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Summary. The chapter presents a new concept of parallel rBiea
Marginal Distribution Algorithm (BMDA) using the epping stone com-
munication model with the unidirectional ring topgy. The traditional
migration of individuals is compared with a newlsoposed technique of
probability model migration. The idea of the newapiive BMDA (aB-
MDA) algorithms is to modify the classic learninfjtbe probability model
(applied in the sequential BMDA [24]). In the praed strategy, the adap-
tive learning of the resident probability modelused. The evaluation of
pair dependency, using Pearson’s chi-square #tatistinfluenced by the
relevant immigrant pair dependency according to dhality of resident
and immigrant subpopulation. Experimental resuitsasthat the proposed
adaptive aBMDA significantly outperforms the traaiital concept of mi-
gration of individuals.

1 Introduction

The concept of traditional parallel genetic aldorit(PGA) is well known.
It stems from the idea that the large problem aasuzcessfully solved us-
ing decomposition of the original problem into skaaltasks. Conse-
quently, the tasks can be solved simultaneoushgusiultiple processors.
This divide-and-conquer technique can be applie@Aoin many dis-
tinct ways. Mostly, the population is divided irddfew subpopulations or
demes, and each of these demes evolves sepanatéiffavent processors.
Exchange of information among subpopulations isibs via a migration
operator. In this context, the term island modetammonly used. Island
populations are free to converge toward differgotinca. The migration



operator is supposed to mix good features thatgariecally in the differ-
ent demes.

Many topologies can be defined for connecting thwmess like mesh, to-
rus, hypercube or ring. The most common modelsterésland model and
the stepping stones model. In the basic island madgration can occur
between any subpopulations, whereas in the stegborge model, migra-
tion is restricted to neighboring demes. In [7k theory is published pro-
viding rational decisions for the proper settingcohtrol parameters. An
interesting survey of PGA is published in [2]. Affeetive technique for
the massive parallelization of compact GA was higd in [15]. An ex-
tremely prestigious PGA which is capable to soli#oh-variable optimi-
zation problems was recently published in [10].

This chapter concerns the application of the stepgtone model (for
simplicity we will use the term island-based modetl)bivariate marginal
distribution algorithm BMDA. This new approach ugiprobability model
migration is conceptually different from the traglital parallel genetic al-
gorithms with migration of individuals/solutions chalso from the EDAs
using parallel building of pseudo-sequential pralistlc models.

The sections are organized as follows: Sectionti@dunces the basic
concept of EDA algorithm and current techniquesdusethe paralleliza-
tion of the EDA algorithms. In Section 3 the segi®#nBMDA is de-
scribed including the factorization and graphicepresentation of the
probability model. Section 4 presents the motivatamd a new idea of
learning the probability model using a concept miigability model migra-
tion. Experimental results are shown in SectioSéxtion 6 concludes the
chapter.

2 Traditional EDASs

EDAs belong to the advanced evolutionary algoritibased on the esti-
mation and sampling of graphical probabilistic nedé, 5, 6, 11, 13, 22,
23, 26]. They do not suffer from the disruptionbeifilding blocks known
from the theory of standard genetic algorithms. €hronical sequential
EDA is described in Fig. 1.

EDAs often surpass classical EAs in the numberegfuired fitness
function evaluations. However, the absolute exeautime is still limiting
factor which determines the size of practicallyctable problems. Refer-
ring to Fig. 1 the most time consuming task isektmation of probability
model for many problems. Most papers on EDAs comagnon parallel
construction and sampling of probabilistic moddlke well-known algo-



rithm employing parallel construction of Bayesiatwork is EBNA algo-
rithm targeted for MIMD architecture and designeathbfor MPI and
POSIX threads, published in [17, 20, 21]. In [2Bf theory of population
sizing and timing to convergence is published.

Set t— 0;
Generate initial population D(0);
While termination criteria is falselo
begin
Select a set of promising solutiof(t
Construct a new probability model M fron{fpusing chosen metric;
Sample offspring O(t) from M;
Evaluate O(t);
Create D(t+1) as a subset of O(f)D(t) with cardinality N;
t—t+1;
end

Fig. 1. The pseudo code of canonical EDA

A new idea of the multideme parallel estimationdigtribution algo-
rithm (PEDASs) based on PBIL algorithm was published1]. In [16],
mixtures of distribution with Bayesian inferencee atiscussed. Parallel
learning of belief networks in large domains isastigated in [27]. Using
the concept of PBIL algorithm [3, 12, 19], the claal phenomenon of
migration in island-based EAs was carried over imtobability distribu-
tion of EDAs. A new approach of probability vectopssover was imple-
mented with very good performance.

