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Abstract. Service-oriented architecture (SOA) is an architectural style
for software systems’ design, which merges well-established software en-
gineering practices. There are several approaches to describe systems and
services in SOA, the services’ derivation, mutual cooperation to perform
specific tasks, composition, etc. However, those approaches usually end
up at the level of individual services and do not describe underlying
systems of components, which form the services’ implementation. This
paper deals with formal description of behaviour of services in context of
SOA and their decomposition into component systems with particular
features such as dynamic reconfiguration and component mobility.
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1 Introduction

Design of current information systems has to respect many functional and non-
functional requirements, which have significant impact on software architec-
tures. The requirements can include geographical and organisational limitations,
support of distributed activities, integration of well-established (third party)
software products, connection to a variable set of external systems, etc. Service-
oriented architecture (SOA) seems to provide a solution [1]. The SOA is a widely
used architectural style for design of distributed software systems, which merges
well-established software engineering practices.

There are several approaches to describe information systems and services
in SOA [2, 3]. Those approaches cover the whole development process from an
analysis where individual services are derived from user requirements (usually
represented by a system of business processes) to an implementation, which uses
particular technologies implementing the services (e.g. Web Services). During
this process, developers have to deal with description of a mutual cooperation
of services to perform specific tasks, their composition, deployment, etc.

However, current approaches to SOA design usually end up at the level of
individual services. They do not describe underlying systems of components,



which form design of individual services as component-based software systems
with well-defined interfaces and behaviour.

This paper deals with formal description of services as component based
systems (CBS) with particular features such as dynamic reconfiguration and
component mobility in aspects of SOA. The dynamic reconfiguration represents
creation, destruction and updating of components and their interconnections
during the systems’ run-time, while the component mobility allows creation of
copies of components and changes of their context.

The remainder of this paper is organised as follows. In next parts of Section 1,
we introduce SOA in Section 1.1 and CBS in Section 1.2 in more detail to outline
their differences and briefly present a process algebra π-calculus in Section 1.3.
In Section 2, we provide a formal description of services by means of the π-
calculus in connection with a formal description of component-based systems as
specified in following Section 3. In Section 4, we review main approaches that
are relevant to our subject and discuss advantages and disadvantages of our
approach compared with the reviewed approaches. To conclude, in Section 5, we
summarise our approach, current results and outline the future work.

1.1 Service Oriented Architecture

Service-oriented architecture (SOA, [4]) is an architectural style for aligning
business and IT architectures. It is a complex solution for analysis, design,
maintaining and integration of enterprise applications that are based on services.
Services are defined as autonomous platform-independent entities enabling ac-
cess to their capabilities via their provided interfaces. They can communicate:

(a) by passing data between two services – in service contracts, services re-
ceiving the data are requesters, while services sending the data are providers,

(b) by coordinating an activity between two or more services – a multi-party
collaboration between services that is usually known as service choreography.

There are also service brokers (service registries, e.g. UDDI registries) storing
information about available service providers for potential service requesters.

The passing data between services can be implemented in different ways. We
can distinguish the following styles of services implementation:

– remote procedure calls (RPC) where the emphasis is on services’ inter-
faces with strictly defined properties determining their compatibility (e.g.
SOAP, JSON-RPC and XML-RPC),

– resource oriented services where predefined interfaces are independent on
actual type of transferred resources, objects represented by unique identifiers,
so that each of them is interacted with in the same way (e.g. REST),

– syndication-style publishing where interfaces respect given standards for
capturing all messages (e.g. Atom Publishing Protocol and RSS),

– vendor-specific services where generic RPC capabilities are difficult to
use (e.g. Oracle Database SOAP).



A system that applies SOA can be described at three levels of abstraction:

Business processes describe the system as a hierarchically composed business
process, where each decomposable process (at each level of the composition)
represents sequence of steps in accordance with some business rules leading
to a business aim1.

Services implement business processes and their parts with well-defined inter-
faces and interoperability for the benefit of the business. Business services
encapsulate distinct sets of business logic, utility services provide generic,
non-application specific and reusable functionality, and controller services
act as parent services to service composition members and ensure their
assembly and coordination to the execution of the overall business task [4].

