
Design of FPGA-Based Dependable Systems

Martin Straka and Zdenek Kotasek

Brno University of Technology
Faculty of Information Technology

Bozetechova 2, 612 66 Brno, Czech Republic
{strakam,kotasek}@fit.vutbr.cz

Abstract. In this paper, the new methodology from areas fault tol-
erant systems based on automated generation of checkers in FPGA is
presented. Dependability models of architectures based on the use of on-
line checkers are described in the paper as well. First, the results of our
research in the area of on-line checkers design are described. It is shown
how the architectures with on-line checkers can be used in implementing
dependable systems into FPGA and required dependability parameters.
It is shown how the dependability parameters are derived from the ar-
chitecture of the system and used for the design of dependable systems
into XILINX FPGA.

1 Introduction

With the lower hardware reliability possibly appearing in future technologies,
concurrent online testing becomes a strong feature in the design of Fault-Tolerant
Systems (FTS). Fault-tolerance (FT) is an important system metric for many
operating environments. Different FT architectures are known to improve re-
liability in real-time systems, Triple Modular Redundancy (TMR) and duplex
systems can serve as examples [1]. A possible technique for improving system
reliability is through component replication, which usually comes at significant
cost: increased design time, testing, power consumption, number of requisite re-
sources in FPGA. As mentioned above, fault-tolerant systems design is one of
the areas where on-line testing techniques can be possibly used. One of them,
on-line checkers in digital system design can be used for this purposes [2]. Recon-
figurable systems implemented using user-programmable logic elements such as
FPGA are well suited for applications where high dependability is required [3] [4].
The features of fault-tolerance can be implemented in different levels and ap-
plications. In [5], a fault-tolerant approach to reliable microprocessor design is
proposed. In [6] the method of highly reliable digital circuit design method based
on totally self checking blocks implemented in FPGAs is described. The bases
of the self checking blocks are parity predictors. The dependability model and
dependability calculations for this method are presented too. The authors in [7]
propose a hardware scheme to allow the diagnosis of transient and permanent
faults affecting a TMR system implemented by means of FPGA. The scheme al-
lows to easily identify whether a fault affects one of the replicated modules, the
voter, or the scheme itself, and whether such a fault is permanent or transient.



2 Motivation for the Research

Hardware units can be implemented on various platforms. From among those
which are widely used in many applications, Xilinx FPGA can be mentioned. In
our research we tried to evaluate the possibilities of constructing on-line checkers
of different functions which can possibly occur in a digital system. The problem
we are solving here is how to design FT systems based on FPGA with required
dependability parameters.

The problem we try to solve can be also seen as a problem of designing FT
system with limited resources available while the required dependability must be
guaranteed. We propose the following scheme. Let for the function supposed to
be implemented into FPGA various levels of error detection schemes be available,
each requiring different amount of resources in FPGA. The function can thus
be implemented with various levels of diagnostic security which results in sev-
eral implementations of the function. Each implementation covers the function
completely, the number of errors detected by error detection scheme in each im-
plementation is lower compared with the previous one. Thus, each level requires
less resources for the implementation into FPGA than the previous scheme. It
can be stated that each level of function implementation is ”equipped” with cer-
tain level of error detection capabilities which means that different dependability
parameters are assigned to each level. The principles of calculating dependability
parameters used in this methodology are described later in this paper.

In the paper, the following research activities are described: Our experiments
with PSL [8] and FoCs tool, development of ours formal tools allowing to describe
properties to be checked by checker and their use in the design of on-line check-
ers for RTL digital components of various complexity are described in section 3.
The principles of digital systems design based on on-line checkers, examples of
possible FT architecture together with the evaluation of dependability parame-
ters for them are shown in section 4. Experimental results gained during these
activities are presented in section 5. Conclusions and plans for future research
are described in section 6.

3 The Use of Checkers In the Design of Fault Tolerant
Systems

In the following text, our results gained in the area of design of checkers are
briefly described.

