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Abstract 
 
This paper presents a new algorithm of iterative 

decomposition for multiple-output Boolean functions 
with an embedded heuristics to order variables. The 
algorithm produces a cascade of look-up tables (LUTs) 
that implements the given function and simultaneously 
a sub-optimal Multi-Terminal Binary Decision 
Diagram (MTBDD). The LUT cascade can be used for 
pipelined processing on FPGAs with BRAMs or at a 
non-traditional synthesis of large combinational and 
sequential circuits. On the other hand, suboptimal 
MTBBDs can serve as prototypes for efficient firmware 
implementation, especially when a micro-programmed 
controller that firmware runs on supports multi-way 
branching. A novel technique is illustrated on practical 
examples of three types of arbiters. It may be quite 
useful as a more flexible alternative implementation of 
digital systems with increased testability and improved 
manufacturability. 

 
Keywords: LUT cascades, Multi-Terminal BDDs, 
iterative disjunctive decomposition, arbiter circuits 

 
1. Introduction 

 
Design of digital systems with a degree of regularity 

in physical placement of subsystems and in their 
interconnection has always been a much desired goal 
and is even more so at present. A regular logic has 
advantages which make it more attractive: short 
development time, better utilization of chip area, easy 
testability and easy modifications all end up in a lower 
cost. A one-dimensional cascade of look-up tables 
(LUT cells) is such a regular structure.  

LUTs are in fact multiple-input, multiple-output 
universal logic blocks. LUTs in block RAMs may 
provide support for reconfigurable architectures, 
asynchronous cascades or clocked pipelines; speed is 
competitive with other FPGA designs [1], layout and 
wiring are very easy. The LUT cascade is a promising 
reconfigurable logic device for future sub-100nm LSI 
technology [1]. Sequential processing of LUT cascades 

by means of micro-engines with multi-way branching 
can improve firmware performance a great deal [2]. 

Realization of every multiple-output Boolean 
function (or equivalently of an integer function of 
Boolean variables) by a LUT cascade was proved 
possible long time ago [3]. However, the algebraic 
method of synthesis suggested then was not practical, 
as it produced redundant cascades of the same length 
for the simplest functions as well as for the most 
complex ones, and therefore necessarily cascades too 
long. 

A direct synthesis of non-redundant LUT cascades 
comes out easily from the known representation of 
integer functions of Boolean variables in a form of 
Multi-Terminal Binary Decision Diagrams (MTBDD), 
[5]. Cascaded LUTs are obtained as slices (layers) of 
this MTBDD. The question is how to order the 
variables in the diagram, because the ordering 
influences its size and shape. Among all possible 
orderings of variables we should find one that produces 
a diagram optimal in some sense (e.g. cost, width, 
average path length). An optimum ordering of variables 
can be treated as a separate problem or it can be solved 
concurrently with LUT cascade synthesis by iterative 
decomposition [4], [2].  

Multiple-output Boolean functions have been more 
recently represented by BDD_for_CF diagrams [6]. 
Here the top-down iterative decomposition starts from 
the root and after a removal of a single variable the 
whole diagram has to be reconstructed. Another 
disadvantage of this approach is a large size of 
BDD_for_CF diagrams. 

In this paper we present a heuristic technique of the 
iterative decomposition of integer-valued functions. Its 
main contribution is that the bottom-up synthesis of 
MTBDD/LUT cascade does not require knowledge of 
optimum ordering of variables, because the order of 
variables is generated concurrently. Obtained LUT 
cascades can be used in hardware, firmware and 
software implementation of combinational and 
sequential functions. 

The paper is structured as follows. Our heuristic 
approach to construction of sub-optimal MTBDDs and 
LUT cascades is explained in Section 2. Section 3 



deals with three types of arbiters, their decomposition 
and implementation. Experimental results are 
summarized in Section 4 and commented on in 
Conclusion.  