2.1 Linkage learning in EDA algorithms

In competent genetic algorithms, various sophittdinkage learning
techniques must be implemented to discover Builddhgcks (BBs). In
EDA algorithms, the linkage learning is automaticahcorporated into a
graphical probabilistic model. EDAs support an efifee detection, mixing
and reproduction of BBs, so that they are capabs®lve complex optimi-
zation problems including deceptive problems. Theiee of the model
complexity is very significant and it is determinlegl the fitness function
complexity. We can recognize three categories alehoomplexity: with-
out dependency (UMDA), pairwise dependency (MIMEBMDA) and
multivariate dependency (BOA, EBNA).



2.2 Migration of probabilistic parameters for UMDA

The concept of migration of probabilistic paramstieistead of individuals
was firstly published in [8] where on UMDA platforthe convex combi-
nation of univariate probability models is investigd for various network
topologies (ring, star etc.).

Further enhancement of this concept is describdd]iwhere the local
search methods are used to identify which parth@fimmigrant model
can improve the resident model.

In following sections we describe the proposal afesv concept of is-
land-based BMDA algorithm with unidirectional ringpology based on
the combination of two adjacent bivariate probapiodels.

3 Sequential BMDA

The well known representative of bivariate EDA¢his Bivariate Marginal
Distribution Algorithm (BMDA) proposed by Pelikama Muhlenbein
[19, 24]. This algorithm uses a factorization of foint probability distri-
bution that exhibits second-order dependencies.

EDAs are also population based algorithm but unlik&s the new
population is generated by sampling the recognizetdability model.

Let us denote:

D= (X% X..., X¥ with X O D, is the population of strings
/solutions/individuals,

X = (Xo, Xg,..., Xy1) is a string/solution of lengthhwith X; as a variable,

X = (Xo, X1,---, Xn-1) IS @ string/solution with¢ as a possible instantiation
of variableX;, % 40,1},

p(X) = p(Xo, X1,..., Xr.1) denotes the dimensional probability distribu-
tion,

P(Xo, X111 %1) = P(Xo= Xo, X1= X4,..., X1 = Xn.1) denotes a probability of
a concretan dimensional vector.

The probabilistic model used in BMDA can be formatl by M =
(G, ©), whereG is dependency graph a®l= (&, &,..., 8.1) is a set of
parameters which are estimated by local conditionaharginal probabil-
ity for each node/variable of the dependency graph.

A greedy algorithm for building dependency graphsised. At the be-
ginning, the root node is selected and subsequémynodes with maxi-
mum dependency value are searched among the ragantdes and
joined. These pairwise dependencies in BMDA areadisred by Pear-
son’s chi-square statistics:
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whereN is the size of parent population amfk;, x), m(x;) resp.m(x;)
denote the number of individuals in the parent patmn with concrete
values ofx and/orx. These values are stored in the contingency tables
From the theoretical point of view this metric danseen as statistical test-
ing of hypothesis — for example binary geXeandX; are considered to be
independent at 95 percent confidence Ievej(iﬁijf< 384. Like COMIT,

BMDA also uses a variant of minimum spanning tesghhique to learn a
model.

However, during the tree construction, if none l¢ remaining vari-
ables can be “rooted” to existing tree, BMDA staa$orm additional tree
from remaining variables. The final probability tiilsution is thus a forest
distribution (a set of mutually independent dep&wgdrees):

P(X)= [ R(Xr) [ PCXi 1 X)) 2)(

X,OR X, VAR

whereV is the set of nodes of dependency tRes, the set of root nodes
andX; denotes the parent nodeXof Given the tree dependence structure,
the univariate marginal probability distributionseaestimated from the
promising/parent population:

p(x; =y =" =D 3)

and the bivariate conditional probability distritauts p(x; |Xja) are
estimated as
Mm%, Xj(i))
m(Xj))

For example, the joint probability distribution fthre dependency graph
in Fig. 2 can be expressed by the factorization:

1. p(X) = p(Xa) P(Xs [Xa) POX2 [X3) P(X1 X2) p(XolX1)
2. p(X) = p(X2) p(Xz X2) pP(Xo Xa) P(Xa) P(X1 [Xa)

P(% X)) = (4)

The time complexity of the complete BMDA algorithoan be ex-
pressed by the formul&@(n®+0(4Nr?)+O(Nn), where the first component
is a cubical time complexity of the dependency bprapnstruction, the
second component is a quadratic time complexitgamftingency tables



collection and the third component of the formutfiacts a linear com-
plexity of new solution sampling.

