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Summary. The chapter presents a new concept of parallel Bivariate 
Marginal Distribution Algorithm (BMDA) using the stepping stone com-
munication model with the unidirectional ring topology. The traditional 
migration of individuals is compared with a newly proposed technique of 
probability model migration. The idea of the new adaptive BMDA (aB-
MDA) algorithms is to modify the classic learning of the probability model 
(applied in the sequential BMDA [24]). In the proposed strategy, the adap-
tive learning of the resident probability model is used. The evaluation of 
pair dependency, using Pearson’s chi-square statistics is influenced by the 
relevant immigrant pair dependency according to the quality of resident 
and immigrant subpopulation. Experimental results show that the proposed 
adaptive aBMDA significantly outperforms the traditional concept of mi-
gration of individuals. 

1 Introduction 

The concept of traditional parallel genetic algorithm (PGA) is well known. 
It stems from the idea that the large problem can be successfully solved us-
ing decomposition of the original problem into smaller tasks. Conse-
quently, the tasks can be solved simultaneously using multiple processors. 

This divide-and-conquer technique can be applied to GA in many dis-
tinct ways. Mostly, the population is divided into a few subpopulations or 
demes, and each of these demes evolves separately on different processors. 
Exchange of information among subpopulations is possible via a migration 
operator. In this context, the term island model is commonly used. Island 
populations are free to converge toward different optima. The migration 



operator is supposed to mix good features that emerge locally in the differ-
ent demes. 

Many topologies can be defined for connecting the demes like mesh, to-
rus, hypercube or ring. The most common models are the island model and 
the stepping stones model. In the basic island model, migration can occur 
between any subpopulations, whereas in the stepping stone model, migra-
tion is restricted to neighboring demes. In [7], the theory is published pro-
viding rational decisions for the proper setting of control parameters. An 
interesting survey of PGA is published in [2]. An effective technique for 
the massive parallelization of compact GA was published in [15]. An ex-
tremely prestigious PGA which is capable to solve billion-variable optimi-
zation problems was recently published in [10]. 

This chapter concerns the application of the stepping stone model (for 
simplicity we will use the term island-based model) for bivariate marginal 
distribution algorithm BMDA. This new approach using probability model 
migration is conceptually different from the traditional parallel genetic al-
gorithms with migration of individuals/solutions and also from the EDAs 
using parallel building of pseudo-sequential probabilistic models. 

The sections are organized as follows: Section 2 introduces the basic 
concept of EDA algorithm and current techniques used in the paralleliza-
tion of the EDA algorithms. In Section 3 the sequential BMDA is de-
scribed including the factorization and graphical representation of the 
probability model. Section 4 presents the motivation and a new idea of 
learning the probability model using a concept of probability model migra-
tion. Experimental results are shown in Section 5, Section 6 concludes the 
chapter. 

2 Traditional EDAs 

EDAs belong to the advanced evolutionary algorithms based on the esti-
mation and sampling of graphical probabilistic models [4, 5, 6, 11, 13, 22, 
23, 26]. They do not suffer from the disruption of building blocks known 
from the theory of standard genetic algorithms. The canonical sequential 
EDA is described in Fig. 1. 

EDAs often surpass classical EAs in the number of required fitness 
function evaluations. However, the absolute execution time is still limiting 
factor which determines the size of practically tractable problems. Refer-
ring to Fig. 1 the most time consuming task is the estimation of probability 
model for many problems. Most papers on EDAs concentrate on parallel 
construction and sampling of probabilistic models. The well-known algo-



rithm employing parallel construction of Bayesian network is EBNA algo-
rithm targeted for MIMD architecture and designed both for MPI and 
POSIX threads, published in [17, 20, 21]. In [25], the theory of population 
sizing and timing to convergence is published. 

 
Set t ← 0; 
Generate initial population D(0); 
  While termination criteria is false do 
  begin 
    Select a set of promising solution Ds(t); 
    Construct a new probability model M from Ds(t) using chosen metric; 
    Sample offspring O(t) from M; 
    Evaluate O(t); 
    Create D(t+1) as a subset of O(t) ∪ D(t) with cardinality N; 
    t ← t + 1; 
  end 

Fig. 1. The pseudo code of canonical EDA 

A new idea of the multideme parallel estimation of distribution algo-
rithm (PEDAs) based on PBIL algorithm was published in [1]. In [16], 
mixtures of distribution with Bayesian inference are discussed. Parallel 
learning of belief networks in large domains is investigated in [27]. Using 
the concept of PBIL algorithm [3, 12, 19], the classical phenomenon of 
migration in island-based EAs was carried over into probability distribu-
tion of EDAs. A new approach of probability vector crossover was imple-
mented with very good performance.  

