
Analysis of Reconfiguration Options for a Reconfigurable Polymorphic Circuit

Zdenek Vasicek and Ladislav Capka and Lukas Sekanina
Faculty of Information Technology, Brno University of Technology

Bozetechova 2, 612 66 Brno, Czech Republic
E-mail: {vasicek;icapka;sekanina}@fit.vutbr.cz

Abstract

REconfigurable POlymorphic MOdule (REPOMO) will
be a new reconfigurable chip intended for experimental ap-
plications of evolvable and polymorphic hardware. In this
paper, we analyze various reconfiguration options for this
platform with the aim of finding such a reconfiguration sub-
system which maximizes the success rate of evolutionary
circuit design conducted using REPOMO. An interesting
outcome of this analysis is that a relatively high success rate
of evolutionary design can be achieved using relatively sim-
ple reconfiguration options which have to be implemented
in hardware. These results are also relevant for evolution-
ary circuit design which is performed using Cartesian Ge-
netic Programming.

1 Introduction

In the field of evolvable hardware, evolutionary algo-
rithms are combined with reconfigurable devices in order
to create a new generation of hardware – adaptive, self-
modifying and self-repairing hardware [5, 1].

Various reconfigurable platforms have been proposed
and studied for evolvable hardware in the recent years
[4, 17]. In the area of intrinsic evolution of digital cir-
cuits, majority of experiments were performed using Field
Programmable Gate Arrays (FPGAs). Intrinsic evolution
means that candidate circuits are evaluated using a physical
hardware and in a real environment. On the other hand, the
term extrinsic evolution is used when candidate circuits are
evaluated using a circuit simulator.

In general, a reconfigurable digital circuit consists of an
array of programmable logic elements, programmable in-
terconnects and programmable I/O ports. The function of
programmable logic elements and their interconnection (i.e.
the circuit functionality) is defined using a configuration bit-
stream. The configuration bitstream is stored in a configu-
ration register (or memory) whose bits directly control the
configurable switches and multiplexers of the platform.

Nowadays, there are two main approaches how to build
evolvable hardware using FPGAs: (1) Evolution can work
at the level of logic blocks available in the FPGA. In other
words, it operates directly with the configuration bitstream
of the FPGA, for example, using ICAP interface available in
some Xilinx FPGAs [17]. This solution requires the knowl-
edge of the internal structure of the FPGA and configuration
bitstream. It is usually very efficient in terms of resources;
however, it can be slow. (2) A new reconfigurable circuit
is created on the top of an FPGA [11]. Using this method,
sometimes called Virtual Reconfigurable Circuit (VRC), a
very powerful reconfigurable device can be created for a
given application. However, its implementation cost can
be significant, as everything must be implemented using
resources available in the FPGA. In particular, it is nec-
essary to implement programmable elements, multiplexer-
based reconfigurable network, programmable I/Os and con-
figuration memory (which is usually implemented as a reg-
ister array). Another advantage of VRC is that the design
is available at the level of HDL source code which can be
synthesized for various target platforms.

When one is going to create, for some reasons, a new
reconfigurable circuit as an Application-Specific Integrated
Circuit (ASIC), the implementation can be based on the
HDL source code which describes a particular VRC. The
advantage is that a prototype of this new reconfigurable
ASIC can be implemented in the FPGA and tested before
the chip is fabricated.

In both cases (i.e. VRC and ASIC), designer has to come
up with suitable configurable logic blocks and configurable
interconnections with respect to the target application. De-
signer has to also define the organization of the configura-
tion register (memory) in order to maximize the efficiency
of evolutionary algorithm. The selection of suitable struc-
ture and parameters of the reconfigurable circuit is one of
the most difficult tasks evolvable hardware designers are
faced with. It can be stated that there is no simple approach
which could help the designer to determine suitable struc-
ture and parameters of the reconfigurable device for a given
application. Similarly to the design of evolutionary algo-



rithm (which includes the selection of the type of search
method, population size, genetic operators, parameters of
the algorithm etc.) the design of reconfigurable device re-
mains a time-consuming experimental work.