Components are implementation of services as CBSs with well-defined struc-
ture and description of its evolution for the benefit of the implementation.

1.2 Component Based Development and Systems

Component-based development (CBD, see [5]) is a software development method-
ology strongly oriented on composability and re-usability in software architec-
ture. In the CBD, from a structural point of view, a component-based system
(CBS) is composed of components, which are self contained entities accessible
through well-defined interfaces.

The components can be primitive or composite. The primitive components
are realised directly, beyond the scope of architecture description (they are
“black-boxes”). The composite components are decomposable on systems of
subcomponents at the lower level of architecture description (they are “grey-
boxes”). This composition forms a component hierarchy.

A connection of compatible interfaces of cooperating components is realised
via their bindings and actual organisation of interconnected components is called
configuration. Syntax, semantics and composition of components can be defined
by component models that are specific meta-models of software architectures
supporting the CBD.

In our approach, we can distinguish the following types of components’
interfaces according to functional aspects

functional interfaces for business-oriented services required or provided by a
component with input and output parameters, respectively,

control interfaces for obtaining references to a component’s provided func-
tional interfaces or a component’s fresh copy, binding a component’s required
functional interfaces to referenced provided functional interfaces of another
component, or changing of behaviour and structure (e.g. adding of a new
component as a composite component’s subcomponent and its removing),

reference interface for passing of references to components or references to
interfaces, which is required to support component mobility.

1 business requirements are traditionally specified by a business process model (BPM)



SOA CBD/CBS

communication
of entities

various forms of data passing
(RPC, resources, etc.)

message passing via bindings of
compatible interfaces

architecture
of a system

service contracts on demand
(via service brokers)

given by actual configuration,
dynamic reconfiguration and mobility

composition
of entities

business, utility and
controller services

hierarchic composition (primitive and
composite components)

compatibility
of interfaces

by description of an interface
and a type of communication

by behaviour of a component and
specification of its interface

statefulness,
statelessness

a service should not have
externally visible state

a state can be given by and can affect
behaviour/structure of a component

Table 1. The comparison of Service Oriented Architecture (SOA) and Component
Based Development and Systems (CBD/CBS).

Unlike the services in SOA, components in CBD/CBS do not respect any
business rules or aims, but only an initial configuration of a system, compo-
nent hierarchy (encapsulation) and components’ behaviour. Table 1 compares
the features of SOA and CBD/CBS in aspects of communication of entities,
description of their interconnection (a system’s architecture), composition of
entities, compatibility of their interfaces and visibility of their states (statefulness
or statelessness of the entities). For detailed comparison, see [6].

1.3 Formal Basis

To describe services in SOA and CBS in formal way, we use the process algebra
π-calculus, known also as a calculus of mobile processes [7], which is an extension
of Robin Milner’s calculus of communicating systems (CCS). The π-calculus
allows modelling of systems with dynamic communication structures (i.e. mobile
processes) by means of two concepts: processes and names. The processes are
active communicating entities, primitive or expressed in π-calculus (denoted by
uppercase letters in expressions), while the names are anything else, e.g. commu-
nication links (known as “ports”), variables, constants (data), etc. (denoted by
lowercase letters in expressions). Processes use names (as communication links)
to interact, and pass names (as variables, constants, and communication links)
to another processes by mentioning them in interactions. Names received by a
process can be used and mentioned by it in further interactions (as communi-
cation links). For the following description we suppose basic knowledge of the
fundamentals of the π-calculus, a theory of mobile processes, according to [8].

