
Parallel BMDA with Probability Model Migration

Josef Schwarz and Jiri Jaros

Department of Computer Systems, Faculty of Information Technology,
Brno University of Technology, CZ, {schwarz, jarosjir}@fit.vutbr.cz

Summary. The chapter presents a new concept of parallel Bivariate
Marginal Distribution Algorithm (BMDA) using the stepping stone com-
munication model with the unidirectional ring topology. The traditional
migration of individuals is compared with a newly proposed technique of
probability model migration. The idea of the new adaptive BMDA (aB-
MDA) algorithms is to modify the classic learning of the probability model
(applied in the sequential BMDA [24]). In the proposed strategy, the adap-
tive learning of the resident probability model is used. The evaluation of
pair dependency, using Pearson’s chi-square statistics is influenced by the
relevant immigrant pair dependency according to the quality of resident
and immigrant subpopulation. Experimental results show that the proposed
adaptive aBMDA significantly outperforms the traditional concept of mi-
gration of individuals.

1 Introduction

The concept of traditional parallel genetic algorithm (PGA) is well known.
It stems from the idea that the large problem can be successfully solved us-
ing decomposition of the original problem into smaller tasks. Conse-
quently, the tasks can be solved simultaneously using multiple processors.

This divide-and-conquer technique can be applied to GA in many dis-
tinct ways. Mostly, the population is divided into a few subpopulations or
demes, and each of these demes evolves separately on different processors.
Exchange of information among subpopulations is possible via a migration
operator. In this context, the term island model is commonly used. Island
populations are free to converge toward different optima. The migration

operator is supposed to mix good features that emerge locally in the differ-
ent demes.

Many topologies can be defined for connecting the demes like mesh, to-
rus, hypercube or ring. The most common models are the island model and
the stepping stones model. In the basic island model, migration can occur
between any subpopulations, whereas in the stepping stone model, migra-
tion is restricted to neighboring demes. In [7], the theory is published pro-
viding rational decisions for the proper setting of control parameters. An
interesting survey of PGA is published in [2]. An effective technique for
the massive parallelization of compact GA was published in [15]. An ex-
tremely prestigious PGA which is capable to solve billion-variable optimi-
zation problems was recently published in [10].

This chapter concerns the application of the stepping stone model (for
simplicity we will use the term island-based model) for bivariate marginal
distribution algorithm BMDA. This new approach using probability model
migration is conceptually different from the traditional parallel genetic al-
gorithms with migration of individuals/solutions and also from the EDAs
using parallel building of pseudo-sequential probabilistic models.

The sections are organized as follows: Section 2 introduces the basic
concept of EDA algorithm and current techniques used in the paralleliza-
tion of the EDA algorithms. In Section 3 the sequential BMDA is de-
scribed including the factorization and graphical representation of the
probability model. Section 4 presents the motivation and a new idea of
learning the probability model using a concept of probability model migra-
tion. Experimental results are shown in Section 5, Section 6 concludes the
chapter.

2 Traditional EDAs

EDAs belong to the advanced evolutionary algorithms based on the esti-
mation and sampling of graphical probabilistic models [4, 5, 6, 11, 13, 22,
23, 26]. They do not suffer from the disruption of building blocks known
from the theory of standard genetic algorithms. The canonical sequential
EDA is described in Fig. 1.

EDAs often surpass classical EAs in the number of required fitness
function evaluations. However, the absolute execution time is still limiting
factor which determines the size of practically tractable problems. Refer-
ring to Fig. 1 the most time consuming task is the estimation of probability
model for many problems. Most papers on EDAs concentrate on parallel
construction and sampling of probabilistic models. The well-known algo-

rithm employing parallel construction of Bayesian network is EBNA algo-
rithm targeted for MIMD architecture and designed both for MPI and
POSIX threads, published in [17, 20, 21]. In [25], the theory of population
sizing and timing to convergence is published.

Set t ← 0;
Generate initial population D(0);
 While termination criteria is false do
 begin
 Select a set of promising solution Ds(t);
 Construct a new probability model M from Ds(t) using chosen metric;
 Sample offspring O(t) from M;
 Evaluate O(t);
 Create D(t+1) as a subset of O(t) ∪ D(t) with cardinality N;
 t ← t + 1;
 end

Fig. 1. The pseudo code of canonical EDA

A new idea of the multideme parallel estimation of distribution algo-
rithm (PEDAs) based on PBIL algorithm was published in [1]. In [16],
mixtures of distribution with Bayesian inference are discussed. Parallel
learning of belief networks in large domains is investigated in [27]. Using
the concept of PBIL algorithm [3, 12, 19], the classical phenomenon of
migration in island-based EAs was carried over into probability distribu-
tion of EDAs. A new approach of probability vector crossover was imple-
mented with very good performance.

2.1 Linkage learning in EDA algorithms

In competent genetic algorithms, various sophisticated linkage learning
techniques must be implemented to discover Building Blocks (BBs). In
EDA algorithms, the linkage learning is automatically incorporated into a
graphical probabilistic model. EDAs support an effective detection, mixing
and reproduction of BBs, so that they are capable to solve complex optimi-
zation problems including deceptive problems. The choice of the model
complexity is very significant and it is determined by the fitness function
complexity. We can recognize three categories of model complexity: with-
out dependency (UMDA), pairwise dependency (MIMIC, BMDA) and
multivariate dependency (BOA, EBNA).

2.2 Migration of probabilistic parameters for UMDA

The concept of migration of probabilistic parameters instead of individuals
was firstly published in [8] where on UMDA platform the convex combi-
nation of univariate probability models is investigated for various network
topologies (ring, star etc.).

