGA is thus absorbed in the larger LUTs in the
cascade.

5. Conclusions

The presented method of LUT cascade synthesis of

multiple-output Boolean functions aided by HIDET
tool proved to be suitable for synthesis of

combinational and sequential designs with tens of
input/output and state variables. Arbiters, as well as
other digital systems frequently used in practice, have
relatively low complexity, what makes their cost-
effective cascade implementations possible. Beside
easy interconnection there are other advantages of
cascade implementation. Testing of LUT cascades
reduces to a problem of testing RAM modules. Fault
tolerance techniques for memories such as SECDED
are also applicable. Due to a highly developed memory
technology the power consumption is very low for
RAMs and it only remains to verify experimentally real
power savings for specific applications.

Table 4. Comparison of FPGA designs and

LUT cascades

 FPGA LUT cascade
#4-LUT levels cost width LUTs

LGLP3 10 3 20 ≤4 2 x 5 in
LGLP4 17 4 33 ≤4 3 x 5 in
LGLP6 48 6 60 ≤5 4 x 6 in
LGLP8 70 9 75 ≤5 6 x 6 in
LGLP10 122 8 135 ≤6 6 x 7 in
LGLP16 433 17 194 ≤6 5 x 9 in
LRS3 6 2 10 ≤3 2 x 4 in
LRS4 8 2 17 ≤3 2 x 6 in
LRS6 24 3 33 ≤4 3 x 9 in

Effectiveness of LUT cascades can be derived from

the size of the complete function table and aggregate
capacity of all LUTs in a cascade. E.g. LGLP8 arbiter
with 12 input variables requires 212 x 4 bits, whereas
the LUT cascade exemplified in Tab. 4 only less than
6 x 27 x 5 bits (23%). Most of the functions that occur
in digital design are decomposable effectively into
cascades. One exception is the class of binary
multipliers: for all possible variable orderings is the
BDD size exponential for n-bit inputs and 2n-bit output
[9].

Future research should address a more general
specification of multiple-output Boolean functions,
namely in a form of Boolean expressions representing
individual binary outputs. Also the quality of heuristic
optimization of variable ordering should be put under a
test against results obtained by exhaustive testing of all
permutations of variables. The effectiveness of LUT
cascades could be improved further by creating smaller
groups of binary outputs and decomposing separately
each group. Appropriate design techniques could
provide cost-effective cascades for new classes of
functions. Security and safety oriented applications will
be the nearest target.

6. References

[1] K. Nakamura, T. Sasao, M. Matsuura, K. Tanaka, K.
Yoshizumi, H. Qin, and Y. Iguchi: Programmable logic
device with an 8-stage cascade of 64K-bit asynchronous
SRAMs, Cool Chips VIII, IEEE Symposium on Low-
Power and High-Speed Chips, April 20-22, Yokohama,
Japan, 2005.

[2] V. Dvořák: LUT Cascade-Based Architectures for High
Productivity Embedded Systems, In: International
Review on Computers and Software, Vol. 2, No 4,
Naples, Italy, pp. 357-365, 2007.

 [3] M. Yoeli: The Synthesis of Multivalued Cellular
Cascades. IEEE Trans. On Computers, Vol. C-9, pp.
1089-1090, Nov. 1970

[4] V. Dvořák: An optimization technique for ordered
(binary) decision diagrams, Proceedings of the 6th
Annual European Computer Conference CompEuro' 92,
Hague, NL, pp. 1-4, 1992

[5] S.N. Yanushkevich, D.M. Miller, V.P. Shmerko, R.S.
Stankovic: Decision Diagram Techniques for Micro- and
Nanoelectric Design Handbook. CRC Press, Taylor &
Francis Group, Boca Raton, FL, 2006.

[6] T. Sasao and M. Matsuura: BDD representation for
incompletely specified multiple-output logic functions
and its applications to functional decomposition, Design
Automation Conference, pp.373-378, June 2005.

[7] W.J. Dally, B.Towles: Principles and Practices of
Interconnection Networks. Morgan Kaufmann Publishers
/ Elsevier, San Francisco, CA, 2003.

[8] E. S. Shin: Automated Generation of Round-Robin
Arbitration and Crossbar Switch Logic. PhD Thesis,
School of Electrical and Computer Engineering, Georgia
Institute of Technology, November 2003.

[9] R.E.Bryant: On the complexity of VLSI implementations
and graph representations of Boolean functions with
applications to integer multiplication. IEEE Transactions
on Computers, Vol. 40, pp.205–213, 1991.

Acknowledgement

This research has been carried out under the
financial support of the research grants “Design and
hardware implementation of a patent-invention
machine”, GA102/07/0850 (2007-9), “Safety and
security of networked embedded system applications”,
GA102/08/1429 (2008-10), both care of Grant Agency
of Czech Republic, and “Security-Oriented Research in
Information Technology”, MSM 0021630528 (2007-
13).