b)

Fig. 2. Example of dependency graph for: a) COMIT, b) BMDA

4 |sland-based BMDA

4.1 Migration of individuals

In traditional island-based PGA algorithms, anegfient migration of in-
dividuals among subpopulation is incorporated. Tigration process is
controlled by several parameters. It is necessadetermine number and
size of the subpopulations, the frequency and mibensity of migration
and the method used for selection of candidateantgr By analogy, it is
possible to build island-based parallel BMDA, wlar¢he GA demes are
replaced by BMDA ones. In BMDA and generally in EQAas it is
known, new individuals are generated by the sampiinthe probabilistic
model. Consequently, a question pops up, whethsmpibssible to replace
the migration of individual just by the probabilitpodel transfer. This
topic is investigated in the next subsection.

4.2 Migration of the probabilistic model

The principal motivation for the proposal of a nesncept of BMDA par-
allelization is to discover the efficiency of thrarisfer of probabilistic pa-
rameters in comparison with the traditional trangfé individuals. The
main goal is to find a robust computational toot faard optimization



problems. The present approaches recently publighdd, 8, 9] use a
simpler probability model only (PBIL, UMDA).

In concordance with the theoretical conclusion shaw{24] and on the
basis of experimental works done in [17], we ugedisland-based com-
munication model with unidirectional ring topologgth synchronization,
see Fig. 3.

We have simulated the island-based system partly single processor
computer and partly on a real parallel system caegoof a cluster of
eight Linux-based workstations. It is evident tiag can simply decom-
posed the migration process in the ring loop iraovgse interactions of
two adjacent islands - one of them is consideretie@ resident island
specified by resident probabilistic model and teeosid one is considered
to be an immigrant island which probabilistic modetransferred to par-
ticipate on the building up a new resident modtdrad predefined migra-
tion rate.

Immigrant island Migration direction

Subpopulation

Resident island | |

Fig. 3. Ring topology of island-based BMDA

We focused on the problem of how to compose theeas model with
the incoming model belonging to the immigrant islatn general, the
modification of the resident model by the immigramidel can be formal-
ized by the adaptation rule [3, 19]:

Mr=p Mr°(1-p) M, )

where operator ° can be e. g. sum operator anadb#icientf in the
range <0, 1> specifies the influence of the immigraodel.



4.3 Adaptive Learning of Probabilistic Model

We applied the adaptive learning for the both paftthe probabilistic
model M = (Gr, Or) — the dependence grafx and the parameter set
Or. The new dependency gra@ir is not built by the aggregation of the
original graphGg and the incoming grap®, but by means of Pearson’s
chi-square statistics:

)(iz,j = ﬁ)(izR,jR-"(l_ﬂ))(i?,jl (6)
The new paramete®'r are calculated by the simple adaptation rule:
O'r=pOr+ (1-5)6 (7)
The adaptation coefficieptis defined by the formula:
Fr .
p=1F +F, if F=F, (8)
09 otherwise

whereFr represents the mean fitness value of the res@digopulation
andF, represents the mean fithess value of the immigalmpopulation.

Procedure (Output: M g, Input:SubPop SubPop)
Calculate K for the resident subpopulation;
Calculate Ffor the immigrant subpopulation;

Calculatep:
Fr .
if F, 2F
B=1{F +F, =
09 otherwise

For i=0 to n-1do begin
For j=0 to n-1do begin
Calculatg(ii'jR X2

!
Storein Chisgr_Tablefi,jl: x* = Bx: | +@-B)x¢
end
end
Build the new dependency graphg @tcordingChisgr_Table;
Calculate set of the paramete®@z(G'r) , O/(G'R) ;
Learning of the parameter®’ r = f Or + (1-5)6,
Store the new resident mod#if R = (G'r, O'R),
Sample the adapted modél ;
Replacement of SubRgp
end

Fig. 4. Adaptive learning of the resident model



The major part of all experiments was implementsithg this pseudo
parallel version of the algorithm aBMDA, see Fig. 4

4.4 Parallel implementation on a cluster of workstations

In the parallel version of aBMDA, it is necessamyttansfer some compo-
nents of the probability model from the immigramtde to the resident
one. In the proposed version, the contingency sabte transferred. The
spatial complexity of all transported tableO&in®), wheren is the cardi-
nality of the solved problem. Seeing that chi-sguarsymmetric, and de-
pendencies between the same variables have ng feaspatial complex-
ity can be reduced ©(2(n° —n)).