3.1 The use of PSL for constructing on-line checkers

In our experiments with PSL it was proven that the use of PSL and FoCs tool
for the design of on-line checkers for diagnostic purposes is not an acceptable
solution due to the fact that both of these tools are supposed to be used primar-
ily for design verification where the hardware must cover many other additional



functions not needed in our implementations. It was an expected result, the rea-
son why we did this step was to verify this fact and gain some real results based
on the implementation into FPGA. It can be summarized that PSL and FoCs
tools allow to design checkers for design verification purposes [9] while the design
of checkers for diagnostic purposes requires completely different approaches to
be used. The results of our research are presented in section 5 - Experimental
Results.

3.2 Our approach to the design of on-line checkers for diagnostic
purposes

Our methodology is based on constructing checkers for basic digital circuits and
their combinations. A methodology allowing to design communication protocol
checkers was also developed during our research. For this purpose a specialized
language was created which allows to describe properties to be checked, different
levels of properties can be described, then it is translated into VHDL checker
description created by our software tool. The circuit and its checker are then
synthesized into FPGA by XILINX ISE. The methodology is demonstrated in
Figure 1. It was described in detail in [10].

Fig. 1. Demonstration of methodology principles for simple circuit

The size of the checker is the basic criterion of our approach - the checker
implementation should not be bigger than the function supposed to be checked.
The results of our research are presented in [11].



4 Dependability Models for FT Architectures

To construct FT systems, TMR or duplex architectures are typically used [12]. If
implemented into FPGA, then permanent faults which appear in the design can
be removed through reconfiguration, the damaged configurable logic is not used
by the design. No problem exists if there is enough space available in FPGA -
bigger than the design being reconfigured - so that the design can be reconfigured
into free space. However, in designs which require more FPGA resources, fault-
free elements can be exhausted. This problem can be even stronger for mission
oriented applications where fault-free elements can be exhausted due to multiple
reconfigurations.

Our methodology is based on the existence of pre-designed configurations,
each configuration covers the required function completely but it has different
ability to detect faults. The aim to increase availability is an important goal of
the methodology. It means that we try to reduce the need for reconfiguration.
The problem of availability can be seen on the example of TMR and duplex
architectures. When an error appears in each system, the TMR can still function,
while the duplex system is not able to operate and must be recovered. This
problem can be removed by using TMR and duplex FT architectures based on
on-line checkers. Example of configuration of FT architectures with different
level of dependability is shown in Figure 2. In our research, we do not solve
the problem of faulty voters and checkers. They must be designed as Totally
Self-Checking components, they must be able to detect faults in their internal
structures.

Fig. 2. Example of configuration of FT architectures

The architectures discussed above should be seen as an example of archi-
tectures with different level of dependability, each implemented as FU(s) with
checkers. It is important to say that the sequence of architectures can possibly
consist of architectures different from those demonstrated here. What we show
here should be seen as an example.

Methodology of generating configuration of FT architectures is shown in
Figure 3. The methodology which has as its input FPGA area and dependability
parameters of the system implementation to be achieved (they are defined by
the user). It consists of two phases:

PHASE 1 - the development of the architecture with required dependability
parameters and availability being one of the goals, and PHASE 2 - the sequence



Fig. 3. Demonstration of methodology principles

of actions in FPGA during the lifetime of the architecture including the repairs
needed to be done to recover from failures. The initial architecture of the function
is chosen (in terms of the redundancy and number of checkers) by the user and
dependability parameters calculated. For the first implementation, the size of
FPGA resources needed to implement the architecture is evaluated. Since now,
this architecture is seen as the initial architecture, the following architecture will
reflect this fact - its size of resources and dependability parameters will be lower
due to lower ability of checkers to detect failures of FUs.

From the dependability parameters of the whole system, dependability pa-
rameters of partial configurations are derived first. They are then used for the
decisions whether the partial configuration can be used as a possible solution. As
soon as all partial configurations are developed, they are accepted as the proper
solution if they satisfy user requirements. If these requirements are not satis-
fied, the solution is rejected and the process must be repeated. If the solution is
acceptable, it can be loaded into FPGA. The dependability models for several
examples are described now.