– x〈y〉.P is an output prefix that can send name y via name x (i.e. via the
communication link x) and continue2 as process P ,

– x(z).P is an input prefix that can receive any name via name x and continue
as process P with the received name substituted for every free occurrence of
name z in the process,

2 it ensures process P can not proceed until a capability of the prefix has been exercised



– P + P ′ is a sum of capabilities of P together with capabilities of P ′ processes,
it proceeds as either process P or process P ′, i.e. when a sum exercises one
of its capabilities, the others are rendered void,

– P | P ′ is a composition of processes P and P ′, which can proceed indepen-
dently and can interact via shared names,

–
∏m
i=1 Pi = P1 | P2 | . . . | Pm is a multi-composition of processes P1, . . . , Pm,

for m ≥ 3, which can proceed independently interacting via shared names,
– (z)P is a restriction of the scope3 of name z in process P ,
– (x̃)P = (x1, x2, . . . , xn)P = (x1)(x2) . . . (xn)P is a multi-restriction of the

scope of names x1, . . . , xn to process P , for n ≥ 2,
– !P is a replication that means an infinite composition of processes P or,

equivalently, a process satisfying the equation !P = P | !P .

The π-calculus processes can be parametrised. A parametrised process, re-
ferred as an abstraction, is an expression of form (x).P .

When abstraction (x).P is applied to argument y it yields process P{y/x},
i.e. process P with y substituted for every free occurrence of x. Application
is the destructor of the abstraction. We can define two types of application:
pseudo-application and constant application.

Pseudo-application F 〈y〉 of abstraction F
def
= (x).P is only an abbreviation of

substitution P{y/x}. On the contrary, the constant application is a real syntactic
construct. It allows to reduce a form of process Kbyc, sometimes referred as an
instance of process constant K, according to a recursive definition of process
constant K ∆= (x).P . The result of the reduction yields process P{y/x}.

2 Formal Description of Services’ Behaviour

In this section, we describe an approach to formal description of a service as a
component-based system. In such description, the service has to be presented in
two views (see the three levels of abstraction in Section 1.1):

1. the service is a part of SOA architecture and has description and relations
to neighbouring services (requesters and providers) in a software system,

2. and the service is a CBS system with external and internal interfaces ac-
cessible by neighbouring systems and by internal components, respectively.

The first view is described in Section 2.1 and the second in Section 2.2.

2.1 Service as a Part of Service Oriented Architecture

Let’s assume a service will be described as a part of SOA architecture of a
software system (see Section 1.1). In Unified Modeling Language (UML), the
service can be modeled by means of a stereotype “service” extending a class
component in a class diagram [3]. The service interacts with its environment via

3 the scope of a restriction may change as a result of interaction between processes



its interfaces, which are described as methods of the “service” class and by a
sequence diagram (for an example, see Figure 1).

In the π-calculus, a general service Service with interfaces i1, . . . , in can be
described as a process abstraction

Service
def
= (i1, . . . , in).(s1, . . . , sm)

(Svcinit〈i1, . . . , in, s1, . . . , sm〉.
n∏
j=1

Svcjbij , s1, . . . , smc)

where the pseudo-application of Svcinit initiates the service and the constant
application of Svcj , for each j ∈ {1, . . . , n}, is responsible for specific processing
of the service’s interface ij and can communicate with the others via shared
names s1, . . . , sm.

A service broker stores information about available service providers for
potential service requesters, e.g. as references to the providers’ interfaces. Its
behaviour can be described as a π-calculus process abstraction Broker as follows

Broker
def
= (a, g).(p)(Addbp, ac | Getbp, g, ac)

Add
∆= (t, a).a(m, d).(t′)(Addbt′, ac | t〈t′,m, d〉)

Get
∆= (h, g, a).h(h′,m, d).(g〈m〉.(Getbh′, g, ac | a〈m, d〉) + d)

where names representing the providers’ interfaces (denoted by m internally) are
stored via name a and retrieved back via name g, which are subsequently handled
by constant applications of Add and Get, respectively. Special names (denoted
by d internally) stored together with the names representing the providers’
interfaces can be used later to remove these interfaces and do not provide them
to potential service requesters anymore.

An Example: Figure 1 presents SOA services ProcessPurchaseOrder, Request-
Goods and RequestShipping by means of an UML class diagram and an UML
sequence diagram (for details, see [3]).