Paper [9] deals with initial considerations and descrip-
tion of a new reconfigurable ASIC called REconfigurable
POlymorphic MOdule (REPOMO). This chip consists of
a small array of configurable blocks. Each of them can
be programmed to perform one of four two-input logic
functions. Interconnection of programmable logic blocks
is also configurable. Therefore, REPOMO can be used
to realize small combinational circuits. The most im-
portant feature, which distinguishes REPOMO from other
small programmable circuits (such as PALs and GALs)
is, that configurable logic blocks also contain polymorphic
NAND/NOR gates controlled by the level of power sup-
ply voltage (Vdd). While the polymorphic gate operates as
NAND for a certain level of Vdd, for another level of Vdd
the same gate operates as NOR (see Figure 1). The usage of
polymorphic gates thus allows a very interesting interaction
of digital logic with an external world [13]. These inter-
actions will be investigated using REPOMO in our future
research. Note that the concept of polymorphic gates was
introduced by Stoica’s team at JPL [14, 16, 15].

a) b) mode 1 c) mode 2

Figure 1. (a) A polymorphic gate-level circuit
which contains AND gate and polymorphic
NAND/NOR gate, (b) its behavior in the first
mode, (c) its behavior in the second mode

Before the fabrication of REPOMO, it is necessary to ex-
actly define the internal structure of the chip. It is supposed
that an evolutionary algorithm will generate REPOMOS’s
configurations in order to find the functionality required by
specification. In this paper, we present a set of experiments
that were performed to determine suitable parameters of
REPOMO. In particular, the goal is to (1) define the set
of functions that should be available in configurable blocks
and (2) determine reconfiguration options of REPOMO (i.e.
possible connection points for inputs of configurable blocks
and primary outputs). The proposed method assumes that
REPOMO can be modeled as a particular instance of Carte-
sian Genetic Programming (CGP) – a method widely used
to evolve small combinational circuits [8, 6]. Such a spec-
ification of REPOMO is sought which maximizes the per-
formance of the evolutionary algorithm over a set of bench-
mark problems.

The paper is organized as follows. Section 2 describes
REPOMO organization. In Section 3, the instance of CGP
which will be used to evaluate REPOMO is introduced.
While Section 4 presents the experimental setup, Section 5
includes experiments which were performed and their eval-
uation. Finally, conclusions are given in Section 6.

2 Reconfigurable polymorphic module

2.1 Original version of REPOMO

Figure 2 shows the original architecture of REPOMO ac-
cording to [9]. REPOMO consists of an array of config-
urable blocks whose interconnection is also configurable.
The initial design assumed that there will be 4 x 4 config-
urable blocks on the chip. Each of them can be programmed
to operate as NAND/NOR, XOR, AND or a simple wire
(see Fig. 3). Each gate input can be connected to one of the
outputs of the configurable blocks which are placed in the
previous two columns. The inputs of configurable blocks
of the first and second column can be also connected to
the primary inputs. REPOMO utilizes 4 primary inputs
and 4 primary outputs. Reconfigurability is achieved using
multiplexers. We have already fabricated and tested poly-
morphic NAND/NOR gates controlled by Vdd [10]. These
gates will be also utilized in REPOMO. As configurations
of REPOMO will be mostly designed by an evolutionary al-
gorithm, it is required that any (even randomly) generated
configuration bitstream is valid. The configuration is stored
in a 120 bit shift-register. Note that REPOMO has to work
correctly for both levels of Vdd which are used by poly-
morphic gates. Assumed fabrication technology is AMIS
CMOS 0.7.

conf.
data

I0

I1

I2

I3

O2

O3

O4

O5

CB0 CB1 CB3CB2

Configuration register

Figure 2. Original design of REPOMO



MUXA

MUXB

.

..

.

..

F0

F1

F3

Y

MUXY

F2

Configuration register

A

B

X

Figure 3. A configurable block which can re-
alize four different functions (F0 - F3). MUXA
and MUXB select the inputs for the logic
function selected by MUXY.

2.2 REPOMO Extended

The original specification of REPOMO was changed. A
new version, which we call REPOMOx, will contain more
configurable elements and more interconnection options.
Figure 4 shows the architecture of REPOMOx which now
utilizes 8x8 configurable elements (each of them supports 4
functions), 6 primary inputs and 6 primary outputs. These
parameters reflect target applications assumed for this plat-
form.