In contrast to the probabilistic model migratiohe tmigration of indi-
viduals used in iBMDA works with the spatial comytg O(nkN) where
kN is the number of migrating individuals. Because ttommunication
overhead in modern interconnection networks depemol® strongly on
the start-up latency of communication than on agparted message size,
we can consider that the communication overheado@ihearly the same
for both approaches. Moreover, using an asynchmmsunon-blocking
type of migration [14], the communication overheadld be simply over-
lapped.

Our parallel implementation of aBMDA derives betefrom overlap-
ping of communication and computation, based onbiooking MPI [18]
communication subroutines MPI_ISend, MPI_IRecv affel_Wait. The
basic idea is shown in Fig. 5.

The information exchange between the resident ladnmigrant node
begins with the initiation of receiving request.ribig the receiving proce-
dure, the resident node can compute its contingémialgs and the mean
fitness valueFg of the resident population. Next, all computedadate
packed into a simple send buffer using standare@irme memcpyand
sent using non-blocking communication to the negghiode. The resident
chisqgr-table is computed from the resident contingetables in the next
step. Now, the resident node has to wait untilithmigrant data are com-
pletely received. After finalization, the data frahe immigrant node are
unpacked from a receive buffer and the immigransgitable is com-
puted. Now, the probabilistic model composition tenstarted. First, the
resident and the immigrant chisgr-tables are coetbiogether using beta
parameter to produce a new chsqri-table. A new ridgecy graph is cre-
ated according to the information stored in therled chisqr-table. Sec-
ond, a set of paramete@y are calculated using new dependency graph,



and the original resident and the immigrant corgtitay tables. As a result
the new probabilistic modeVf R = (G, @'r), is determined.

Procedure MakeExhangelslandinformation();
MPI_IRecReceive buffer);
Calculate the mean fitness valug df the resident island;
Calculate resident contingency tables;
Pack resident contingency tables angifito a send buffer;
MPI_ISendSend buffer);
Calculate Chisgr_Table_Resident[i,j] 75«1@
MPI_WaifWaiting for receiving finish);
Unpack immigrant contingency tables andrbm a receive buffer;
Calculateg;
Calculate the Chisqr_TabIe_Imigrant[i,j];—(i‘zvj‘ ;

Calculate items of the compos@bisqr_Tablefi j]: 2, = B .+ A-BX,

Build the new dependency graphg @ccording to nevChisgr_Table;
Calculate set of the paramete®@3(G'r) , ©,(G'r) using contingency tables ;
Learning of the parameter® ' r = S Or + (1-5)6,
Compose new resident modaf ;= (G'r, O'R)
MPI1_WaitWaiting for sending finish);

end

Fig. 5. MPI communication between the resident and theigramt node

The migration of individuals used in iBMDA can bealized in the
similar way. The computation of contingency tabbesd mean fithess
value is simply replaced by the selection of indibals intended for the
migration. In this case, only selected individuate packed into a send
buffer and transported to the neighbor node. Redeolutions are then
unpacked in the resident node and incorporatedrggent population.
Finally, a new population is created in the staddeaty.

Besides the described type of communication, thé KARther [18] op-
eration was employed after each generation. Dulirggoperation, all nec-
essary information from all processing nodes ardected to compute
global statistics including the global mean fitneahkie, the best global so-
lution, etc.



5 Experimental Results

In our experiments, we compared four different asats of the BMDA al-
gorithm. The first group consists of two versiorigarallel BMDA algo-
rithm:

1.aBMDA, with adaptive learning of dependency graph.

2.iBMDA, with the migration of individuals.

These two parallel BMDA algorithms work with 8 isth subpopula-
tions, each consisting of 256 individuals as aiporof the full population
with 2048 individuals.

The second group used for the comparison includesctassical vari-
ants of BMDA:

3.sBMDA, sequential BMDA, with full population of 284individuals

(as the whole eight-island model).

4. oBMDA - sequential BMDA with reduced population sisting of

256 individuals (as in case of one island).

The fixed subpopulation size has been used fowtiae range of prob-
lem size. We have not wittingly used the possipitif the adaptation of
the subpopulation size according to problem sizdismissed in [25]. Our
goal was to compare namely the parallel adaptiveIRB version with
traditional iBMDA version under limited resourcesubpopulation size).
The value of the population size for sSBMDA is st2048 derived par-
tially from our experience and from the experiménggults published in
[25] for the 3-Deceptive problem.