Each service is described by its interface and relations to neighbouring ser-
vices. Service ProcessPurchaseOrder processes a purchase order. At the begin-
ning, goods are requested in relevant amounts according to the purchase order
via service RequestGoods. After that, service RequestShipping prepares a shipping
request of resulting packages to a customer according to the purchase order.
Finally, the shipping information are processed and a confirmation of the order
is created and returned by service ProcessPurchaseOrder as a reply to the request.

Now, we can describe services ProcessPurchaseOrder, RequestGoods and Re-

questShipping as process abstractions PPO, RG and RS, respectively.

PPO
def
= (ppo, getRG, getRS).(getRG(rg).getRS(rs).PPOimplbppo, rg, rsc)

RG
def
= (rg, setRG).(d)(setRG〈rg, d〉.RGimplbrgc)

RS
def
= (rs, setRS).(d)(setRS〈rs, d〉.RSimplbrsc)



Fig. 1. A service’s description in context of SOA (identified services, their interfaces
and connections in a class diagram and their communication in a sequence diagram).

where ppo, rg and rs are names representing interfaces provided by the services,
which are subsequently processed by applications of process constants PPOimpl,
RGimpl and RSimpl, respectively. Process of initialisation of each individual
service is described “in-line” before the application of a specific process constant
and it uses names getRG, getRS , setRG and setRS as connections to service bro-
kers’ processes for storing and retrieving of RequestGoods and RequestShipping

providers’ interfaces, respectively.
Then, the whole system of the interconnected communicating services includ-

ing their brokers can be described as follows

System
def
= (ppo).(getRG, setRG, getRS , setRS)

(PPO〈ppo, getRG, getRS〉 | (rg)RG〈rg, setRG〉 | (rs)RS〈rs, setRS〉
| Broker〈setRG, getRG〉 | Broker〈setRS , getRS〉)

For testing purposes (e.g. to verify assembly relationships of the services), we
may need to finish π-calculus description of the system and its services without
knowledge of underlying implementation (as “a blackbox”). In such case, we can
describe processing of the services’ interfaces shortly as follows

PPOimpl
∆= (ppo, rg, rs).ppo(po, rppo).rg〈g, a, rrg〉.rrg.rs〈c, lop, rrs〉.rrs.rppo

RGimpl
∆= (rg).rg(g, a, rrg).rrg

RSimpl
∆= (rs).rs(c, lop, rrs).rrs



2.2 Service as a Component Based System

In this section, we describe a service’s underlying implementation as a CBS
system (i.e. the service’s behaviour and internal structure). The service can be
represented by a system of components with external interfaces matching the
services’ provided interfaces. The following description is based on our previous
research on distributed information systems as systems of asynchronous concur-
rent processes [9], features of mobile architectures in such systems [10, 11] and
component models with support of mobile architectures and formal description.

Let’s assume we have a general service Service with interfaces i1, . . . , in
described in the Section 2.1 as a process abstraction

Service
def
= (i1, . . . , in).(s1, . . . , sm)

(Svcinit〈i1, . . . , in, s1, . . . , sm〉.
n∏
j=1

Svcjbij , s1, . . . , smc)

We focus on description of process constants Svcj(ij ,s1,. . .,sm), for each j ∈
{1, . . . , n}, which communicate via shared names s1, . . . , sm and are responsible
for specific processing of the service’s interfaces ij . For the purpose of CBD, we
can particularise the description as a process abstraction

Svc′j
def
= (i, sp1 , . . . , spk

, sr1 , . . . , sr(m−k)).Svcjbi, s1, . . . , smc

where p1, . . . , pk, r1, . . . , r(m−k) ∈ {1, . . . ,m} and k ≤ m and sets {sp1 , . . . , spk
}

∩ {sr1 , . . . , sr(m−k)} = ∅ and {sp1 , . . . , spk
} ∪ {sr1 , . . . , sr(m−k)} = {s1, . . . , sm}.