Further enhancement of this concept is described in [9] where the local
search methods are used to identify which parts of the immigrant model
can improve the resident model.

In following sections we describe the proposal of a new concept of is-
land-based BMDA algorithm with unidirectional ring topology based on
the combination of two adjacent bivariate probability models.

3 Sequential BMDA

The well known representative of bivariate EDAs is the Bivariate Marginal
Distribution Algorithm (BMDA) proposed by Pelikan and Mühlenbein
[19, 24]. This algorithm uses a factorization of the joint probability distri-
bution that exhibits second-order dependencies.

EDAs are also population based algorithm but unlike GAs the new
population is generated by sampling the recognized probability model.

Let us denote:
D = (X0, X1,..., XN-1) with X ∈ D, is the population of strings

/solutions/individuals,
X = (X0, X1,..., Xn-1) is a string/solution of length n with Xi as a variable,
x = (x0, x1,..., xn-1) is a string/solution with xi as a possible instantiation

of variable Xi, xi ∈{0,1} ,
p(X) = p(X0, X1,..., Xn-1) denotes the n dimensional probability distribu-

tion,
p(x0, x1,..., xn-1) = p(X0 = x0, X1 = x1,..., Xn-1 = xn-1) denotes a probability of

a concrete n dimensional vector.
The probabilistic model used in BMDA can be formalized by M =

(G, Θ), where G is dependency graph and Θ = (θ0, θ2,…, θn-1) is a set of
parameters which are estimated by local conditional or marginal probabil-
ity for each node/variable of the dependency graph.

A greedy algorithm for building dependency graphs is used. At the be-
ginning, the root node is selected and subsequently the nodes with maxi-
mum dependency value are searched among the remaining nodes and
joined. These pairwise dependencies in BMDA are discovered by Pear-
son’s chi-square statistics:

−= ∑ ∑

∈∀ ∈∀
1

)()(

),(

)()(

2
2
,

ii jjXDomx XDomx ji

ji
ji xmxm

xxm
Nχ (1)

where N is the size of parent population and m(xi, xj), m(xi) resp. m(xj)
denote the number of individuals in the parent population with concrete
values of xi and/or xj. These values are stored in the contingency tables.
From the theoretical point of view this metric can be seen as statistical test-
ing of hypothesis – for example binary genes Xi and Xj are considered to be
independent at 95 percent confidence level if 84.32

, <jiχ . Like COMIT,

BMDA also uses a variant of minimum spanning tree technique to learn a
model.

However, during the tree construction, if none of the remaining vari-
ables can be “rooted” to existing tree, BMDA starts to form additional tree
from remaining variables. The final probability distribution is thus a forest
distribution (a set of mutually independent dependency trees):

∏∏
∈∈

=
RVX

iji
RX

r

ir

XXpXpp
\

)()|()()(X (2)

where V is the set of nodes of dependency tree, R is the set of root nodes
and Xj(i) denotes the parent node of Xi. Given the tree dependence structure,
the univariate marginal probability distributions are estimated from the
promising/parent population:

N

Xm
Xp i

i
)1(

)1(
=== (3)

and the bivariate conditional probability distributions)|()(iji XXp are

estimated as

)(

),(
)|(

)(

)(
)(

ij

iji
iji xm

xxm
xxp = (4)

For example, the joint probability distribution for the dependency graph
in Fig. 2 can be expressed by the factorization:

1. p(X) = p(X4) p(X3 |X4) p(X2 |X3) p(X1 |X2) p(X0|X1)
2. p(X) = p(X2) p(X3 |X2) p(X0 |X4) p(X4) p(X1 |X4)

The time complexity of the complete BMDA algorithm can be ex-

pressed by the formula: O(n3)+O(4Nn2)+O(Nn), where the first component
is a cubical time complexity of the dependency graph construction, the
second component is a quadratic time complexity of contingency tables

collection and the third component of the formula reflects a linear com-
plexity of new solution sampling.

2 1

4 3

2

4

0

1
5

3

0

 a) b)

Fig. 2. Example of dependency graph for: a) COMIT, b) BMDA

4 Island-based BMDA

4.1 Migration of individuals

In traditional island-based PGA algorithms, an infrequent migration of in-
dividuals among subpopulation is incorporated. The migration process is
controlled by several parameters. It is necessary to determine number and
size of the subpopulations, the frequency and the intensity of migration
and the method used for selection of candidate migrants. By analogy, it is
possible to build island-based parallel BMDA, whereas the GA demes are
replaced by BMDA ones. In BMDA and generally in EDAs, as it is
known, new individuals are generated by the sampling of the probabilistic
model. Consequently, a question pops up, whether it is possible to replace
the migration of individual just by the probability model transfer. This
topic is investigated in the next subsection.

4.2 Migration of the probabilistic model

The principal motivation for the proposal of a new concept of BMDA par-
allelization is to discover the efficiency of the transfer of probabilistic pa-
rameters in comparison with the traditional transfer of individuals. The
main goal is to find a robust computational tool for hard optimization

problems. The present approaches recently published in [1, 8, 9] use a
simpler probability model only (PBIL, UMDA).

In concordance with the theoretical conclusion shown in [24] and on the
basis of experimental works done in [17], we used the island-based com-
munication model with unidirectional ring topology with synchronization,
see Fig. 3.

We have simulated the island-based system partly on a single processor
computer and partly on a real parallel system composed of a cluster of
eight Linux-based workstations. It is evident that we can simply decom-
posed the migration process in the ring loop into pairwise interactions of
two adjacent islands - one of them is considered to be a resident island
specified by resident probabilistic model and the second one is considered
to be an immigrant island which probabilistic model is transferred to par-
ticipate on the building up a new resident model after a predefined migra-
tion rate.