 
2. Construction of LUT cascades and of 
sub-optimal MTBDDs 

 
In this section we will present a heuristic technique 

of a sub-optimal LUT cascade construction. It is 
generalization of the BDD construction by means of 
iterative disjunctive decomposition [2]. Input variables 
are selected after one another in such a way that the 
width of the cascade is minimized. Simultaneously we 
obtain a MTBDD, which is in fact revealing the 
internal structure of LUTs in terms of decision nodes. 

 
r3 r2 r1 r0 z
0 0 0 0 4 LUT4
0 0 0 1 0 0:= (2,2)
0 0 1 x 1 1:= (3,3) r1
0 1 x x 2 2:= (0,1)
1 x x x 3 3:= (4,1)

0 0 - 0 3 LUT3
0 0 - 1 2 0:= (3,1)
0 1 - x 0 1:= (2,1) r3
1 x - x 1 2:= (0,1)

- 0 - 0 0 LUT2
- 0 - 1 1 0:= (0,1) r0
- 1 - x 2 1:= (2,2)

- 0 - - 0 LUT1 r2
- 1 - - 1 0:= (0,1)

- - - - 0  
 

Fig. 1. Iterative decomposition of an integer 
function of 4 binary variables (PE4) 

 
Before formulation of the algorithm, we prefer to 

illustrate the synthesis technique on an example (the 4-
input priority encoder PE4). The integer function z = 
F(r0, r1, r2, r3) of four binary variables is specified by 
a table with input values from {0,1,x}, Fig.1. We use 
symbol x to shorten the function specification; 
regardless whether an associated variable will attain the 
value 0 or 1, the value at output z will be the same. In 
the meantime we will select a sequence of input 
variables for iterative decomposition randomly, e.g. r1, 
r3, r0, r2. A single variable will be removed from the 
function in one decomposition step. Starting with 
variable r1, we inspect column r1 (highlighted at the 
top table in Fig. 1) to see how many distinct pairs of 

function values (also equivalently sub-functions of a 
single variable [2]) 

 

[F(r0, 0, r2, r3), F(r0, 1, r2, r3)]                    (1) 
 

are produced by this variable. 
We have to analyze pairs of rows in the table such 

that one row has value 0 in column r1 and another one 
value 1. Two such rows which are not in conflict (do 
not have complementary values in the same column 
except column r1) can be replaced by a single row in 
the new table of a residual function F1(r0, -, r2, r3). Bit 
values 0, 1 and symbol x in columns are combined as 
shown in Table 1.  

 
Table 1. Combining rows in the function table 

 
row (v = 0) ! v 1 0 x 1 x 0 x
row (v = 1) v 1 0 x x 1 x 0
new row 1 0 x 1 1 0 0  

 
A symbol “−“ in a certain column means that the 

variable at that place has already been removed and 
does not exist. A pair of function values (1) from two 
rows will be replaced later by a new integer value (id).  

There are two rows at the top table in Fig. 1, 1st and 
3rd, that can be combined into 
 00-0 (4,1). 
Also the 2nd row can be combined with the 3rd row into 

00-1 (0,1).  
Two pairs of function values (4,1) and (0,1) with new 
identities “3” and “2” correspond to two decision nodes 
at the lowest level of a MTBDD that is just being 
created, see Fig. 2a. For incomplete functions with 
don´t care “function value” z = DC we should combine 
(a, DC) = (DC, a) = (a, a), i.e. replace DC by value a. 

If a row contains symbol “x” in column r1, “x” 
replaced by symbol “−“ will be carried over to the new 
residual table. Function values (1) are now identical (as 
above for a z = DC) and variable r1 in fact does not 
decide anything. A corresponding decision node in the 
MTBDD has only one output and can be replaced by a 
shortcut from the input to the output. There are two 
such rows in the first decomposition step, rows 4th and 
5th. They produce degenerate decision nodes 0 and 1 in 
the lowest level of MTBDD (black dots in Fig. 2a). 