Names sp1 , . . . , sp(m−k) and name i stand for “provided” interfaces as a selection
of the service’s provided shared names and its interface, respectively, while names
sr1 , . . . , srk

stand for “required” interfaces as the rest of required shared names.
Then, the service can be described as a CBS system (a component) with pro-

vided functional interfaces i, sp1 , . . . , sp(m−k) and required functional interfaces
sr1 , . . . , srk

as it is shown is Section 34.

The Example: We describe an implementation of service ProcessPurchase-

Order, which is the main service of the example mentioned in Section 2.1.
The service has been described as π-calculus process abstraction PPO where

ppo represents an interface provided by the service and getRG and getRS repre-
sent connections to service brokers’ processes for retrieving interfaces of Request-
Goods and RequestShipping, respectively. The service’s interface ppo is handled
by process constant PPOimpl together with shared names rg and rs connected
to processes representing actual providers of RequestGoods and RequestShipping.

Then, the service can be described as a CBS system (a component) with
provided functional interface ppo and required functional interfaces rg and rs.

4 The other two types of components’ interfaces, i.e. control interfaces and reference
interfaces (see Section 3), are not used in the description at the level of SOA.



3 Formal Description of a Component Based System

Now, we are ready to precisely describe a CBS system, which implements a
service’s behaviour and internal structure. The CBS system is defined by its
initial configuration, component hierarchy and components’ behaviour.

A primitive component is realised as “a black-box”, which behaviour has to be
formally defined by its developer as a π-calculus process where names represent
the component’s interfaces. The process also implements specific control actions
provided by the component (e.g. requests to start or stop the component).
On the contrary, a composite component is decomposable at the lower level
of hierarchy into a system of subcomponents communicating via their interfaces
and their bindings (the component is “a grey-box”). Formal description of the
composite component’s behaviour and structure is a π-calculus process, which
is composition of

– processes representing behaviour of the component’s subcomponents,
– processes implementing communication between interconnected interfaces of

the subcomponents and internal interfaces of the component,
– and processes realising specific control actions (e.g. the requests to start or

stop the composite component including their distribution to the compo-
nent’s subcomponents, etc.).

A whole CBS can be described as one component with provided and required
interfaces, which represent the system’s input and output actions, respectively.

Connections can interconnect only interfaces of the same types and dynamic
creation of new connections and destruction of existing connection are permitted
only for functional interfaces. Combining of actions of functional interfaces with
actions of control interfaces is permitted only inside primitive components. This
allows to build a system where functional (business) requirements imply changes
of the system’s architectures.

3.1 Notation of Names

Before we define and describe π-calculus processes implementing behaviour of a
component and its individual parts, we need to define the component’s interfaces
within the terms of the π-calculus, i.e. as names used by the processes. The
following names can be used in external or internal view of a component, i.e.
for the component’s neighbours or the composite component’s subcomponents,
respectively.

– external: s0, s1, rs1, . . . , r
s
n, pg1, . . . , p

g
m of any component,

– internal: a, r′s1 , . . . , r
′s
m, p′g1 , . . . , p

′g
n of a composite component only.

where n is a number of the component’s required functional interfaces, m is
a number of the component’s provided functional interfaces (both from the
external view) and the names have the following semantics:



via s0 – a running component accepts a request for its stopping, which a com-
posite component distributes also to all its subcomponents,

via s1 – a stopped component accepts a request for its starting, which a com-
posite component distributes also to all its subcomponents,

via rsi – a component accepts a request for binding given provided functional
interface (included in the request as the interface’s reference) to required
functional interface ri,

via pgj – a component accepts a request for referencing to provided functional
interface pj that is returned as a reply,

via a – a composite component accepts a request for attaching its new subcom-
ponent, i.e. for attaching the subcomponent’s s0 and s1 names (stop and
start interfaces), which can be called when the composite component will be
stopped or started, respectively, and as a reply, it returns a name accepting
the request to detach the subcomponent.

3.2 Interface’s References and Binding

At first, we define the auxiliary process Wire, which can receive a message via
name x (i.e. input) and send it to name y (i.e. output) repeatedly till the process
receives a message via name d (i.e. disable processing).