Fig. 3. Ring topology of island-based BMDA

We focused on the problem of how to compose the resident model with
the incoming model belonging to the immigrant island. In general, the
modification of the resident model by the immigrant model can be formal-
ized by the adaptation rule [3, 19]:

M´R = β M R ° (1- β) MI , (5)

where operator ° can be e. g. sum operator and the coefficient β in the
range <0, 1> specifies the influence of the immigrant model.

Immigrant island

Subpopulation

Migration direction

Resident island

4.3 Adaptive Learning of Probabilistic Model

We applied the adaptive learning for the both parts of the probabilistic
model M R = (GR , ΘR) – the dependence graph GR and the parameter set
ΘR. The new dependency graph G´R is not built by the aggregation of the
original graph GR and the incoming graph GI but by means of Pearson’s
chi-square statistics:

IIRR jijiji
2

,
2

,
2
,)1(χββχχ −+= (6)

The new parameters Θ´R are calculated by the simple adaptation rule:

Θ´R = β ΘR + (1–β)ΘI (7)

The adaptation coefficient β is defined by the formula:

 ≥
+=

otherwise

FFif
FF

F
RI

RI

R

9.0
β , (8)

where FR represents the mean fitness value of the resident subpopulation
and FI represents the mean fitness value of the immigrant subpopulation.

Procedure (Output: M’ R, Input:SubPopI, SubPopR)
 Calculate FR for the resident subpopulation;
 Calculate FI for the immigrant subpopulation;
 Calculate β:

 ≥
+=

otherwise

FFif
FF

F
RI

RI

R

9.0
β

 For i=0 to n-1 do begin
 For j=0 to n-1 do begin
 Calculate

RR ji
2

,χ ,
II ji

2
,χ ;

 Store in Chisqr_Table[i,j]:
IIRR jijiji

2
,

2
,

2
,)1(χββχχ −+=

 end
 end
 Build the new dependency graphs G´R according Chisqr_Table;
 Calculate set of the parameters: ΘR(G´R) , ΘI(G´R) ;
 Learning of the parameters: Θ’ R = β ΘR + (1-β)ΘI
 Store the new resident model: M´R = (G´R , Θ´R),
 Sample the adapted model M´R ;
 Replacement of SubPopR;
end

Fig. 4. Adaptive learning of the resident model

The major part of all experiments was implemented using this pseudo
parallel version of the algorithm aBMDA, see Fig. 4

4.4 Parallel implementation on a cluster of workstations

In the parallel version of aBMDA, it is necessary to transfer some compo-
nents of the probability model from the immigrant node to the resident
one. In the proposed version, the contingency tables are transferred. The
spatial complexity of all transported tables is O(4n2), where n is the cardi-
nality of the solved problem. Seeing that chi-square is symmetric, and de-
pendencies between the same variables have no sense, the spatial complex-
ity can be reduced to O(2(n2 – n)).

In contrast to the probabilistic model migration, the migration of indi-
viduals used in iBMDA works with the spatial complexity O(nkN), where
kN is the number of migrating individuals. Because the communication
overhead in modern interconnection networks depends more strongly on
the start-up latency of communication than on a transported message size,
we can consider that the communication overhead will be nearly the same
for both approaches. Moreover, using an asynchronous or non-blocking
type of migration [14], the communication overhead could be simply over-
lapped.

Our parallel implementation of aBMDA derives benefits from overlap-
ping of communication and computation, based on non-blocking MPI [18]
communication subroutines MPI_ISend, MPI_IRecv and MPI_Wait. The
basic idea is shown in Fig. 5.

The information exchange between the resident and the immigrant node
begins with the initiation of receiving request. During the receiving proce-
dure, the resident node can compute its contingency tables and the mean
fitness value FR of the resident population. Next, all computed data are
packed into a simple send buffer using standard C routine memcpy and
sent using non-blocking communication to the neighbor node. The resident
chisqr-table is computed from the resident contingency tables in the next
step. Now, the resident node has to wait until the immigrant data are com-
pletely received. After finalization, the data from the immigrant node are
unpacked from a receive buffer and the immigrant chisqr-table is com-
puted. Now, the probabilistic model composition can be started. First, the
resident and the immigrant chisqr-tables are combined together using beta
parameter to produce a new chsqri-table. A new dependency graph is cre-
ated according to the information stored in the learned chisqr-table. Sec-
ond, a set of parameters Θ’ R are calculated using new dependency graph,

and the original resident and the immigrant contingency tables. As a result
the new probabilistic model M´R = (G´R, Θ´R), is determined.

Procedure MakeExhangeIslandInformation();
 MPI_IRecv(Receive buffer);
 Calculate the mean fitness value FR of the resident island;
 Calculate resident contingency tables;
 Pack resident contingency tables and FR into a send buffer;
 MPI_ISend(Send buffer);
 Calculate Chisqr_Table_Resident[i,j] =

RR ji
2

,χ

 MPI_Wait(Waiting for receiving finish);
 Unpack immigrant contingency tables and FI from a receive buffer;
 Calculate β;
 Calculate the Chisqr_Table_Imigrant[i,j]=

II ji
2

,χ ;

 Calculate items of the composed Chisqr_Table[i,j]:
IIRR jijiji

2
,

2
,

2
,)1(χββχχ −+=

 Build the new dependency graphs G´R according to new Chisqr_Table;
 Calculate set of the parameters: ΘR(G´R) , ΘI(G´R) using contingency tables ;
 Learning of the parameters: Θ´R = β ΘR + (1-β)ΘI

 Compose new resident model: M´R = (G´R , Θ´R)
 MPI_Wait(Waiting for sending finish);
end

Fig. 5. MPI communication between the resident and the immigrant node

The migration of individuals used in iBMDA can be realized in the
similar way. The computation of contingency tables and mean fitness
value is simply replaced by the selection of individuals intended for the
migration. In this case, only selected individuals are packed into a send
buffer and transported to the neighbor node. Received solutions are then
unpacked in the resident node and incorporated into resident population.
Finally, a new population is created in the standard way.