In all BMDA variants, truncation-based selectiorattgy was used, i.e.
all individuals were ordered by their fitness valra the better half was
used for model building. The truncation-based megr@ent strategy was
also used for the replacement operator, i.e. thve generated solutions
(offspring) replace the worse half of the subpotiota The probabilistic
model is built in each generation. Frequency ofrtteelel migration or in-
dividual migration was even - once per five gerneret In case of the al-
gorithm with migrating individuals, the elitism ised, that is, 13 best in-
dividuals of the immigrant subpopulation (i.e. ab&a5 percent of the
subpopulation) replace the worse individuals ofrés@dent subpopulation.
First stop condition was met after 500 generatidhg;second condition
was activated if there was no improvement in therual of 50 genera-
tions.



5.1 Specification of Benchmarks

For our experimental study, four well known benchwmawith various

complexity and known global optimum were used. T®eeMax and
TwoMax problems served as the basic benchmarkshéotesting of the
basic performance. The Quadratic problem repres¢més adequate
benchmark that should be solvable just by any BMddgorithm. The 3-
Deceptive task belongs to the hard deceptive beadhfor BMDA and it

is often used for the testing of BOA algorithms.

n-1

OneMax:f, . =3 x 9
i=0
n-1

TwoMax: ¢ (=3 x - ngn (10)
)

Quad ratlc fQuadratic(x) = Ez f2 (Xﬂ(zi) 1 Xn(2i+1)) (11)

where f,(u,v) = 09 - 0.9(u + V) + 1.9uv

14

. 3
S-Deceptlve' f?rDeceptive(X) = Z f3()(77(3i) + X”(3i +1) + X’T(3i+2)) (12)
i=0
where 09 it u=0
fU) = 0.8 if u=1
¢ 0 if u=2
1 otherwise

The four mentioned objective functions were usetbim fitness func-
tions (FF) without additional modification. We hatested four variants of
BMDA using 30 independent runs. To have baselinslemd based ver-
sions, we first tested the classic sequential BMBBMDA) with ordinary
population of 2048 individuals and the classicajusmtial BMDA with
reduced population (0BMDA).

The first metric is represented by the often useccass rate of the
global optimum discovery. The second metric is Walied as the average
value of the best fitness function (FF) over 30stunhe third metric is
computed as the mean value of the number of crrdisicovered build-
ings blocks (BBs) over 30 runs. These metricsAtasi are discussed in
the next sections.



5.2 OneMax Problem

The sBMDA and aBMDA algorithms succeeded in the ihrange of the
problem size, see Fig. 6. Classical iBMDA versiosoduces comparative
result only up to 260 variables. The rapid dropofes after this threshold.
0BMDA was very significantly outperformed by albafithms.

Success rate for OneMax problem
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Success rate for OneMax problem

5.3 TwoMax Problem

Success rate for TwoMax problem
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In case of TwoMax problem, see Fig. 7, the resafithe tested algorithms
are similar to the results achieved for OneMax [@mwb The aBMDA ver-
sion outperformed all other versions and achievesl game results as
sBMDA. The drop of success rate for the iBMDA versiwith migration
of individuals is stronger than in the case of Oa&Nroblem.

5.4 Quadratic Problem

To achieve global solution for this problem, thelability model with the
bivariate dependency is required. This benchmattus perfectly suitable
for testing and comparing all BMDA variants.

Success rate for Quadratic problem
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Fig. 8. Success rate for Quadratic problem

In Fig. 8, the success rate for all compared algms can be seen. The
best results were reached by sBMDA that succeedddei nearly whole
range of the problem sizes. The similar behavior lwa observed even for
aBMDA version that achieved 100 percent success uptto 260 vari-
ables.

Besides the success rate metric the second metgesented by
meanzstd statistics of the fitness function ares@néed in Table 1. It is
evident that aBMDA version and sBMDA version pravithe same results
up to 260 variables. For higher number of variasB§DA achieves bet-

ter results. The best value achieved for each proldize is written in
bold.



Table 1. Statistics results (meanzstd of FF) for Quadrat@blem

Prodem Algorithm

size aBMDA iBMDA sBMDA pBMDA Optimum
60 30.0+0.00 30.0+0.00 | 30.0+0.00 [29.9+0.06 30
80 40.0+0.00 39.9+0.30 |40.0+0.00 39.8+£0.10 4D
100 50.0+0.00 49.8+0.80 [50.0+0.00 49.6+0.14 50
120 60.0+0.00 59.7+0.13 |60.0+0.00 59.310.24 6D
140 70.0+0.00 67.7+3.14 |70.0+0.00 69.1+0.25 70
260 130.0+0.00 127.1+0.37 (130.0+0.00 [126.3+0.57 130
280 139.9+0.24 136.5+0.30(139.9+0.02 |135.8+0.54 140
300 149.7+0.46 146.1+0.271149.9+0.02 |145.3+0.64 150

In Table 2, the third metric represented by meahssatistics for the
number of correctly recognized buildings blocks €BBre shown.