In order to maximize the performance of evolutionary
circuit design in REPOMOx and utilize a reasonable num-
ber of configurable bits, it is necessary to determine:

• Logic functions that should be included into config-
urable blocks: Note the NAND/NOR gate controlled
by Vdd has to be included into REPOMO as this is the
only polymorphic gate which is now available for us.
Table 1 gives all logic functions that we will consider
in this analysis. In addition to four logic functions
already used in REPOMO, bitwise OR and constant
function are also included as a possible replacement
for the identity function (wire).

• Connection points for inputs of configurable blocks:
The question is whether only neighboring columns of
configurable blocks can be interconnected or whether
more connectivity is needed.

• Connection points for primary outputs: In REPOMO,
the connection of primary outputs was fixed to partic-
ular outputs of configurable blocks placed in the last
(i.e. rightmost) column. We will investigate whether
there should be more options for configuration of pri-
mary outputs.

Table 1. List of logic functions tested in con-
figurable blocks

code function description
f0 Y = 0 constant
f1 Y = A identity
f2 Y = A ∧B bitwise AND
f3 Y = A ∨B bitwise OR
f4 Y = A⊕B bitwise XOR
f5 Y = A ∧B/A ∨B polymorphic NAND/NOR

• Connection points for primary inputs: In REPOMO,
primary inputs could be connected to the inputs of
configurable blocks placed in the first two columns.
The question is whether more connection options are
needed for primary inputs.

It is evident that additional configuration options imply
longer configuration bitstreams which then lead to larger
search spaces and, potentially, to slower convergence of
the evolutionary algorithm. Additional configuration op-
tions will also cost some area on the chip. On the other
hand, more configuration options are usually beneficial for
the user of the chip. The selection of suitable parameters of
REPOMOx will be investigated using CGP.

conf.
data

I0

I1

I2

I3

I4

I5

O0

O1

O2

O3

O4

O5

CB0 CB1 CB7CB6

...

Configuration register

Figure 4. Architecture of modified version of
REPOMO – REPOMOx



3 Cartesian Genetic Programming and Its
Extension

3.1 Basic version of CGP

In CGP [8, 6], a digital circuit is modeled as an array of
u (columns) × v (rows) of programmable elements (gates).
The number of inputs, ni, and outputs, no, is fixed. Feed-
back is not allowed. Each gate input can be connected either
to the output of a gate placed in the previous L columns or
to some of primary inputs. The L-back parameter, in fact,
defines the level of connectivity and thus reduces/extends
the search space. For example, if L=1 only neighboring
columns may be connected; if L = u, the full connectiv-
ity is enabled. Each programmable gate is programmed to
perform one of functions defined in the function set. As
Figure 5 shows, while the size of chromosome is fixed, the
size of phenotype is variable (i.e. some nodes are not used).
Every individual is encoded using u× v × 3 + no integers.

1 0

1 0

0 0

1 0

0

1

2

3

4

5

6

7

8

9

10

1

2

0

0

2 1 1

0

Figure 5. An example of a candidate circuit in
CGP with parameters: L = 3, u = 4, v = 2,
Function Set = {AND (0), OR (1)}. Nodes 5
and 9 are not utilized. Chromosome: 1,2,1,
0,0,1, 2,3,0, 3,4,0 1,6,0, 0,6,1, 1,7,0, 6,8,0, 6,
10. The last two integers indicate the outputs
of the program.

CGP operates with the population of λ individuals (typi-
cally, λ = 5− 20). The initial population is randomly gen-
erated. Every new population consists of the best individual
and its mutants. In case when two or more individuals have
received the same fitness score in the previous population,
the individual which did not serve as a parent in the previous
population will be selected as a new parent. This strategy is
used to ensure the diversity of population.

The fitness function usually takes the following form:
For evolution of logic circuits, all possible input combina-
tions are applied at the candidate circuit inputs, the outputs
are collected and the goal is to minimize the difference be-
tween obtained truth table and required truth table. In case
when the evolution has found a solution which produces
correct outputs for all possible input combinations, other
parameters, such the number of components or delay are
getting to minimize. The evolution is stopped when the best

fitness value stagnates or the maximum number of genera-
tions is exhausted.

3.2 Proposed extension

CGP was used as a template for implementation of VRCs
[19, 18, 11, 3, 2]. In these implementations, L-back param-
eter is typically set to 1 in order to allow pipeline process-
ing. Similarly, the connection of primary outputs is fixed to
some of configurable blocks of the last column.