Besides the described type of communication, the MPI_Gather [18] op-
eration was employed after each generation. During this operation, all nec-
essary information from all processing nodes are collected to compute
global statistics including the global mean fitness value, the best global so-
lution, etc.

5 Experimental Results

In our experiments, we compared four different variants of the BMDA al-
gorithm. The first group consists of two versions of parallel BMDA algo-
rithm:

1. aBMDA, with adaptive learning of dependency graph.
2. iBMDA, with the migration of individuals.
These two parallel BMDA algorithms work with 8 island subpopula-

tions, each consisting of 256 individuals as a portion of the full population
with 2048 individuals.

The second group used for the comparison includes two classical vari-
ants of BMDA:

3. sBMDA, sequential BMDA, with full population of 2048 individuals
(as the whole eight-island model).
4. oBMDA - sequential BMDA with reduced population consisting of
256 individuals (as in case of one island).

The fixed subpopulation size has been used for the whole range of prob-

lem size. We have not wittingly used the possibility of the adaptation of
the subpopulation size according to problem size as discussed in [25]. Our
goal was to compare namely the parallel adaptive aBMDA version with
traditional iBMDA version under limited resources (subpopulation size).
The value of the population size for sBMDA is set to 2048 derived par-
tially from our experience and from the experimental results published in
[25] for the 3-Deceptive problem.

In all BMDA variants, truncation-based selection strategy was used, i.e.
all individuals were ordered by their fitness value and the better half was
used for model building. The truncation-based replacement strategy was
also used for the replacement operator, i.e. the new generated solutions
(offspring) replace the worse half of the subpopulation. The probabilistic
model is built in each generation. Frequency of the model migration or in-
dividual migration was even - once per five generations. In case of the al-
gorithm with migrating individuals, the elitism is used, that is, 13 best in-
dividuals of the immigrant subpopulation (i.e. about k=5 percent of the
subpopulation) replace the worse individuals of the resident subpopulation.
First stop condition was met after 500 generations; the second condition
was activated if there was no improvement in the interval of 50 genera-
tions.

5.1 Specification of Benchmarks

For our experimental study, four well known benchmarks with various
complexity and known global optimum were used. The OneMax and
TwoMax problems served as the basic benchmarks for the testing of the
basic performance. The Quadratic problem represents the adequate
benchmark that should be solvable just by any BMDA algorithm. The 3-
Deceptive task belongs to the hard deceptive benchmark for BMDA and it
is often used for the testing of BOA algorithms.

OneMax: ∑
−

=

=
1

0

)(
n

i
iOneMax xxf (9)

TwoMax:
22

)(
1

0

nn
xxf

n

i
iTwoMax +−= ∑

−

=

 (10)

Quadratic: ∑
−

=
+=

1
2

0
)12()2(2),()(

n

i
iiQuadratic xxfxf ππ

 (11)

where uvvuvuf 9.1)(9.09.0),(2 ++−=

3-Deceptive: ∑
−

=
++− ++=

1
3

0
)23()13()3(33)()(

n

i
iiiDeceptive xxxfxf πππ

 (12)

where

=
=
=

=

otherwise

uif

uif

uif

uf

1

20

18.0

09.0

)(3

The four mentioned objective functions were used to form fitness func-
tions (FF) without additional modification. We have tested four variants of
BMDA using 30 independent runs. To have baseline to island based ver-
sions, we first tested the classic sequential BMDA (sBMDA) with ordinary
population of 2048 individuals and the classical sequential BMDA with
reduced population (oBMDA).

The first metric is represented by the often used success rate of the
global optimum discovery. The second metric is calculated as the average
value of the best fitness function (FF) over 30 runs. The third metric is
computed as the mean value of the number of correctly discovered build-
ings blocks (BBs) over 30 runs. These metrics/statistics are discussed in
the next sections.

5.2 OneMax Problem

The sBMDA and aBMDA algorithms succeeded in the whole range of the
problem size, see Fig. 6. Classical iBMDA version produces comparative
result only up to 260 variables. The rapid drop follows after this threshold.
oBMDA was very significantly outperformed by all algorithms.

Success rate for OneMax problem

0

10

20

30

40

50

60

70

80

90

100

20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 440 460 480 500

Problem size [variables]

S
u

cc
es

s
ra

te
 [

%
]

aBMDA

iBMDA

sBMDA

oBMDA

Fig. 6. Success rate for OneMax problem

5.3 TwoMax Problem

Success rate for TwoMax problem

0

10

20

30

40

50

60

70

80

90

100

20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 440 460 480 500
Problem size [variables]

S
uc

ce
ss

 r
at

e
[%

]

aBMDA

iBMDA

sBMDA

oBMDA

Fig. 7. Success rate for TwoMax problem

In case of TwoMax problem, see Fig. 7, the results of the tested algorithms
are similar to the results achieved for OneMax problem. The aBMDA ver-
sion outperformed all other versions and achieved the same results as
sBMDA. The drop of success rate for the iBMDA version with migration
of individuals is stronger than in the case of OneMax problem.