By now we have exhausted all possible pairs of 
rows and have replaced them by new rows in the next 
(residual) function table. As a result of the removal of 
variable r1 from the original function, obtained pairs of 
function values can be assigned the shortest possible 
code by enumeration. This transformation is shown 
next to the top table at Fig. 1 and in fact it is realized 
by the last LUT4 (e.g. for cell input 3, cell output will 
become 4 or 1 depending on whether r1 is 0 or 1).  
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Fig. 2. A MTBDD (a), a generic LUT cascade 
(b), and a compact LUT cascade with 3-input 
cells (c) obtained by iterative decomposition 

(PE4 example) 
 
The same procedure is repeated in the following 

decomposition steps until all variables will be removed. 
We proceed in a backward direction, from the leaves to 
the root of the MTBDD or from LUT4 to LUT1, 
Fig. 2a, b. In the case of LUT cascades, it is sufficient 
to go on with iterative decomposition until the number 
of remaining variables equals to the required number of 
address inputs to the last LUT found. 

The remaining question not addressed as yet is, 
which variable should be used in any given step. We 
use a heuristics that strives to minimize the LUT 
cascade width. At each step a variable is selected that 
generates the minimum number of rows in the sought 
LUT or equivalently the minimum number of decision 
nodes (including degenerate ones) in the sought level 
of the MTBDD. In the case of a tie the lowest cost 
criterion is applied: a variable producing the lowest 
number of true (non-degenerate) decision nodes in the 
current level of the MTBDD is taken (this corresponds 
to a minimum number of rows with distinct function 
values in the pair (1)). In the case of a tie again, a 
variable is selected randomly. 
  

3. Arbiter circuits  
 
 LUT cascades have been applied to many useful 

digital function modules and their effectiveness and 
performance has been compared to benchmark circuits 
[6]. Here we are going to apply LUT cascades to 
arbiter circuits, i.e. to the area not addressed as yet. 

We will synthesize three representative types of 
arbiters, namely 
1. Fixed priority arbiter (also known as a Priority 

Encoder PE) 
2. Round robin arbiter (also known as a Last Granted 

Lowest Priority scheme, LGLP) 
3. Matrix arbiter (Least Recently Served scheme, 

LRS). 
A key property of an arbiter is its fairness. For the 
purpose of our case study we will understand two 
concepts of fairness. A weak fairness means that every 
request is eventually served and with a strong fairness 
requesters will be served equally often. A traditional 
design of arbiters is discussed in [7] and [8]. 
 
3.1. The priority encoder (PE) 

 
The PE is a combinational circuit that according to a 

subset of active requests produces the address of the 
request input with the highest priority in the subset. 
This is the simplest arbiter of all, but its usefulness in 
practice is limited because it is not fair, not even in the 
weak sense. The input request r(n-1) has the highest 
fixed priority and then the priority decreases to the 
lowest priority level for input r0. If one request is 
continuously asserted, none of lower priority requests 
will ever be served. An n-input PE has log2 n + 1 
outputs which provide the address of an active request 
input with the highest priority. One combination of 
address bits denotes the case of no active request.  

The decomposition of our running example PE4 
leads to the MTBDD shown at Fig. 3a and to the 
cascade of two LUTs. The MTBDD can be simplified 
to a form at Fig. 3b. This diagram has a very simple 
linear form and terminal values are generated very 
early along the main path and do not have to propagate 
to the end of cascade. Allowing outputs from 
intermediate cells is a more general version of the 
binary cascade and can lead to the reduced number of 
rails between cells in the LUT cascade. Such 
configuration may be useful e.g. for firmware 
implementation discussed later on. Comparison of Fig. 
2a and Fig. 3a,b shows that the used heuristics really 
works and reduces cost and width of the MTBDD with 
a random order of variables in Fig. 2a. 
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Fig. 3. PE4 arbiter a) MTBDD with degenerate 

nodes b) MTBDD with terminal values not 
restricted to the last level 

 
A larger arbiter PE8 with eight request inputs and 

four address outputs is defined by Table 2. Iterative 
decomposition leads to the homogenous cascade of a 
constant width depicted at Fig. 4. Generally, however, 
the width of a cascade is not constant. At construction 
of LUT cascades we try to combine adjacent LUTs 
together to get LUTs of uniform size as often as 
possible. For example the PE8 cascade at Fig. 4 may be 
reduced to 3 cells with capacity of 96, 96 and 64 bits. 