Table 2. Statistics results (meanzstd of BBs) for Quadrptmblem

Problem Algorithm

size aBMDA iBMDA sBMDA pBMDA Optimum
60 30.0+0.00 30.0+0.00 30.0+0.00 [29.6+0.61 30
80 40.0+0.00 39.8+0.37 40.0£0.00 [38.8+1.02 40
100 50.0+0.00 48.7+0.78 50.0+0.00 }46.5+1.41 50
120 60.0+0.00 56.7+1.26 60.0+0.00 [53.8+2.48 6D
140 70.0+0.00 64.5+1.36 70.0+0.00 |60.8+2.38 70
260 130+0.00 101+3.71 130+0.00 [93.445.86 130
280 129+2.45 105+3.27  [140+0.00 [98.0+5.15 140
300 147+4.64 111+2.77 |149.940.25 [104+4.93 150

5.5 3-Deceptive Problem

The problem was investigated for the variable raingm 21 to 120, see
Fig. 9. For higher number of variables, the dropwécess rate is signifi-
cant for all proposed algorithms. It is caused dyer high complexity of
the 3-Deceptive problem that requires a more coxnpiedel and also lar-
ger population size for efficient performance. Thest success rate was
achieved by aBMDA version. Very similar values wetso achieved by
sBMDA. On the other hand, the worst results wermiolked by o0BMDA
and iBMDA.



Success rate for 3-Deceptive problem
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Fig. 9. Success rate for 3-Deceptive problem

In Table 3, the meanztstd statistics of the fitmesgtion are presented.
The best results were obtained by the aBMDA versiod by sBMDA.
The worst mean fitness values were achieved by oBNIgorithm fol-
lowed by iBMDA. The mean values and standard denabf the discov-
ered BBs are presented in Table 4. The adaptive8Mersion proves
significant correlation between the mean value iofebs and the mean
value of BBs. For the case of the 99-variable gobihe mean number of
BBs is 26.3 which is 80 percent of total 33 blodKste that iBMDA dis-
covered only 11.9 BBs (36 percent). It is interggtio compare these val-
ues with the experimental results published for B&lgorithm in [25],
where the achieved number of building blocks (BiBs)99 variables and
for the population size estimated to 250 equabtpercent.

Table 3. Statistics results (meanzstd of FF) for 3-Decepfixablem

Problem Algorithm
size  aBMDA iBMDA sBMDA oBMDA Optimum
21 7.00+0.00 7.00+0.00 7.00+0.00 [6.90+0.05
30 10.0£0.00 9.92+0.06 10.0£0.00 9.75+0.12
39 13.0£0.00 12.7+0.11 13.0£0.00 12.1+1.99
51 16.920.04 16.3£0.09 [16.9+0.03 16.1+0.16
60 19.9+0.06 19.1+0.13 19.9+0.06 18.8+0.22
72 23.9+0.15 22.7x0.14 [23.940.09 22.4x0.24
81 26.8+0.15 25.4x0.16 [26.8+0.10 25.1+0.23
90 29.5+0.20 28.1+0.15 [29.740.16 28.6+0.57
99 32.4+0.35 30.8+0.15 [32.6+0.18 30.5+0.22
120 38.6+0.29 37.1+0.14 |39.2+0.2 38.6+0.59
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Table 4. Statistics results (meanzstd of BBs) for 3-Decepfivoblem

Problem Algorithm

size aBMDA iBMDA sBMDA pBMDA Optimum
21 7.00+0.00 7.00+0.00 7.00+0.00 [6.47+0.50 i
30 10.0£0.00 9.23+0.56 10.0+0.00 7.60+1.11 1p
39 13.0£0.00 10.6+£1.11 13.0+0.00 7.33+1.72 1B
51 16.8+0.45 10.6+0.92 |16.9+0.39 8.27+1.67 1y
60 19.7+0.59 11.3+1.49 19.6+0.56 7.23+2.39 20
72 23.1+1.02 11.5+1.56 23.0+£0.93 8.23+2.29 24
81 25.0+1.51 11.5+1.62 [25.3+0.98 7.92+2.39 27
90 25.8+2.08 11.3+1.41 [27.8+1.61 8.50+2.26 30
99 26.3+2.99 11.9+1.83 [29.4+1.85 8.67+2.95 3B
120 26.2+£3.72 11.6+1.80 |32.1+2.09 9.03%£1.74 4D

5.6 Discussion to pseudo-parallel version of algorithms

In our experiments two groups of algorithms are garad:

1. The new proposed island-based aBMDA with probahilisnodel
learning and the traditional island-based iBMDAmimdividual mi-
gration.