Wire
∆= (x, y, d).(x(m).y〈m〉.Wirebx, y, dc + d)

Passing of messages from x to y by process Wire is synchronous, which means
that a message can not be received on x until a previously received message was
successfully sent via y. To allow asynchronous communication, we need to use
process Wireasync, which is a “buffered” version of process Wire.

Wireasync
∆= (x, y, d).(p)(Pushbp, x, dc | Popbp, yc)

Push
∆= (t, x, d).(x(m).(t′)(Pushbt′, x, dc | t〈t′,m〉) + d)

Pop
∆= (h, y).h(h′,m).y〈m〉.Popbh′, yc

Binding of a component’s functional interfaces is done via control interfaces.
These control interfaces provide references to a component’s functional provided
interfaces and allow to bind a component’s functional required interfaces to
referenced funcional provided interfaces of another local components. Process
CtrlIfs implementing the control interfaces can be defined as follows

SetIf
∆= (r, s, d).s(p).(d.Wirebr, p, dc | SetIfbr, s, dc)

GetIf
def
= (p, g).g(r).r〈p〉

Plug
def
= (d).d

CtrlIfs
def
= (r1, . . . , rn, rs1, . . . , r

s
n, p1, . . . , pm, p

g
1, . . . , p

g
m).

(
n∏
i=1

(rdi )(Plug〈rdi 〉 | SetIfbri, rsi , rdi c) |
m∏
j=1

!GetIf〈pj , pgj 〉)



where names r1, . . . , rn, rs1, . . . , r
s
n, p1, . . . , pm, pg1, . . . , p

g
m have been defined at

the beginning of Section 3.1, processes SetIf and GetIf allow to bind required
interfaces and to get references to provided interfaces, respectively, and process
Plug is an auxiliary process.

In a composite component, the names representing external functional in-
terfaces r1, . . . , rn, p1, . . . , pm are connected to the names representing internal
functional interfaces p′1, . . . , p

′
n, r′1, . . . , r

′
m. Requests received via external func-

tional provided interface pj are forwarded to the interface, which is bound to
internal functional required interface r′j (and analogously for interfaces p′i and
ri). This is described in process CtrlEI .

CtrlEI
def
= (r1, . . . , rn, p1, . . . , pm, r

′
1, . . . , r

′
m, p

′
1, . . . , p

′
n).

n∏
i=1

(d)Wirebri, p′i, dc |
m∏
j=1

(d)Wirebr′j , pj , dc

3.3 Control of a Component’s Life-cycle

Control of a composite component’s life-cycle5 can be described as process
CtrlSS .

Dist
∆= (p,m, r).(p〈m〉.Distbp,m, rc + r)

Life
∆= (sx, sy, px, py).sx(m).(r)(Distbpx,m, rc | r.Lifebsy, sx, py, pxc)

Attach
def
= (a, p0, p1).a(c0, c1, cd)(d)

(cd(m).d〈m〉.d〈m〉 | Wirebp0, c0, dc | Wirebp1, c1, dc)

CtrlSS
def
= (s0, s1, a).(p0, p1)(Lifebs1, s0, p1, p0c | !Attach〈a, p0, p1〉)

where names s0 and s1 represent the component’s interfaces that accept stop and
start requests, respectively. The requests for stopping and starting the compo-
nent are distributed to its subcomponents via names p0 and p1, respectively, as it
is described in processes Life and Dist6. Name a of process CtrlSS can be used
to attach a new subcomponent’s stop and start interfaces (at one step), i.e. to
connect them to the relevant composite component’s stop and start interfaces via
names p0 and p1 and via processes Wire, as it is described in process Attach.
Third name, which is received via name a, can be used later to detach the
subcomponent’s previously attached stop and start interfaces.