In order to analyze the effect of the connection of pri-
mary outputs, we introduce the so-called output-back (o-
back) parameter. This parameter defines a limit in the num-
ber of preceding columns, which a primary output may be
connected to. For example, if o-back=1 then a primary out-
put can be connected to one the outputs of configurable
blocks placed in the last (i.e. rightmost) column. If o-
back=u, a primary output may be connected to any con-
figurable block of the array. Let o-back = 0 denote the sit-
uation in which the connection of a primary output is fixed
(i.e. non-configurable) to just one of configurable blocks of
the last column.

Similarly, we introduce i-forward parameter for primary
inputs. This parameter defines a limit in the number of
columns which a primary input may be connected to.

In next experiments we will show that the setting of L-
back, o-back and i-forward significantly influences the con-
vergence of evolutionary algorithm.

4 Experimental setup

In order to find suitable parameters of REPOMOx, CGP
with the following setup is used: u = 8, v = 8, ni =
6, no = 6, λ = 5 and 1–5 genes of the chromosome are
mutated. Setting of L-back, o-back and i-forward parame-
ters will be described for each experiment separately. The
set of benchmark circuits include:

• 3× 3-bit multiplier,

• 6-input/6-output sorting network,

• 6-input majority circuit and

• polymorphic 6-input majority/even parity circuit.

These circuits were chosen with the aim to (1) maximally
utilize the available number of inputs in REPOMOx, (2) test
different number of outputs and (3) evolve also polymor-
phic circuits. Note that the 3-bit multiplier may be nowa-
days considered as a standard test circuit for digital evolv-
able hardware. The polymorphic 6-input majority/even par-
ity circuit computes the majority function in the first mode
of polymorphic gates and the parity function in the second
mode of polymorphic gates [12].



The number of generations is 500k for majority circuit
and polymorphic majority/parity circuit, 1.5M for multi-
plier and 1M for sorting network. When a perfectly func-
tional solution is obtained, the number of gates is getting to
minimize until the limit in the number of generations is ex-
hausted. Each experiment was repeated 100 times and more
than 500k runs of CGP were performed in total.

5 Experimental results

First series of experiments is devoted to searching for a
suitable set of functions for configurable elements. Second
series of experiments deals with a determination of the most
effective configuration options of the chip. Following ta-
bles show the average values calculated over all benchmark
circuits, all considered function sets and selected values of
L-back, o-back and i-forward parameters (a particular setup
will be specified in each subchapter).

5.1 Function set

The original function set of REPOMO includes AND,
XOR, NAND/NOR and the identity function (denoted as
FS1 in Table 2). Firstly, we removed the identity function
(and obtained FS2 according to Table 2) because the AND
can play the role of identity when its inputs are intercon-
nected. Results summarized in Table 3 show that the usage
of FS2 leads to a higher success rate than FS1. Our explana-
tion is that the problem is easier for CGP because the search
space is reduced.

The number of functions should be a power of two (2n)
in order to effectively utilize all combinations resulting
from n configuration bits devoted to a selection of function
in REPOMOx. Table 3 shows that including the OR instead
of the identity (denoted as FS6) leads to a much better per-
formance than any other setup that we tested. This high suc-
cess rate is mainly caused by existence such circuits (sorting
network, majority) in our benchmark set which require the
OR gate for their effective implementation.

Table 2. Combinations of logic functions
tested in configurable blocks

Func. set Utilized functions (codes)
FS1 f1 f2 f4 f5
FS2 f2 f4 f5
FS3 f0 f2 f4 f5
FS4 f2 f2 f4 f5
FS5 f4 f2 f4 f5
FS6 f2 f3 f4 f5

Table 3. Averaged results for different sets of
functions: success rate, the number of gen-
erations and utilized gates

func. succ. # generations used gates
set rate min max avg dev min max

FS1 23 3763 1499k 461k 161k 15 46
FS2 29 3405 1499k 433k 161k 15 54
FS3 17 6518 1499k 406k 131k 15 51
FS4 25 3485 1499k 429k 152k 16 54
FS5 28 2677 1499k 416k 153k 16 55
FS6 71 474 1499k 276k 144k 14 53