2. Sequential sSBMDA version with the full populatio@esand reduced
sequential oBMDA version.

In the first experiment, the success rate metris applied. Both aB-
MDA and sBMDA versions are capable to find globatima with 100
percent success rate up to 500 variables in ca@neMax and TwoMax
problems and up to 260 variables in case of Quiadrabblems. For diffi-
cult problems, like 3-Deceptive, the algorithmskldlee ability to find re-
peatedly the optimal solution for problem size &arthan 39.

It is evident that aBMDA is effective optimizatidool outperforming
iBMDA version based on the traditional migration ioflividuals. From
this point of view the range of solvable problerzesis at least two times
larger in case of aBMDA version.

In the second experiment the statistics includirg@ntstd values of fit-
ness function (FF) was processed for two harddslenas — the Quadratic
problem in Table 1 and 3-Deceptive problem in T&hldhe best values
are written in bold. From Table 1, it is evidenattfior Quadratic problem,
aBMDA and sBMDA have reached the global optima w2@0 variables
and outperformed very significantly iBMDA versiom the case of 3-
Deceptive problem, aBMDA outperformed all otheragithms besides the
sBMDA that is better for the problem size exceedd@gvariables. Note
that for the 120-variable problem the mean valuBfoin case of aBMDA
equals to 38.6 which is close to global optimunrespnted by value 40.



In Table 2 and Table 4, the statistics resultsB&s are shown for
Quadratic and 3-Deceptive problems. From Table i &vident, that in
case of Quadratic problem, aBMDA discovered all BBsto 260 vari-
ables while iBMDA was successful up to 30 varialde$y. In case of 3-
Deceptive problems, see Table 4, aBMDA outperforngdDA in the
whole range of problem size. Note that aBMDA acléwapproximately
two time higher mean value of BBs for the probleime sexceeding 60
variables.

The computational complexity of all algorithms me®sl by the num-
ber of generation is comparable. For example, ge ac# Quadratic prob-
lem with 60 variables the average computationaétismabout 20 genera-
tions, see Fig. 10. Note that oBMDA was able td fine global optima for
this instance of Quadratic problem only in 66 petagf the 30 runs, see
Fig. 8.

Time complexity of proposed algorithms (Quadratic 60)
20

19,5

19

18,5

18

17,5 1

Generations

16,5 1

16

15,5 1

aBMDA iBMDA SBMDA 0BMDA

15 +

Variants of algorithm

Fig. 10.Time complexity of the proposed algorithms for Quaait problem

5.7 Performance of parallel implementation

The parallel implementation of aBMDA and iBMDA weested on a clus-
ter of 8 Linux-based workstations equipped withelnE6550 processor
and 2GB RAM connected together by 1Gb LAN netwdrkcase of se-
guential SBMDA only one station was used.

First, the comparison of the mean execution firgeelated to one gen-
eration was performed. FdF; calculation, five independent runs, each



composed of 20 generation (including 4 migratiocley), were carried
out.

The algorithms were compared using OneMax benchnsaek Fig. 11.
Let us note that the convergence toward globah@aptivas not checked in
this case. From Fig. 11, a marked difference betveeguential and paral-
lel approaches is evident, as it was expected vahes ofTg for the both
parallel algorithms are comparable. Finally, OneMexchmark is rela-
tively simple, as the fitness function evaluatiaes not influence the exe-
cution time very much. For more complex problemgjap between se-
quential and parallel approaches will be deepecalbse computational
complexity will dominate communication complexity.

. Execution time of one generation for OneMax problem
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Fig. 11.The mean execution tinle, for OneMax

The speed-up of parallel implementations for OneMeoblem is dis-
played in Fig. 12. It varies between 5 and 9 fothiqwarallel algorithms.
The decrease of the speed-up for larger instanc@eMax problem is
caused by the increased parallelization overhehd.overhead consists of
the quadratic time complexity of contingency talilessport and the sub-
sequent model composition in the resident node.

The performance of aBMDA algorithm is slightly ettFor simpler in-
stances (say up to 200 variables) the achievedlageesvas larger than a
number of processing nodes (8 in our experiment)is known as the
phenomenon of superlinear speed-up [3].