3.4 Component Behaviour of Primitive and Composite Components

In conclusion, we can describe the complete behaviour of primitive and composite
components. Let’s assume that process abstraction Compimpl with parameters

5 a primitive component handles stop and start interfaces directly
6 in the initial state, the component and its subcomponents are stopped



s0, s1, r1, . . . , rn, p1, . . . , pm describes behaviour of the core of a primitive compo-
nent (i.e. excluding processing of control actions), as it is defined by the compo-
nent’s developer. Further, let’s assume that process abstraction Compsubcomps
with parameters a, r′s1 , . . . , r

′s
m, p′g1 , . . . , p

′g
n describes behaviour of a system of

subcomponents interconnected by means of their interfaces into a composite
component (see Section 3.2). Names s0, s1, r1, . . . , rn, p1, . . . , pm and names a,
rs1, . . . , r

s
m, pg1, . . . , p

g
n are defined at the beginning of Section 3.1.

Processes Compprim and Compcomp representing behaviour of the mentioned
primitive and composite components can be described as follows

Compprim
def
= (s0, s1, rs1, . . . , r

s
n, p

g
1, . . . , p

g
m).(r1, . . . , rn, p1, . . . , pm)

(CtrlIfs〈r1, . . . , rn, rs1, . . . , rsn, p1, . . . , pm, p
g
1, . . . , p

g
m〉

| Compimpl〈s0, s1, r1, . . . , rn, p1, . . . , pm〉)

Compcomp
def
= (s0, s1, rs1, . . . , r

s
n, p

g
1, . . . , p

g
m).

(a, r1, . . . , rn, p1, . . . , pm, r
′
1, . . . , r

′
m, p

′
1, . . . , p

′
n)

(CtrlIfs〈r1, . . . , rn, rs1, . . . , rsn, p1, . . . , pm, p
g
1, . . . , p

g
m〉

| CtrlIfs〈r′1, . . . , r′m, r′s1 , . . . , r′sm, p′1, . . . , p′n, p
′g
1 , . . . , p

′g
n 〉

| CtrlEI〈r1, . . . , rn, p1, . . . , pm, r
′
1, . . . , r

′
m, p

′
1, . . . , p

′
n〉

| CtrlSS〈s0, s1, a〉 | Compsubcomps〈a, r′s1 , . . . , r′sm, p
′g
1 , . . . , p

′g
n 〉)

where processes CtrlIfs represent behaviour of control parts of components re-
lated to their interfaces (see Section 3.2), process CtrlSS represents behaviour of
a component’s control part handling its stop and start requests (see Section 3.3),
and process CtrlEI describes behaviour of communication between internal and
external functional interfaces of a component (see Section 3.2).

4 Related Work and Discussion

Approaches to modeling of services can be broadly divided into two groups.
In the first group, there are approaches to describe information systems and
services in SOA [2, 3], which cover the whole development process, but usually
end up at the level of individual services and do not describe their underlying
implementation as CBS systems. The second group contains several component
models7 [12], which can bring features of SOA into CBD so that SOA becomes
a specific case of a component model with dynamic reconfiguration [13]. In SOA,
developers have to deal with description of a mutual cooperation of services to
perform specific tasks, their hierarchical composition, deployment, etc., as well
as with description of the underlying implementation.

In addition to those approaches, we should mention of Service Component
Architecture (SCA, [14]), which aims at providing of a component model for

7 i.e. meta-models specifying systems of architectural entities, their properties, styles
of their interconnections, and rules of evolution of the architecture



SOA. SCA defines a model for assembling of service components and a model
for creation of component-based services with reference implementation in Java,
C++, BPEL, PHP, JavaScript, XQuery and SQL. However, SCA does not
provide formal description of services’ and components’ behaviour and structure.

In this section, we focus mainly on two contemporary component models
supporting features of SOA and formal description, SOFA 2.0 and Fractal.