LUT cascades of this kind can be used for pipelined 
implementation of general combinational logic 
systems. The LUT cascade would have to be completed 
by pipeline registers between cells. These registers 
would serve also for storing variables used at vertical 
cell inputs. The performance of the pipeline under the 
continuous stream of input vectors would then be 
determined by a single cell delay. One arbitration result 
would be generated every clock cycle. 

Let us note that one way how to implement multi-
output LUTs is to compose them out of single-output 
LUTs. For example LUT cascade at Fig. 5a could be 
assembled of 16 single-output, 4-input LUTs. Even 
though HDL synthesis tools can do better than that, the 
advantage of the cascade is the regular layout that can 
eventually lead to a smaller occupied area on a chip. 

 

 
Table 2. The 8-input priority encoder 

 
r7 r6 r5 r4 r3 r2 r1 r0 a3 a2 a1 a0
0 0 0 0 0 0 0 0 1 0 0 0
1 × × × × × × × 0 1 1 1
0 1 × × × × × × 0 1 1 0
0 0 1 × × × × × 0 1 0 1
0 0 0 1 × × × × 0 1 0 0
… … … … … … …
0 0 0 0 0 0 0 1 0 0 0 0
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 Fig. 4. LUT cascade-based PE8 
 
 

3.2. The round robin (LGLP) arbiter 
 
 This is a Moore type sequential state machine with 

dynamic priority allocation scheme based on Last 
Granted Lowest Priority (LGLP) strategy that ensures 
strong fairness. It has n input requests, 2n states S0, S1, 
…, S(2n-1) and n grant outputs. Even-numbered states 
monitor request inputs and odd-numbered states 
generate grant outputs (one grant per state). Priority 
vector that determines priorities of inputs is modified 
by cyclic shift in such a way, that the request just 
satisfied goes to the lowest priority position.  
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 Fig. 5. LUT cascade implementation of the 4-
input LGLP arbiter 

a) 4-input LUTs b) 5-input LUTs 
 



Let us consider a 4-input LGLP arbiter with 8 states. 
Priority vectors and grants generated in various states 
are (the highest priority requests are in bold): 

 

S0: r3 r2 r1 r0  S1: g3 
S2: r2 r1 r0 r3  S3: g2 
S4: r1 r0 r3 r2  S5: g1 
S6: r0 r3 r2 r1  S7: g0 
 

State transitions for even numbered states are easy to 
specify; e.g. for state S0 we have 
 

old state         r3 r2 r1 r0      new state  
000 (S0)         1  x  x  x        001 (S1) 
000 (S0)         0  1  x  x        011 (S3) 
000 (S0)         0  0  1  x        101 (S5) 
000 (S0)         0  0  0  1        111 (S7) 

 
An odd-numbered state S(2k+1) issuing grant g(3-k) 
transits to the even-numbered state S[(2k+2) mod 8] as 
soon as request r(3-k) terminates (goes low). 

Function tables of LGLP arbiters have been 
generated automatically for 3, 4, 6, 8 and 12 request 
inputs and decomposed as before. Fig. 5 shows for 
example two implementations of the LGLP4 that differ 
in clock speed. Grant signals g1 to g4 are generated 
from the state code (s6 s5 s4) in the last 3-input cell. 
Clock speed is determined by the delay of 4 or 2 cells 
in Fig. 5a and 5b. For comparison, VHDL synthesis 
tool for Xilinx FPGA generates this arbiter with 17 4-
input LUTs in 4 logic levels.  

 
3.3. The matrix arbiter with LRS (Least 
Recently Serviced) strategy 

 
The LRS strategy cannot be implemented by a 

dynamically changing priority vector; it has to use 
priority matrix P, where pik = 1 means that the i-th 
request has priority over the k-th request [7]. Currently 
asserted grant output g(j) resets the j-th row to all zeros 
and sets the j-th column of P to all ones. Thus the 
request r(j) will have priority over no other requests 
and all requests will have priority over r(j). 

The priority matrix P initialized and updated 
according to above rules is anti-symmetric: elements pik 
under the main diagonal are complements of elements 
pki above it. It is therefore sufficient to store only 
elements of P above the main diagonal. For n requests 
we will thus need (n2 – n)/2 state variables. 