2.1 Linkage learning in EDA algorithms 

In competent genetic algorithms, various sophisticated linkage learning 
techniques must be implemented to discover Building Blocks (BBs). In 
EDA algorithms, the linkage learning is automatically incorporated into a 
graphical probabilistic model. EDAs support an effective detection, mixing 
and reproduction of BBs, so that they are capable to solve complex optimi-
zation problems including deceptive problems. The choice of the model 
complexity is very significant and it is determined by the fitness function 
complexity. We can recognize three categories of model complexity: with-
out dependency (UMDA), pairwise dependency (MIMIC, BMDA) and 
multivariate dependency (BOA, EBNA).  



2.2 Migration of probabilistic parameters for UMDA 

The concept of migration of probabilistic parameters instead of individuals 
was firstly published in [8] where on UMDA platform the convex combi-
nation of univariate probability models is investigated for various network 
topologies (ring, star etc.). 

Further enhancement of this concept is described in [9] where the local 
search methods are used to identify which parts of the immigrant model 
can improve the resident model. 

In following sections we describe the proposal of a new concept of is-
land-based BMDA algorithm with unidirectional ring topology based on 
the combination of two adjacent bivariate probability models. 

3 Sequential BMDA 

The well known representative of bivariate EDAs is the Bivariate Marginal 
Distribution Algorithm (BMDA) proposed by Pelikan and Mühlenbein 
[19, 24]. This algorithm uses a factorization of the joint probability distri-
bution that exhibits second-order dependencies. 

EDAs are also population based algorithm but unlike GAs the new 
population is generated by sampling the recognized probability model. 

Let us denote: 
D = (X0, X1,..., XN-1) with X ∈ D, is the population of strings 

/solutions/individuals, 
X = (X0, X1,..., Xn-1) is a string/solution of length n with Xi as a variable, 
x = (x0, x1,..., xn-1) is a string/solution with xi as a possible instantiation 

of variable Xi, xi ∈{0,1} , 
p(X) = p(X0, X1,..., Xn-1) denotes the n dimensional probability distribu-

tion, 
p(x0, x1,..., xn-1) = p(X0 = x0, X1 = x1,..., Xn-1 = xn-1) denotes a probability of 

a concrete n dimensional vector. 
The probabilistic model used in BMDA can be formalized by M  = 

(G, Θ), where G is dependency graph and Θ = (θ0, θ2,…, θn-1) is a set of 
parameters which are estimated by local conditional or marginal probabil-
ity for each node/variable of the dependency graph. 

A greedy algorithm for building dependency graphs is used. At the be-
ginning, the root node is selected and subsequently the nodes with maxi-
mum dependency value are searched among the remaining nodes and 
joined. These pairwise dependencies in BMDA are discovered by Pear-
son’s chi-square statistics: 
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where N is the size of parent population and m(xi, xj), m(xi) resp. m(xj) 
denote the number of individuals in the parent population with concrete 
values of xi and/or xj. These values are stored in the contingency tables. 
From the theoretical point of view this metric can be seen as statistical test-
ing of hypothesis – for example binary genes Xi and Xj are considered to be 
independent at 95 percent confidence level if 84.32

, <jiχ . Like COMIT, 

BMDA also uses a variant of minimum spanning tree technique to learn a 
model.  

However, during the tree construction, if none of the remaining vari-
ables can be “rooted” to existing tree, BMDA starts to form additional tree 
from remaining variables. The final probability distribution is thus a forest 
distribution (a set of mutually independent dependency trees): 
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where V is the set of nodes of dependency tree, R is the set of root nodes 
and Xj(i) denotes the parent node of Xi. Given the tree dependence structure, 
the univariate marginal probability distributions are estimated from the 
promising/parent population: 
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For example, the joint probability distribution for the dependency graph 
in Fig. 2 can be expressed by the factorization: 

1. p(X) = p(X4) p(X3 |X4) p(X2 |X3) p(X1 |X2) p(X0|X1) 
2. p(X) = p(X2) p(X3 |X2) p(X0 |X4) p(X4) p(X1 |X4) 
 