Component model SOFA 2.0 [15] is aimed at removing several limitations
of component model SOFA [16] – mainly the lack of support of dynamic re-
configuration, well-structured and extensible control parts of components, and
multiple styles of communication between components. The original version of
SOFA uses a component definition language (CDL) for architecture description
(specification) of components and behaviour protocols (BPs) for formal descrip-
tion of their behaviour. It allows only a dynamic update of components during a
system’s runtime with compatibility check. The SOFA 2.0 introduces extended
dynamic reconfiguration, which is predefined at design time by reconfiguration
patterns [13]: nested factory (adds a new component or a new connection), com-
ponent removal and utility interface patterns. Utility interfaces can be referred,
references freely passed among components, which can establish connections
using these references, independently of their level in architecture hierarchy. It
brings into CBD features of SOA, which becomes a specific case of a component
model where all components (services) are interconnected solely via their utility
interfaces. To control dynamic reconfiguration, SOFA 2.0 introduces micro-
components and multiple communication styles. The microcomponents [17] are
minimal primitive components designed to capture an architecture of a general
component’s controller parts, to express that the component’s controller requires
a certain control (micro)component and to specify interconnections of control
and functional parts of the component. The multiple communication styles [15]
define functionality of connectors (remote method invocation, message passing,
streaming, and distributed shared memory), which can restrict binding of its
interfaces and affect its runtime optimisation.

Component model Fractal [18] is a general component composition framework
supporting dynamic architectures with components formed out of two parts:
a controller (“a membrane” enclosing a component) and a content (primitive
or composed of a finite number of nested components controlled by the con-
troller). Behaviour of Fractal components can be formally described by means
of parametrised networks of communicating automata language [19]. A primitive
component is modelled as and formally described by means of a finite state
parametrised labelled transition system (pLTS), while a composed component is
defined using a parametrised synchronisation network (pNet, which is a pLTS
computed as a product of subcomponents’ pLTSs and a transducer synchronis-
ing actions of the corresponding pLTSs of the subcomponents). Fractal WS [6]
provides connection between Fractal and Web Service technology (WS), which
can be used to implement SOA. Any interface provided by a Fractal component
can be transformed into a WS and any (external) WS can be accessed inside
an assembly of Fractal components at any level of hierarchy using a dedicated



proxy component. Moreover, there exists Fractal SCA experiment [6] bridging
component-based applications written in the Fractal and SCA technologies.

In comparison of our approach with the reviewed approaches, we can find
many similar features, which are typical for description of component based
systems’ behaviour and structure. Contrary to the Fractal or SOFA 2.0, our
approach describe services and components in the same way, but with respect
to their differences (i.e. services are not components and vice versa, see Sec-
tion 1.2). Moreover, we do not introduce a new formalism but use the well-
established π-calculus to describe services in SOA architecture, as well as to
define individual primitive components’ behaviour and their composition into
hierarchically structured CBS. This approach allows to utilise existing tool for
model-checking of π-calculus processes and formal verification of their proper-
ties (e.g. Advanced/Another Bisimulation Checker [20] or tools from ArchWare
Project [21]). However, our approach can have also drawbacks, e.g. complex
description of primitive components’ behaviour combining actions of functional
interfaces with actions of control interfaces or insufficient visibility of a compo-
nent based system’s structure during its evolution. The evolution of the system
means evolution (reduction) of π-calculus process representing too much tightly
bound behaviour and structure.

5 Conclusion and Future Work

In this paper, we have presented an approach to formal description of behaviour
and structure of services in SOA architecture as a CBS systems with features
of dynamic and mobile architectures. We use calculus of mobile processes, the
π-calculus, for specification of the services, definition of individual primitive
components’ behaviour and their composition into a hierarchically structured
CBS system implementing the services’ behaviour.

Future work is related to integration of the approach into visual UML mod-
eling and CASE tools and automatic “top-down” and “bottom-up” generation
of a formal description of SOA architectures and underlying CBS systems.
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13. Hnětynka, P., Plášil, F.: Dynamic reconfiguration and access to services in hierar-
chical component models. In: Proceedings of CBSE 2006. Volume 4063 of Lecture
Notes in Computer Science., Springer (2006) 352–359

14. OSOA: SCA service component architecture: Assembly model specification. Tech-
nical Report SCA version 1.00, The Open SOA Collaboration (March 2007)

15. Bureš, T., Hnětynka, P., Plášil, F.: SOFA 2.0: Balancing advanced features in a
hierarchical component model. In: Proceedings of SERA 2006, Seattle, USA, IEEE
Computer Society (August 2006) 40–48
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