5.2 Analysis of interconnection options

In the first experiment of this category, we analyzed all
combinations of L-back and o-back parameters. Tables 4
and 5 give success rates averaged over all benchmark cir-
cuits, function sets and i-forward parameters. Surprisingly,
the best results are obtained neither for L-back = u (as usu-
ally used in Miller’s papers [6]) nor for L-back=1 (as used
in pipeline hardware implementations of VRC [19]). The
best success rate is clearly achieved when L-back=2. That
is a very good outcome because it tells us that by a small
extension of reconfiguration options (which is easily im-
plementable in hardware), significant improvements can be
achieved in the success rate. Tables 6 and 7 show averaged
results for one of benchmark circuits – the majority/parity
circuit. Figure 6 shows example of evolved polymorphic
majority/parity circuit.

Experimental results indicate that the value of o-back
parameter should be very low (Tables 4 and 5). The best
results were obtained if o-back=0, i.e. the connection of
primary outputs is not configurable at all. Tables 8 and 9
provide detailed results for L-back=2. Our explanation of
this phenomenon is that mutations of output connections
are very disruptive; hence, it is better to have a fixed con-
nection of primary outputs. In addition, the search space
is also reduced. This outcome is again important from the
implementation point of view. It simply says that reconfig-
uration of output connections is not useful and should not
be implemented.

In order to determine, whether it is useful to allow
the connection of primary inputs either to all configurable
blocks or to some of them only, we analyzed the influence
of i-forward parameter. Table 10 shows averaged experi-
mental results for different values of the i-forward parame-
ter. A reasonable compromise is to allow the configurable
elements that are placed in the first two columns to connect
their inputs to the primary inputs. Increasing the value of
i-forward parameter requires including much larger multi-
plexers to configurable elements which costs a considerable
area on the chip.



OR 6

XOR 7

OR 9

XOR 11

AND 12

XOR 13

OR 14

OR 15

XOR 18

AND 19

NAND

NOR

23

AND 25

AND 28

OR 29 NAND

NOR

30

NAND

NOR

36

NAND

NOR

37

AND 39 NAND

NOR

69
i5

i4

i3

i2

i1

i0

out

Figure 6. Example of evolved six-bit polymorphic majority/parity circuit

Table 4. The average number of correctly
evolved circuits for different combinations of
o-back and L-back.

o-back
L-back 0 1 2 3 4 5 6 7 8

1 36 36 36 35 33 34 32 33 35
2 50 49 49 46 46 46 46 46 46
3 44 44 41 40 40 39 38 39 38
4 36 36 34 32 30 31 31 31 31
5 32 31 29 28 26 26 26 26 27
6 29 29 27 26 25 24 24 24 24
7 29 29 27 25 24 23 23 23 23
8 30 29 27 25 23 23 23 23 23

5.3 Summary of Results

A new version of REPOMO, whose specification re-
quires an array of 8x8 configurable blocks, 6 inputs, 6 out-
puts and 4 functions per a configurable block was described.
Preformed experiments suggest that the function set avail-
able in configurable gates should contain NAND/NOR,
AND, OR and XOR. In order to maximize the success rate
of the evolutionary design, the following reconfiguration ca-
pabilities are recommended:

• Primary inputs should be available at first two columns
of configurable blocks (i-forward=2). This requires the
usage of 8-input multiplexers in the first column and
16-input multiplexers in the second column of config-
urable blocks.

• Inputs of configurable blocks should be connectable to
the outputs of configurable blocks placed in two pre-
ceding columns (L-back=2). This requires the usage
of 16-input multiplexers in configurable blocks.

Table 5. The average number of correctly
evolved circuits for different combinations of
o-back and L-back. Only the FS6 is consid-
ered.

o-back
L-back 0 1 2 3 4 5 6 7 8

1 65 63 67 68 67 67 66 67 69
2 80 79 80 80 78 80 81 80 80
3 78 79 77 79 78 78 76 76 78
4 75 74 74 73 72 73 72 72 72
5 71 72 71 69 69 69 70 68 69
6 70 70 69 67 68 67 66 66 67
7 70 70 70 67 67 67 66 65 67
8 71 71 69 67 65 66 67 66 66

• Primary outputs should be directly connected (without
the possibility of reconfiguration) to selected config-
urable blocks of the last column (o-back=0).