5.4 Quadratic Problem

To achieve global solution for this problem, the probability model with the
bivariate dependency is required. This benchmark is thus perfectly suitable
for testing and comparing all BMDA variants.

Success rate for Quadratic problem

0

10

20

30

40

50

60

70

80

90

100

20 40 60 80 100 120 140 160 180 200 220 240 260 280 300
Problem size [variables]

S
u

cc
es

s
ra

te
 [

%
]

aBMDA

iBMDA

sBMDA

oBMDA

Fig. 8. Success rate for Quadratic problem

In Fig. 8, the success rate for all compared algorithms can be seen. The
best results were reached by sBMDA that succeeded in the nearly whole
range of the problem sizes. The similar behavior can be observed even for
aBMDA version that achieved 100 percent success rate up to 260 vari-
ables.

Besides the success rate metric the second metric represented by
mean±std statistics of the fitness function are presented in Table 1. It is
evident that aBMDA version and sBMDA version provide the same results
up to 260 variables. For higher number of variables sBMDA achieves bet-
ter results. The best value achieved for each problem size is written in
bold.

Table 1. Statistics results (mean±std of FF) for Quadratic problem

Algorithm Problem
size aBMDA iBMDA sBMDA oBMDA Optimum
60 30.0±0.00 30.0±0.00 30.0±0.00 29.9±0.06 30
80 40.0±0.00 39.9±0.30 40.0±0.00 39.8±0.10 40
100 50.0±0.00 49.8±0.80 50.0±0.00 49.6±0.14 50
120 60.0±0.00 59.7±0.13 60.0±0.00 59.3±0.24 60
140 70.0±0.00 67.7±3.14 70.0±0.00 69.1±0.25 70
260 130.0±0.00 127.1±0.37 130.0±0.00 126.3±0.57 130
280 139.9±0.24 136.5±0.30 139.9±0.02 135.8±0.54 140
300 149.7±0.46 146.1±0.27 149.9±0.02 145.3±0.64 150

In Table 2, the third metric represented by mean±std statistics for the

number of correctly recognized buildings blocks (BBs) are shown.

Table 2. Statistics results (mean±std of BBs) for Quadratic problem

Algorithm Problem
size aBMDA iBMDA sBMDA oBMDA Optimum
60 30.0±0.00 30.0±0.00 30.0±0.00 29.6±0.61 30
80 40.0±0.00 39.8±0.37 40.0±0.00 38.8±1.02 40
100 50.0±0.00 48.7±0.78 50.0±0.00 46.5±1.41 50
120 60.0±0.00 56.7±1.26 60.0±0.00 53.8±2.48 60
140 70.0±0.00 64.5±1.36 70.0±0.00 60.8±2.38 70
260 130±0.00 101±3.71 130±0.00 93.4±5.86 130
280 129±2.45 105±3.27 140±0.00 98.0±5.15 140
300 147±4.64 111±2.77 149.9±0.25 104±4.93 150

5.5 3-Deceptive Problem

The problem was investigated for the variable range from 21 to 120, see
Fig. 9. For higher number of variables, the drop of success rate is signifi-
cant for all proposed algorithms. It is caused by rather high complexity of
the 3-Deceptive problem that requires a more complex model and also lar-
ger population size for efficient performance. The best success rate was
achieved by aBMDA version. Very similar values were also achieved by
sBMDA. On the other hand, the worst results were obtained by oBMDA
and iBMDA.

Success rate for 3-Deceptive problem

0

10

20

30

40

50

60

70

80

90

100

21 30 39 51 60 72 81 90 99 120

Problem size [variables]

S
uc

ce
ss

 r
at

e
[%

]

aBMDA

iBMDA

sBMDA

oBMDA

Fig. 9. Success rate for 3-Deceptive problem

In Table 3, the mean±std statistics of the fitness function are presented.
The best results were obtained by the aBMDA version and by sBMDA.
The worst mean fitness values were achieved by oBMDA algorithm fol-
lowed by iBMDA. The mean values and standard deviation of the discov-
ered BBs are presented in Table 4. The adaptive aBMDA version proves
significant correlation between the mean value of fitness and the mean
value of BBs. For the case of the 99–variable problem the mean number of
BBs is 26.3 which is 80 percent of total 33 blocks. Note that iBMDA dis-
covered only 11.9 BBs (36 percent). It is interesting to compare these val-
ues with the experimental results published for BOA algorithm in [25],
where the achieved number of building blocks (BBs) for 99 variables and
for the population size estimated to 250 equals to 25 percent.

Table 3. Statistics results (mean±std of FF) for 3-Deceptive problem

Algorithm Problem
size aBMDA iBMDA sBMDA oBMDA Optimum
21 7.00±0.00 7.00±0.00 7.00±0.00 6.90±0.05 7
30 10.0±0.00 9.92±0.06 10.0±0.00 9.75±0.12 10
39 13.0±0.00 12.7±0.11 13.0±0.00 12.1±1.99 13
51 16.9±0.04 16.3±0.09 16.9±0.03 16.1±0.16 17
60 19.9±0.06 19.1±0.13 19.9±0.06 18.8±0.22 20
72 23.9±0.15 22.7±0.14 23.9±0.09 22.4±0.24 24
81 26.8±0.15 25.4±0.16 26.8±0.10 25.1±0.23 27
90 29.5±0.20 28.1±0.15 29.7±0.16 28.6±0.57 30
99 32.4±0.35 30.8±0.15 32.6±0.18 30.5±0.22 33
120 38.6±0.29 37.1±0.14 39.2±0.2 38.6±0.59 40