As an example we will use arbiter LRS4 that is 
implemented in matrix form in [7]. It has 6 state 
variables s9, s8, s7, s6, s5, s4 and 4 request inputs r3, 
r2, r1, r0. We will let the LUT cascade generate 4 grant 
outputs g3, g2, g1, g0, which will be then used to reset 
and set selectively 6 state flip-flops. 

This time we have implemented LRS4 arbiter in 
firmware. We have used HIDET tool (described below) 
to decompose function LRS4: (Z2)10 → Z4. The result is 
shown as MTBDD at Fig. 6. 

Evaluation of Boolean functions at the firmware 
level can use nicely the LUT cascade paradigm. By 
making use of hardware micro-engines with a support 
for multi-way branching, we can speed up evaluation of 
Boolean functions with respect to a general purpose 
CPU core. A suitable architecture of a micro-engine, 
a modified version of the one in [2], is depicted in 
Fig. 7. 
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Fig. 6. MTBDD of the 4-input LRS arbiter 

 
Out of all microinstructions formats supported by 

the micro-engine architecture, two formats are essential 
for fast evaluation of multiple-output Boolean 
functions: 
1) the jump to an address specified in micro-

instruction and modified by BCU; symbolic µI : 
Ln: exit Lm@x1...xk; 

2) conditional output and the jump to an address 
specified in micro-instruction (no modification), 

Ln: c_output exit Lm. 
The first format includes jumps to the target address 

obtained from the address specified in the micro-
instruction; this latter address is modified by external 
variables, by up to 4 variables at a time, including 0 
variable (no modification), by means of 16-way Branch 



Control Unit (BCU). Input variables are selected by 
multiplexers, so that a microinstruction contains MXs 
control field and a BCU mask field. 
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Fig. 7. Micro-programmed controller 
architecture with multi-way branching 

 
 The task of the BCU (such as Am 29803A) is to 

shift active inputs, selected by a 4-bit mask, to the 
lowest positions of the 4-bit BCU output vector. This 
vector is then wire-ORed with the address obtained 
from the micro-instruction. Replacement of up to 4 bits 
in the address is denoted by operator “@”. If wired-OR 
is used for replacement, the bits being replaced must be 
first reset to 0. 

 

 

LRS: exit L1@s9s5 
L1@00: exit L2@s8s4s7r2 
L1@01: exit L2@s8s4s7r2 
L1@10: exit L3@s8s4s7r2 
L1@11: exit L4@s8s4s7r2 
L2@0000: exit L5@r3r1s6r0 
L2@0001: exit L5@r3r1s6r0 
L2@0010: exit L6@r3r1s6r0 
….. 
…..  
L8@1111: g0 exit Next 
L8@1110: g0 exit Next 
Next: 

 
 

Fig. 8. A symbolic microprogram for the 
LRS4 arbiter 

 
If there are more than 4 external variables, LUT 

cascade paradigm is used. We will illustrate rewriting a 
MTBDD at Fig. 6 into the micro-program with multi-
way branching. The symbolic micro-program targeted 
for the micro-engine in Fig. 7 is shown in Fig. 8. The 
micro-program is composed of 8 dispatch tables, one of 

size 4 (node L1) and 7 of size 16. The total number of 
micro-instructions is thus 4 + 7 × 16 + 1 = 117 and an 
arbitration decision is produced after execution of four 
microinstructions. The state of the arbiter is kept in 6 
R-S flip-flops and these flip-flops are selectively set 
and reset by signals gi: 

R4 = R5 = R6 = g0, R7 = R8 = g1, R9 = g2,  
S4 = g1, S5 = S7 = g2, S6 = S8 = S9 = g3. 

Out of 6 state variables and 4 input requests up to 4 
signals are selected by 4 multiplexers, fed into BCU 
and used in the least significant positions for address 
modification, as shown in Fig. 7. 

Had we used only single variable tests (a binary 
program with 2-way branching), we would need 40 
dispatch tables of size 2, i.e. 80 microinstructions in 
total. However, the performance would be almost 3 
times lower due to execution of 11 microinstructions, 
one in each level of the MTBDD, for one decision. 