In our methodology, Markov dependability model was used. In the model,
two states are distinguished: ready-to-operate (circle) and disabled (square). The
states are connected by edges, each marked with a symbol reflecting the intensity
of failures (λ). From among other parameters, the following ones are important
for the methodology: R(t) - the probability of fault-free state of the system, Q(t)
- failure probability, Ts - mean time to failure. In our methodology, dependability
parameters of the whole system must be derived from dependability parameters



of single architectures. The system, where failing architecture is replaced by non-
failing architecture can be seen as parallel system, thus the following formula can
be used:

R(t) = 1−
n∏

i=1

(1− Ri(t)), where i denotes the number of architectures,

Ts = 1/λ

n∑
k=1

(1/k), where k is the number of architectures.

Fig. 4. TMR and Duplex architectures based on checkers with dependability models

For initial architecture, TMR system with additional checkers was chosen
(Figure 4). This architecture is fault tolerant even when two modules fail which
does not hold for classical TMR architecture (the availability of this architecture
is higher). The following architecture is based on duplex system with checkers
(Figure 4). Both architectures differ in the size of FPGA resources needed to
implement the architecture. From the dependability model the following formulas
were gained for both architectures:

TMR+3CH Duplex+2CH

p3′(t) = −3λp3(t) p2′(t) = −2λp2(t)
p2′(t) = 3λp3(t)− 2λp2(t) p1′(t) = 2λp2(t)− λp1(t)
p1′(t) = 2λp2(t)− λp1(t) p0′(t) = −λp0(t)
p0′(t) = −λp0(t)

p3(t) = e−3λ(t) p2(t) = e−2λ(t)

p2(t) = −3e−3λ(t) + e−2λ(t) p1(t) = −2e−2λ(t) + e−λ(t)

p1(t) = 3e−3λ(t) − 2e−2λ(t) + e−λ(t)

R(t) = p3(t) + p2(t) + p1(t) R(t) = p2(t) + p1(t)

Ts = (1/3 + 1/2 + 1) ∗ 1/λ Ts = (1/2 + 1) ∗ 1/λ

where pi(t) is a probability that the system is in p status in time t and λ is intensity

of failures based on technology.



5 Experimental Results

Experiments with the implementation of above described architectures were
done. The experiments were performed on XILINX FPGA platform. The compo-
nents were synthesized into Virtex5. We compared the number of slices needed to
cover the function and for checker implementation for simple digital components
like counters, decoders, serialiser and combinations of them. We performed ad-
ditional experiments to compare FT techniques, namely TMR with duplex tech-
niques based on the use of checkers. The following structures were implemented:
TMR system with checkers (TMR+3CH), TMR system, duplex system with one
checkers (Duplex+1CH), duplex system with two checkers (Duplex+2CH) and
simple circuit with checker. The number of resources for several combinations
of components is summarized Table 1. For some components the sources needed
for checker implementation is not significantly higher than the sources needed
for the functional unit. Comparison of results for checker created by FoCs tool
and our methodology are summarized in Table 2.

Virtex5 - XCV50E TMR+3CH TMR Duplex+2CH Duplex+1CH Simple+CH
circuit [slices] [slices] [slices] [slices] [slices]

Counter 21 9 15 11 6
Decoder 27 20 20 18 8

Counter+decoder 30 20 26 22 11
Serialiser 19 12 14 13 6

Shift register 24 13 18 15 7
Table 1. Resources for TMR and duplex architectures in Virtex5

Virtex5 - XCV50E Checker developed by FoCs Checker developed by our tool
circuit [slices] [slices]

Counter - full checking 92 7
Counter - only states 48 4

Decoder - full checking 66 5
Shift - only states 52 4

Table 2. Resources needed for checker in Virtex5

6 Conclusions

In this paper, a technique for automated design of FT architectures based on
checkers for different types of digital components and its combinations is pre-
sented. Tool needed for the research which aims at developing methodology al-
lowing to design FT systems into FPGA were developed. Experiments with our
methodology and PSL were performed and experience gained. Formal tool for
the description of conditions to be checked in communication protocols and in
the design of digital components was developed and implemented. Experiments
with the FT architectures and with the implementation of checkers into FPGA
were done, the results support the direction of our research.