6 Conclusions

In this paper, a new version of REPOMO platform was
described. We analyzed various reconfiguration options for
this platform with the aim of finding such a reconfiguration
subsystem which maximizes the success rate of evolution-
ary circuit design conducted using REPOMO. Performed
analysis of the o-back, L-back and i-forward parameters ex-
tends the analysis of CGP published previously (for exam-
ple, [7, 18, 6]). An interesting outcome is that a relatively
high success rate of evolutionary design can be achieved
using relatively simple reconfiguration options in hardware.
These results are very important for the final design of RE-
POMOx’s architecture.



Table 6. The average number of correctly
evolved circuits for different combinations of
o-back and L-back for the majority/parity cir-
cuit.

o-back
L-back 0 1 2 3 4 5 6 7 8

1 40 38 39 35 32 34 31 32 32
2 34 34 34 30 30 29 30 28 29
3 18 19 19 17 16 17 14 14 15
4 10 11 10 10 9 9 9 8 9
5 7 7 8 5 6 6 6 5 5
6 6 7 6 5 5 5 4 3 4
7 6 5 6 5 4 4 4 3 3
8 7 7 6 5 3 4 4 3 4

Table 7. The average number of correctly
evolved circuits for different combinations of
o-back and L-back for the majority/parity cir-
cuit. Only the FS6 is considered.

o-back
L-back 0 1 2 3 4 5 6 7 8

1 68 65 67 68 64 62 64 62 62
2 69 66 65 67 66 67 69 66 63
3 48 51 50 50 50 47 46 44 48
4 35 36 35 34 33 31 32 29 29
5 29 28 27 23 23 22 21 20 20
6 23 25 24 20 18 19 19 15 18
7 23 22 24 18 18 17 14 15 15
8 23 23 22 19 16 16 18 14 16

Acknowledgements

This research was partially supported by the Grant
Agency of the Czech Republic under No. 102/06/0599
Methods of Polymorphic Digital Circuit Design and the Re-
search Plan No. MSM 0021630528 Security-Oriented Re-
search in Information Technology.

References

[1] H. de Garis. Evolvable hardware – genetic programming of
a darwin. In International Conference on Artificial Neural
Networks and Genetic Algorithms, Innsbruck, Austria, 1993.
Springer Verlag.

[2] K. Glette, J. Torresen, M. Yasunaga, and Y. Yamaguchi. On-
Chip Evolution Using a Soft Processor Core Applied to Im-
age Recognition. In The 1st NASA/ESA Conference on Adap-
tive Hardware and Systems, pages 373–380, Los Alamitos,
CA, USA, 2006. IEEE Computer Society.

[3] D. Gwaltney and K. Dutton. A VHDL Core for Intrinsic Evo-
lution of Discrete Time Filters with Signal Feedback. In Proc.
of the 2005 NASA/DoD Conference on Evolvable Hardware,
pages 43–50, Washington D.C., USA, 2005. IEEE Computer
Society.

Table 8. Averaged success rates, generations
and used gates for L-back=2 and different
values of o-back

succ. # generations used gates
o-back rate min max avg dev min max

0 50 1334 1492k 371k 186k 14 54
1 49 1419 1499k 372k 181k 14 55
2 49 539 1497k 373k 181k 14 54
3 46 489 1492k 376k 173k 14 53
4 46 1056 1493k 366k 179k 14 51
5 46 1393 1497k 398k 172k 14 52
6 46 474 1499k 381k 177k 14 49
7 46 1458 1495k 382k 168k 14 49
8 46 1135 1477k 365k 171k 14 50

Table 9. Averaged success rates, generations
and used gates for L-back=2 and different
values of o-back. Only the FS6 is considered.

succ. # generations used gates
o-back rate min max avg dev min max

0 80 1334 1492k 250k 144k 14 53
1 79 1419 1476k 280k 140k 14 47
2 80 539 1480k 254k 139k 14 52
3 80 489 1423k 174k 131k 14 47
4 78 1056 1468k 169k 118k 14 49
5 80 1393 1488k 212k 145k 14 49
6 81 474 1496k 172k 123k 14 48
7 80 1458 1492k 251k 120k 14 49
8 80 1135 1448k 248k 150k 14 45

[4] T. Higuchi, Y. Liu, and X. Yao. Evolvable Hardware.
Springer, 2006.