Table 4. Statistics results (mean±std of BBs) for 3-Deceptive problem

Algorithm Problem
size aBMDA iBMDA sBMDA oBMDA Optimum
21 7.00±0.00 7.00±0.00 7.00±0.00 6.47±0.50 7
30 10.0±0.00 9.23±0.56 10.0±0.00 7.60±1.11 10
39 13.0±0.00 10.6±1.11 13.0±0.00 7.33±1.72 13
51 16.8±0.45 10.6±0.92 16.9±0.39 8.27±1.67 17
60 19.7±0.59 11.3±1.49 19.6±0.56 7.23±2.39 20
72 23.1±1.02 11.5±1.56 23.0±0.93 8.23±2.29 24
81 25.0±1.51 11.5±1.62 25.3±0.98 7.92±2.39 27
90 25.8±2.08 11.3±1.41 27.8±1.61 8.50±2.26 30
99 26.3±2.99 11.9±1.83 29.4±1.85 8.67±2.95 33
120 26.2±3.72 11.6±1.80 32.1±2.09 9.03±1.74 40

5.6 Discussion to pseudo-parallel version of algorithms

In our experiments two groups of algorithms are compared:
1. The new proposed island-based aBMDA with probabilistic model

learning and the traditional island-based iBMDA with individual mi-
gration.

2. Sequential sBMDA version with the full population size and reduced
sequential oBMDA version.

In the first experiment, the success rate metric was applied. Both aB-
MDA and sBMDA versions are capable to find global optima with 100
percent success rate up to 500 variables in case of OneMax and TwoMax
problems and up to 260 variables in case of Quadratic problems. For diffi-
cult problems, like 3-Deceptive, the algorithms lack the ability to find re-
peatedly the optimal solution for problem size larger than 39.

It is evident that aBMDA is effective optimization tool outperforming
iBMDA version based on the traditional migration of individuals. From
this point of view the range of solvable problem size is at least two times
larger in case of aBMDA version.

In the second experiment the statistics including mean±std values of fit-
ness function (FF) was processed for two harder problems – the Quadratic
problem in Table 1 and 3-Deceptive problem in Table 3. The best values
are written in bold. From Table 1, it is evident that for Quadratic problem,
aBMDA and sBMDA have reached the global optima up to 260 variables
and outperformed very significantly iBMDA version. In the case of 3-
Deceptive problem, aBMDA outperformed all other algorithms besides the
sBMDA that is better for the problem size exceeding 90 variables. Note
that for the 120-variable problem the mean value of FF in case of aBMDA
equals to 38.6 which is close to global optimum represented by value 40.

 In Table 2 and Table 4, the statistics results for BBs are shown for
Quadratic and 3-Deceptive problems. From Table 2 it is evident, that in
case of Quadratic problem, aBMDA discovered all BBs up to 260 vari-
ables while iBMDA was successful up to 30 variables only. In case of 3-
Deceptive problems, see Table 4, aBMDA outperformed iBMDA in the
whole range of problem size. Note that aBMDA achieved approximately
two time higher mean value of BBs for the problem size exceeding 60
variables.

The computational complexity of all algorithms measured by the num-
ber of generation is comparable. For example, in case of Quadratic prob-
lem with 60 variables the average computational time is about 20 genera-
tions, see Fig. 10. Note that oBMDA was able to find the global optima for
this instance of Quadratic problem only in 66 percent of the 30 runs, see
Fig. 8.

Time complexity of proposed algorithms (Quadratic 60)

15

15,5

16

16,5

17

17,5

18

18,5

19

19,5

20

aBMDA iBMDA sBMDA oBMDA

Variants of algorithm

G
en

er
at

io
n

s

Fig. 10. Time complexity of the proposed algorithms for Quadratic problem

5.7 Performance of parallel implementation

The parallel implementation of aBMDA and iBMDA was tested on a clus-
ter of 8 Linux-based workstations equipped with Intel E6550 processor
and 2GB RAM connected together by 1Gb LAN network. In case of se-
quential sBMDA only one station was used.

First, the comparison of the mean execution time TG related to one gen-
eration was performed. For TG calculation, five independent runs, each

composed of 20 generation (including 4 migration cycles), were carried
out.

The algorithms were compared using OneMax benchmark, see Fig. 11.
Let us note that the convergence toward global optima was not checked in
this case. From Fig. 11, a marked difference between sequential and paral-
lel approaches is evident, as it was expected. The values of TG for the both
parallel algorithms are comparable. Finally, OneMax benchmark is rela-
tively simple, as the fitness function evaluation does not influence the exe-
cution time very much. For more complex problems, a gap between se-
quential and parallel approaches will be deeper, because computational
complexity will dominate communication complexity.

Execution time of one generation for OneMax problem

0

10

20

30

40

50

60

70

20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 440 460 480 500

Problem size [variables]

T
G
 [

s]

aBMDA

iBMDA

sBMDA

Fig. 11. The mean execution time TG for OneMax

The speed-up of parallel implementations for OneMax problem is dis-
played in Fig. 12. It varies between 5 and 9 for both parallel algorithms.
The decrease of the speed-up for larger instances of OneMax problem is
caused by the increased parallelization overhead. The overhead consists of
the quadratic time complexity of contingency tables transport and the sub-
sequent model composition in the resident node.

The performance of aBMDA algorithm is slightly better. For simpler in-
stances (say up to 200 variables) the achieved speed-up was larger than a
number of processing nodes (8 in our experiment) – it is known as the
phenomenon of superlinear speed-up [3].