 
4. Experimental results 

 
To aid LUT cascade synthesis, the program tool 

HIDET (Heuristic Iterative DEcomposition Tool) has 
been developed. It basically implements the following 
algorithm (letters S stand for sets, M and L for tables, 
w for local MTBDD width and d for “discount”): 
 
Input: 

Min, input function table; 
Sv, the set if input variables 
n = |Sv|, number of input variables;  

Output: i in 1 to n 
Mi, function tables ; 
Li, LUTs; 
vi, variable removed in step i ; 
 

Initialize i ← 1, M0 ← Min; 
for i in 1 to n do 

// Determine the best variable 
vbest ← arbitrary variable from Sv,  
wbest ← size(Mi-1), dbest ← 0; 
for all variables v ∈ Sv do 

Mp ← make_pairs(Mi-1, v); 
Sp ← unique_pairs(Mp); 
Sm ← merge_compatible_pairs(Sp); 
w ← size(Sm); 
d ← number of constant pairs in Sm; 
if (w < wbest) or (w == wbest and d > dbest) then 

vbest ← v, wbest ← w, dbest ← d; 
endif 

endfor 
vi ← vbest; 

 



// Decompose 
Mp ← make_pairs(Mi-1, vi); 
Sp ← unique_pairs(Mp); 
Sm ← merge_compatible_pairs(Sp); 
Li ← enumerate_pairs(Sm); 
Mi ← replace pairs in Mp by new id numbers in Li; 
Sv ← Sv \ {vi}; 

endfor 
 

Sequential as well as parallel (OpenMP) versions of 
the program were compiled, ran and gave the same 
results. The parallel version was tested on 4- and 8-
cores SMPs with a speedup about 80%. We could not 
test the program on a standard benchmark set, because 
most of the benchmark circuits used to be specified by 
function tables with overlapping sub-domains (rows). 
As yet, HIDET tool can process only disjunctive sub-
domains; the next version of HIDET should address the 
more general case, too. 

Function tables of many instances of three types of 
arbiters have been generated and then processed by 
HIDET tool. Iterative decomposition of this class of 
functions was a matter of seconds (LRS10). The 
sample results for LGLP and LRS arbiters are 
summarized in Table 3. PE arbiters are the easiest to 
decompose and have not been included; optimum 
ordering of variables for PEs copies the one from the 
headings of the function table, Fig. 4. Parameters of 
generic cascades are displayed, cell after cell, from left 
to right (i.e. in the opposite order than they were 
obtained by the decomposition procedure) in Table 3. 

Each column represents one cell, from the top down: 
1. index of a variable (higher indices: state variables, 

lower indices: request inputs) 
2. the number of all rows in the LUT (the local width of 

the MTBDD) 
3. the number of LUT rows with the same values in 

pair (1) (degenerate decision nodes). 
Table 3 thus describes profiles of generic cascades. 
 

From Table 3 one can obtain two global parameters 
of the cascades: cost (the number of true decision 
nodes) and the maximum number of rails between cells, 
Table 4. A large variety of LUT cascades can be 
designed, examples given in column "LUTs" use the 
same size LUTs with specified cascade length x 
number of inputs (in). It is interesting to compare these 
results with designs obtained by Xilinx FPGA synthesis 
tool. The number of 4-input LUTs compares to the 
number of true decision nodes (cost); one decision 
node can be mapped to a 3-input LUT and can be taken 
approximately as one half of the 4-input LUT. Also, if 
we take the delay of FPGA’s 4-input LUTs plus wiring 
delay approximately equal to cascaded LUTs´ delay, 

we can compare logic levels of FPGA with cascade 
length. This way it comes out that we should be able to 
get the same or better performance with LUT cascades. 
 