Acknowledgements

This work was supported by the Research Project No. MSM 0021630528 -
Security-Oriented Research in Information Technology and by GACR project
No. 102/05/H050 - Integrated Approach to Education of PhD Students in the
Area of Parallel and Distributed Systems (Grant Agency of the Czech Republic).

References

1. Shu-Yi Yu and Edward J. McCluskey: On-line Testing and Recovery in TMR
Systems for Real-Time Applications. In: ITC ’01: Proceedings of the 2001 IEEE
International Test Conference. (2001). p.204-249.

2. Fernanda Gusmao de Lima Kastensmidt and Gustavo Neuberger and Renato Fer-
nandes Hentschke and Luigi Carro and Ricardo Reis: Designing Fault-Tolerant
Techniques for SRAM-Based FPGAs. Journal: IEEE Des. Test. (2006) p.552–562.

3. Pontarelli, S., Cardarilli, G.C., Malvoni, A., Ottavi, M., Re, M., Salsano, A.: Re-
configurable Architecture for Autonomous Self-Repair. Journal: IEEE Des. Test.
(2004). p.185–189.

4. Cristiana Bolchini and Antonio Miele and Marco D. Santambrogio: TMR and
Partial Dynamic Reconfiguration to mitigate SEU faults in FPGAs. In: DFT ’07:
Proceedings of the 22nd IEEE International Symposium on Defect and Fault-
Tolerance in VLSI Systems. (2007). p.87–95.

5. Chris Weaver and Todd M. Austin: A Fault Tolerant Approach to Microprocessor
Design. In: DSN ’01: Proceedings of the 2001 International Conference on Depend-
able Systems and Networks (formerly: FTCS). (2001). p.411–420.

6. Pavel Kubalik and Radek Dobias and Hana Kubatova: Dependable Design for
FPGA Based on Duplex System and Reconfiguration. In: DSD ’06: Proceedings of
the 9th EUROMICRO Conference on Digital System Design. (2006) p.139–145.

7. Sergio D’Angelo and Giacomo R. Sechi and Cecilia Metra: Transient and Perma-
nent Fault Diagnosis for FPGA-Based TMR Systems. In: DFT ’99: Proceedings of
the 14th International Symposium on Defect and Fault-Tolerance in VLSI Systems.
(1999). p.330–338.

8. IBM: PSL/Sugar-based Verification Tools. In:
http://www.haifa.ibm.com/projects/verification/sugar/index.html. (2008).

9. Marc Boule and Zeljko Zilic: Automata-based assertion-checker synthesis of PSL
properties. In: ACM Trans. Des. Autom. Electron. Syst. (2008). p.1–21.

10. Martin Straka and Jiri Tobola and Zdenek Kotasek: Checker Design for On-line
Testing of Xilinx FPGA Communication Protocols. In: DFT ’07: Proceedings of
the 22nd IEEE International Symposium on Defect and Fault-Tolerance in VLSI
Systems. (2007). p.152–160.

11. Martin Straka and Zdenek Kotasek and Jan Winter: Digital Systems Architectures
Based on On-line Checkers. In: DSD ’08: Proceedings of the 11th EUROMICRO
Conference on Digital System Design. (2008). p.81–97.

12. Roystein Oliveira and Aditya Jagirdar and Tapan J. Chakraborty: A TMR Scheme
for SEU Mitigation in Scan Flip-Flops. In: ISQED ’07: Proceedings of the 8th
International Symposium on Quality Electronic Design. (2007). p.905–910.