[5] T. Higuchi, T. Niwa, T. Tanaka, H. Iba, H. de Garis, and
T. Furuya. Evolving Hardware with Genetic Learning: A
First Step Towards Building a Darwin Machine. In Proc. of
the 2nd International Conference on Simulated Adaptive Be-
haviour, pages 417–424. MIT Press, 1993.

[6] J. Miller, D. Job, and V. Vassilev. Principles in the Evolution-
ary Design of Digital Circuits – Part I. Genetic Programming
and Evolvable Machines, 1(1):8–35, 2000.

[7] J. F. Miller and S. L. Smith. Redundancy and computational
efficiency in cartesian genetic programming. IEEE Transac-
tions on Evolutionary Computation, 10(2):167–174, 2006.

[8] J. F. Miller and P. Thomson. Cartesian genetic programming.
In Genetic Programming, Proceedings of EuroGP’2000, vol-
ume 1802 of LNCS, pages 121–132, Edinburgh, 15-16 2000.
Springer-Verlag.

[9] R. Ruzicka and L. Sekanina. Evolutionary circuit design
in repomo - reconfigurable polymorphic module. In Pro-
ceedings of the Second IASTED International Conference
on Computational Intelligence, pages 237–241. ACTA Press,
2006.

[10] R. Ruzicka, L. Sekanina, and R. Prokop. Physical demon-
stration of polymorphic self-checking circuits. In IEEE In-
ternational On-Line Testing Symposium 2008, page 6. IEEE
Computer Society – Accepted, 2008.



Table 10. Averaged success rates, genera-
tions and used gates for different values of
i-forward parameter. Only the FS6 is consid-
ered.

succ. # generations used gates
i-fwd rate min max avg dev min max

1 60 474 1479k 281k 109k 14 52
2 81 489 1498k 236k 149k 14 53
3 80 461 1498k 259k 151k 13 55
4 78 622 1498k 271k 158k 14 52
5 77 468 1496k 281k 164k 14 51
6 75 717 1497k 298k 168k 14 53
7 74 1800 1499k 305k 171k 14 53
8 73 1757 1499k 310k 174k 14 52

[11] L. Sekanina. Evolvable components: From Theory to Hard-
ware Implementations. Natural Computing. Springer-Verlag
Berlin, 2004.

[12] L. Sekanina, L. Starecek, Z. Gajda, and Z. Kotasek. Evolu-
tion of multifunctional combinational modules controlled by
the power supply voltage. In Proc. of the 1st NASA/ESA Con-
ference on Adaptive Hardware and Systems, pages 186–193.
IEEE Computer Society, 2006.

[13] L. Sekanina, L. Starecek, Z. Kotasek, and Z. Gajda. Poly-

morphic gates in design and test of digital circuits. Interna-
tional Journal of Unconventional Computing, 4(2):125–142,
2008.

[14] A. Stoica, R. Zebulum, X. Guo, D. Keymeulen, I. Ferguson,
and V. Duong. Taking Evolutionary Circuit Design From Ex-
perimentation to Implementation: Some Useful Techniques
and a Silicon Demonstration. IEE Proc. Comp. Digit. Tech.,
151(4):295–300, 2004.

[15] A. Stoica, R. S. Zebulum, and D. Keymeulen. Polymorphic
electronics. In Proc. of Evolvable Systems: From Biology
to Hardware Conference, volume 2210 of LNCS, pages 291–
302. Springer, 2001.

[16] A. Stoica, R. S. Zebulum, D. Keymeulen, and J. Lohn. On
polymorphic circuits and their design using evolutionary al-
gorithms. In Proc. of IASTED International Conference on
Applied Informatics AI2002, Insbruck, Austria, 2002.

[17] A. Upegui and E. Sanchez. Evolvable FPGAs. In S. Hauck
and A. Dehon, editors, Reconfigurable Computing, pages
725–752. Morgan Kaufmann, 2008.

[18] Z. Vasicek and L. Sekanina. Evaluation of a new platform
for image filter evolution. In Proc. of the 2007 NASA/ESA
Conference on Adaptive Hardware and Systems, pages 577–
584. IEEE Computer Society, 2007.

[19] Z. Vasicek and L. Sekanina. An evolvable hardware system
in Xilinx Virtex II Pro FPGA. International Journal of Inno-
vative Computing and Applications, 1(1):63–73, 2007.