Table 3. Parameters of generic LUT cascades 

for LGLP and LRS arbiters 
 

LGLP3 Legend:
4 3 1 2 5 0 ← index of variable
1 2 4 6 8 9 ← # all LUT rows  
0 0 1 2 3 4 ← # LUT rows [x,x]

LGLP4
5 4 2 3 1 6 0 0 = last  LUT
1 2 4 6 9 13 13 13 → 4 rails in
0 0 0 2 5 2 6 var 0 removed first

LGLP6
7 6 0 1 9 5 2 3 4 8
1 2 4 6 9 13 15 16 18 17
0 0 1 2 0 7 7 7 9 8

LGLP8
10 8 7 5 6 9 4 3 2 1 0 11
1 2 4 6 8 11 14 16 19 22 25 25
0 0 1 3 3 3 9 10 12 14 15 8

LGLP10
11 10 9 8 6 7 12 5 4 3 13 2
1 2 4 6 8 11 15 19 23 27 31 32
0 0 1 3 4 6 2 13 17 19 6 16

LRS3
1 0 14 5 2 4 1 3 0
32 35 25 1 2 3 3 4 5
15 17 17 0 1 1 2 1 4

LRS4
9 5 8 4 7 2 3 1 6 0
1 2 3 3 4 5 4 5 6 6
0 1 1 2 1 4 3 4 2 5

LRS6
20 14 19 13 18 9 12 8 17 5 11 7
1 2 3 3 4 5 4 5 6 6 5 6
0 1 1 2 1 4 3 4 2 5 4 5

16 4 2 10 6 3 15 1 0
7 8 7 6 7 8 9 9 8
2 7 6 5 6 7 4 8 7

 
The area for wiring LUT cascades promises to be 

much lower, whereas the area of cascaded LUTs 
themselves slightly higher due to their coarser 
granularity. The large area for the interconnections in 
an FPGA is thus absorbed in the larger LUTs in the 
cascade. 

 
5. Conclusions  

 
The presented method of LUT cascade synthesis of 

multiple-output Boolean functions aided by HIDET 
tool proved to be suitable for synthesis of 



combinational and sequential designs with tens of 
input/output and state variables. Arbiters, as well as 
other digital systems frequently used in practice, have 
relatively low complexity, what makes their cost-
effective cascade implementations possible. Beside 
easy interconnection there are other advantages of 
cascade implementation. Testing of LUT cascades 
reduces to a problem of testing RAM modules. Fault 
tolerance techniques for memories such as SECDED 
are also applicable. Due to a highly developed memory 
technology the power consumption is very low for 
RAMs and it only remains to verify experimentally real 
power savings for specific applications. 

 
Table 4. Comparison of FPGA designs and 

LUT cascades 
 

         FPGA LUT cascade
#4-LUT levels cost width LUTs

LGLP3 10 3 20 ≤4 2 x 5 in
LGLP4 17 4 33 ≤4 3 x 5 in
LGLP6 48 6 60 ≤5 4 x 6 in
LGLP8 70 9 75 ≤5 6 x 6 in
LGLP10 122 8 135 ≤6 6 x 7 in
LGLP16 433 17 194 ≤6 5 x 9 in
LRS3 6 2 10 ≤3 2 x 4 in
LRS4 8 2 17 ≤3 2 x 6 in
LRS6 24 3 33 ≤4 3 x 9 in  

 
Effectiveness of LUT cascades can be derived from 

the size of the complete function table and aggregate 
capacity of all LUTs in a cascade. E.g. LGLP8 arbiter 
with 12 input variables requires 212 x 4 bits, whereas 
the LUT cascade exemplified in Tab. 4 only less than 
6 x 27 x 5 bits (23%). Most of the functions that occur 
in digital design are decomposable effectively into 
cascades. One exception is the class of binary 
multipliers: for all possible variable orderings is the 
BDD size exponential for n-bit inputs and 2n-bit output 
[9]. 

Future research should address a more general 
specification of multiple-output Boolean functions, 
namely in a form of Boolean expressions representing 
individual binary outputs. Also the quality of heuristic 
optimization of variable ordering should be put under a 
test against results obtained by exhaustive testing of all 
permutations of variables. The effectiveness of LUT 
cascades could be improved further by creating smaller 
groups of binary outputs and decomposing separately 
each group. Appropriate design techniques could 
provide cost-effective cascades for new classes of 
functions. Security and safety oriented applications will 
be the nearest target. 
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