Speed-up of one generation for OneMax problem

Speed-up

——aBMDA
1 - <%= - iIBMDA |7
20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 440 460 480 500

Problem size [variables]

Fig. 12. Speed-up of iBMDA and aBMDA with regard to sBMDArfOneMax
problem

The value of speed-up was also investigated ford@ui@ problem, see
Fig. 13. Both parallel algorithms achieved supedin speed-up in the
whole range of problem instances as the consequdribe more complex
benchmark.

Speed-up of one generation for Quadratic problem

- - - aBMDA
2 —m—iBMDA [

20 40 60 80 100 120 140 160 180 200 220 240 260 280 300
Problem size [variables]

Fig. 13. Speed-up of iBMDA and aBMDA with regard to sBMDArfQuadratic
problem

Let us note that the knowledge of the concrete dsppecan be utilize
for prediction of the execution time of the optiation process and also



for the setting of proper population size and tlhwnber of processing
nodes.

Finally, we investigated the speed-up of the omtation tasks which
resulted in 100% success rate. The value of thedspp was calculated
using the following schema: a) first the numbegeheration required for
achievement the global optima for each version DB\ and for each in-
stance of the problem was measured and averagewyd0 independent
runs, b) this value was multiplied by the mean eea time of one gen-
erationTg for relevant version of BMDA, c) finally, this ua was nor-
malized according the values obtained by sequesBBMMDA and plotted
in the Fig. 14 and Fig. 15.

From Fig. 14, it is evident that iBMDA algorithm waot able to find
optimal solutions for the whole range of OneMaxtanses. It succeeded
only in the range from 20 to 220 variables. aBMDved the tasks relia-
bly with the speed-up higher than 6 and even wifpeginear speed-up up
to 280 variables.

Speed-up for OneMax with 100% success rate
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Fig. 14. Speed-up of iIBMDA and aBMDA with regard to sBMDArf@neMax
problem in case of 100% success rate

The capability of the speed-up for Quadratic probl&ig. 15) was in-
vestigated up to 260 variables, whereas aBMDA willsable to produce
optimal solutions with 100% success rate. The spgedaried between
4.4 and 8.7. iBMDA algorithm achieved comparableespup as aBMDA
but only up to 60 variables.



Speed-up for Quadratic with 100% success rate
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Fig. 15. Speed-up of iBMDA and aBMDA with regard to sBMDArfQuadratic
problem in case of 100% success rate

5.7.1 Discussion to parallel implementation

The message passing interface MPI used for patatiglementation of
BMDA algorithms appears as an efficient softwarel.tdwo variants of
parallel BMDA was investigated — aBMDA and iBMDAh&y are mutu-
ally compared and also compared to the sequeBDsA.

From Fig. 12 and Fig. 13 it is possible to conc|utiat the communica-
tion overhead is negligible. The values of achiespéed-up of processing
were very close to the number of utilized procegsiodes, and even
higher in some cases. The ability of finding globptima and its speed-up
was also examined for both tested parallel algorithFrom Fig. 14 and
Fig. 15, it is evident that aBMDA algorithm is muofore robust than iB-
MDA. The speed-up of optimization process with extfgo sSBMDA (with
100 percent success rate) varies from 4.4 to &if7fdo the most of prob-
lem instances it is higher than 6.

6 Conclusions

This chapter has presented a new idea of para\#AB algorithms using

island-based model with the unidirectional ringdimgy. The cooperation
of demes was realized via migration of probabdistiodels instead of the
traditional migration of individuals. Each two nklgpr demes are organ-
ized as a pair of resident and immigrant demes.héie introduced an



adaptive learning technique, based on the quafityesident and immi-
grant subpopulation, which consists of the adaptatif the resident prob-
abilistic model by the incoming neighbor immigrambdel.

We have introduced an efficient tool how to learapdical probabilistic
model and associated probabilistic parameters. cdmaparative experi-
mental studies demonstrated that the proposediglaatgorithm aBMDA
outperforms the traditional iBMDA using migratiofiiadividuals, mainly
according to the problem size and the level ofstinecess rate. This is true
for all the applied benchmarks beginning with On&NMad ending with
the Quadratic problem. The 3-Deceptive problemigua problem for all
compared algorithms but aBMDA and sBMDA provideatiely best so-
lutions. Note that the sequential SBMDA with fulbgulation provides
competitive results compared with the aBMDA, indéed the time com-
plexity of aBMDA version can be significantly redhet by parallel proc-
essing.

The future work will be focused on more sophisedamodifications of
learning techniques with limited size of paramétensfer. We also aim to
parallelize the Bayesian Optimization Algorithm (Busing a modified
concept of probabilistic model migration.
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