 Speed-up of one generation for OneMax problem

0

1

2

3

4

5

6

7

8

9

10

20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 440 460 480 500

Problem size [variables]

S
p

ee
d

-u
p

aBMDA

iBMDA

Fig. 12. Speed-up of iBMDA and aBMDA with regard to sBMDA for OneMax
problem

The value of speed-up was also investigated for Quadratic problem, see
Fig. 13. Both parallel algorithms achieved superlinear speed-up in the
whole range of problem instances as the consequence of the more complex
benchmark.

Speed-up of one generation for Quadratic problem

1

2

3

4

5

6

7

8

9

10

11

20 40 60 80 100 120 140 160 180 200 220 240 260 280 300
Problem size [variables]

S
p

ee
d

-u
p

aBMDA

iBMDA

Fig. 13. Speed-up of iBMDA and aBMDA with regard to sBMDA for Quadratic
problem

Let us note that the knowledge of the concrete speed-up can be utilize
for prediction of the execution time of the optimization process and also

for the setting of proper population size and the number of processing
nodes.

Finally, we investigated the speed-up of the optimization tasks which
resulted in 100% success rate. The value of the speed-up was calculated
using the following schema: a) first the number of generation required for
achievement the global optima for each version of BMDA and for each in-
stance of the problem was measured and averaged during 30 independent
runs, b) this value was multiplied by the mean execution time of one gen-
eration TG for relevant version of BMDA, c) finally, this value was nor-
malized according the values obtained by sequential sBMDA and plotted
in the Fig. 14 and Fig. 15.

From Fig. 14, it is evident that iBMDA algorithm was not able to find
optimal solutions for the whole range of OneMax instances. It succeeded
only in the range from 20 to 220 variables. aBMDA solved the tasks relia-
bly with the speed-up higher than 6 and even with superlinear speed-up up
to 280 variables.

Speed-up for OneMax with 100% success rate

0

1

2

3

4

5

6

7

8

9

10

20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 440 460 480 500
Problem size [variables]

S
p

ee
d

-u
p

aBMDA

iBMDA

Fig. 14. Speed-up of iBMDA and aBMDA with regard to sBMDA for OneMax
problem in case of 100% success rate

The capability of the speed-up for Quadratic problem (Fig. 15) was in-
vestigated up to 260 variables, whereas aBMDA was still able to produce
optimal solutions with 100% success rate. The speed-up varied between
4.4 and 8.7. iBMDA algorithm achieved comparable speed-up as aBMDA
but only up to 60 variables.

Speed-up for Quadratic with 100% success rate

1

2

3

4

5

6

7

8

9

10

20 40 60 80 100 120 140 160 180 200 220 240 260

Problem size [variables]

S
p

ee
d

-u
p

aBMDA

iBMDA

Fig. 15. Speed-up of iBMDA and aBMDA with regard to sBMDA for Quadratic
problem in case of 100% success rate

5.7.1 Discussion to parallel implementation

The message passing interface MPI used for parallel implementation of
BMDA algorithms appears as an efficient software tool. Two variants of
parallel BMDA was investigated – aBMDA and iBMDA. They are mutu-
ally compared and also compared to the sequential sBMDA.

From Fig. 12 and Fig. 13 it is possible to conclude, that the communica-
tion overhead is negligible. The values of achieved speed-up of processing
were very close to the number of utilized processing nodes, and even
higher in some cases. The ability of finding global optima and its speed-up
was also examined for both tested parallel algorithms. From Fig. 14 and
Fig. 15, it is evident that aBMDA algorithm is much more robust than iB-
MDA. The speed-up of optimization process with respect to sBMDA (with
100 percent success rate) varies from 4.4 to 8.7, but for the most of prob-
lem instances it is higher than 6.

6 Conclusions

This chapter has presented a new idea of parallel BMDA algorithms using
island-based model with the unidirectional ring topology. The cooperation
of demes was realized via migration of probabilistic models instead of the
traditional migration of individuals. Each two neighbor demes are organ-
ized as a pair of resident and immigrant demes. We have introduced an

adaptive learning technique, based on the quality of resident and immi-
grant subpopulation, which consists of the adaptation of the resident prob-
abilistic model by the incoming neighbor immigrant model.

We have introduced an efficient tool how to learn graphical probabilistic
model and associated probabilistic parameters. The comparative experi-
mental studies demonstrated that the proposed parallel algorithm aBMDA
outperforms the traditional iBMDA using migration of individuals, mainly
according to the problem size and the level of the success rate. This is true
for all the applied benchmarks beginning with OneMax and ending with
the Quadratic problem. The 3-Deceptive problem is a hard problem for all
compared algorithms but aBMDA and sBMDA provide relatively best so-
lutions. Note that the sequential sBMDA with full population provides
competitive results compared with the aBMDA, indeed but the time com-
plexity of aBMDA version can be significantly reduced by parallel proc-
essing.

The future work will be focused on more sophisticated modifications of
learning techniques with limited size of parameter transfer. We also aim to
parallelize the Bayesian Optimization Algorithm (BOA) using a modified
concept of probabilistic model migration.

Acknowledgement

This work was partially supported by the Grant Agency of the Czech Re-
public under No.~102/07/0850 Design and hardware implementation of a
patent-invention machine and the Research Plan No. MSM 0021630528 -
Security-Oriented Research in Information Technology.

References

1. Ahn CW, Goldberg DE, Ramakrishna RS (2003) Multiple-Deme Parallel Es-
timation of Distribution Algorithms: Basic Framework and Application. (Illi-
gal Report No. 2003016)

2. Alba E, Troya JM (1999) A Survay of Parallel Distributed Genetic Algorithms.
Complexity, vol. 4, pp 303-346

3. Baluja S, (1994) Population-Based Incremental Learning: A method for Inte-
grating Genetic Search Based Function Optimization and Competitive Learn-
ing. (Technical report CMU-CS-94-163, Carnegie Mellon University)

4. Bosman PAN, Thierens D (1999) An Algorithmic Framework For Density Es-
timation Based Evolutionary Algorithms. (Technical report UU-CS-1999-46,
Utrecht University)

5. Bosman PAN, Thierens D (1999) Linkage information processing in distribu-
tion estimation algorithms. In: Proceedings of the Genetic and Evolutionary
Computation Conference GECCO-99. Orlando, Florida, Morgan Kaufmann
Publishers, San Fransisco, CA, vol I, pp 60-67

6. Bosman PAN, Thierens D (2000) Continuous iterated density estimation evo-
lutionary algorithms within the IDEA framework. In Proceedings of the Opti-
mization by Building and Using Probabilistic Models OBUPM workshop. Ge-
netic and Evolutionary Computation Conference GECCO-2000, pp 197-200

7. Cantu-Paz E (2000), Efficient and Accurate Parallel genetic algorithm. Kluwer
Academic Publishers

8. delaOssa L, Gámez JA, Puerta JM (2004) Migration of probability models in-
stead of individuals: an alternative when applying the island model to edas In:
Parallel Problem Solving from Nature - PPSN VIII, vol 3242 of LNCS,
Springer, pp 242–252

9. delaOssa L, Gámez JA, Puerta JM (2005) Improving model combination
through local search in parallel univariate EDAs, Evolutionary Computation,
vol. 2, pp 1426-1433

10. Goldberg DE, Sastry K, Llorà X (2007) Toward routine billion-variable opti-
mization using genetic algorithms. Complexity vol. 12 pp 27–29

11. Heckerman D, Geiger D, Chickering M (1994) Learning Bayesian networks:
The combination of knowledge and statistical data. (Technical Report MSR-
TR-94-09, Microsoft Research, Redmond, WA)

12. Höhfeld M, Rudolph G (1997) Towards a theory of population-based incre-
mental learning. In: Proceedings of 4th International Conference on Evolution-
ary Computation, IEEE Press, pp 1-5

13. Larrañaga P, Lozano J. A. (2002) Estimation of Distribution Algorithms. Klu-
wer Academic Publishers, London ISBN 0-7923-7466-5.

14. Lin SC, Punch WF, Goodman ED (1994) Coarse-grain parallel genetic algo-
rithms: categorization and a new approach In Sixth IEEE Conference on Paral-
lel and Distributed Processing, IEEE Press, Piscataway, NJ, pp 28-37

15. Lobo FG, Lima CF, Martires H (2005) Massive parallelization of the compact
genetic algorithm. In: Ribeiro R. (ed) Proceedings of the International Confer-
ence on Adaptive and Natural Computing Algorithms (ICANNGA-2005),
Springer, pp 530-533

16. Marin JM, Mengersen K, Robert CP (2005) Bayesian Modelling and Inference
on Mixtures of Distribution. In Dey D, Rao CR (eds) Handbook of Statistics
25, pp 459-507

17. Mendiburu-Alberro A (2006) Parallel implementation of estimation of Distri-
bution Algorithms based on probabilistic graphical models. Application to
chemical calibration models (PhD thesis, the University of Bascue Country,
Donostia-San Sebastian)

18. MPI-2 Extension to message-Passing Interface, Message Passing Interface Fo-
rum, 2003, Document available at url: http://www.mpi-forum.org/docs/mpi2-
report.pdf

19. Mühlenbein H (1997) The equation for response to selection and its use for
prediction. In: Evolutionary Computation 5(3). pp 303-346

20. Ocenasek J (2002) Parallel Estimation of Distribution Algorithms. (PhD. The-
sis, Faculty of Information Technology, Brno University of Technology, Brno,
Czech Rep.)

21. Ocenasek J, Schwarz J, Pelikan M (2003) Design of Multithreaded Estimation
of Distribution Algorithms. In: Genetic and Evolutionary Computation Con-
ference - GECCO 2003. Springer Verlag: Berlin, pp 1247-1258

22. Pelikan M, Goldberg DE, Cantú-Paz E (1998) Linkage problem, distribution
estimation, and Bayesian networks. (IlliGAL Report No. 98013, University of
Illinois at Urbana-Champaign, Illinois Genetic Algorithms Laboratory, Ur-
bana, Illinois)

23. Pelikan M, Goldberg DE, Lobo F (1999) A survey of optimization by building
and using probabilistic models. (IlliGAL Report No. 99018, University of Illi-
nois at Urbana-Champaign, Illinois Genetic Algorithms Laboratory, Urbana,
Illinois)

24. Pelikan M, Mühlenbein H (199) The bivariate marginal distribution algorithm.
In: Advances in Soft Computing - Engineering Design and Manufacturing.
Springer-Verlag, London, pp 521-535

25. Pelikan M, Sastry K, Cantú-Paz E (2000) Bayesian Optimization Algorithm,
Population Sizing and Time to Convergence. (IlliGAL Report No. 2000001, Il-
linois Genetic Algorithm Laboratory, University of Illinois at Urbana-
Champaing, p 13)

26. Pelikan M, Sastry K, Goldberg DE (2001) Evolutionary Algorithms + Graphi-
cal Models = Scalable Black-Box Optimization. (IlliGAL Report No. 2001029,
University of Illinois at Urbana-Champaign, Illinois Genetic Algorithms Labo-
ratory, Urbana, Illinois)

27. Xiang Y, Chu T (1999) Parallel Learning of Belief Networks in Large and Dif-
ficult Domains. In: Data Mining and Knowledge Discovery, vol 3, pp 315-339