The time complexity of the complete BMDA algorithm can be ex-

pressed by the formula: O(n3)+O(4Nn2)+O(Nn), where the first component 
is a cubical time complexity of the dependency graph construction, the 
second component is a quadratic time complexity of contingency tables 



collection and the third component of the formula reflects a linear com-
plexity of new solution sampling. 
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Fig. 2. Example of dependency graph for: a) COMIT, b) BMDA 

4 Island-based BMDA 

4.1 Migration of individuals 

In traditional island-based PGA algorithms, an infrequent migration of in-
dividuals among subpopulation is incorporated. The migration process is 
controlled by several parameters. It is necessary to determine number and 
size of the subpopulations, the frequency and the intensity of migration 
and the method used for selection of candidate migrants. By analogy, it is 
possible to build island-based parallel BMDA, whereas the GA demes are 
replaced by BMDA ones. In BMDA and generally in EDAs, as it is 
known, new individuals are generated by the sampling of the probabilistic 
model. Consequently, a question pops up, whether it is possible to replace 
the migration of individual just by the probability model transfer. This 
topic is investigated in the next subsection.  

4.2 Migration of the probabilistic model 

The principal motivation for the proposal of a new concept of BMDA par-
allelization is to discover the efficiency of the transfer of probabilistic pa-
rameters in comparison with the traditional transfer of individuals. The 
main goal is to find a robust computational tool for hard optimization 



problems. The present approaches recently published in [1, 8, 9] use a 
simpler probability model only (PBIL, UMDA). 

In concordance with the theoretical conclusion shown in [24] and on the 
basis of experimental works done in [17], we used the island-based com-
munication model with unidirectional ring topology with synchronization, 
see Fig. 3.  

We have simulated the island-based system partly on a single processor 
computer and partly on a real parallel system composed of a cluster of 
eight Linux-based workstations. It is evident that we can simply decom-
posed the migration process in the ring loop into pairwise interactions of 
two adjacent islands - one of them is considered to be a resident island 
specified by resident probabilistic model and the second one is considered 
to be an immigrant island which probabilistic model is transferred to par-
ticipate on the building up a new resident model after a predefined migra-
tion rate. 

 

 
Fig. 3. Ring topology of island-based BMDA 

We focused on the problem of how to compose the resident model with 
the incoming model belonging to the immigrant island. In general, the 
modification of the resident model by the immigrant model can be formal-
ized by the adaptation rule [3, 19]: 

M´R = β  M R ° (1- β) MI ,                                                                         (5) 

where operator ° can be e. g. sum operator and the coefficient β in the 
range <0, 1> specifies the influence of the immigrant model.  

Immigrant island  

Subpopulation 

Migration direction 

Resident island  



4.3 Adaptive Learning of Probabilistic Model 

We applied the adaptive learning for the both parts of the probabilistic 
model M R = (GR , ΘR) – the dependence graph GR and the parameter set 
ΘR. The new dependency graph G´R is not built by the aggregation of the 
original graph GR and the incoming graph GI but by means of Pearson’s 
chi-square statistics: 
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The new parameters Θ´R are calculated by the simple adaptation rule: 

Θ´R = β ΘR + (1–β)ΘI                                                                                 (7) 

The adaptation coefficient β is defined by the formula: 
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where FR represents the mean fitness value of the resident subpopulation 
and FI represents the mean fitness value of the immigrant subpopulation.  

 
Procedure (Output: M’ R, Input:SubPopI, SubPopR) 
  Calculate FR for the resident subpopulation; 
  Calculate FI for the immigrant subpopulation; 
  Calculate β: 
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  For i=0 to n-1 do begin 
    For j=0 to n-1 do begin 
      Calculate
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IIRR jijiji

2
,

2
,

2
, )1(  χββχχ −+=  

    end 
  end 
  Build the new dependency graphs G´R according Chisqr_Table; 
  Calculate set of the parameters: ΘR(G´R) , ΘI(G´R) ; 
  Learning of the parameters: Θ’ R = β ΘR + (1-β)ΘI 
  Store the new resident model: M´R = (G´R , Θ´R), 
  Sample the adapted model M´R ; 
  Replacement of SubPopR; 
end 

Fig. 4. Adaptive learning of the resident model  



The major part of all experiments was implemented using this pseudo 
parallel version of the algorithm aBMDA, see Fig. 4 

4.4 Parallel implementation on a cluster of workstations 

In the parallel version of aBMDA, it is necessary to transfer some compo-
nents of the probability model from the immigrant node to the resident 
one. In the proposed version, the contingency tables are transferred. The 
spatial complexity of all transported tables is O(4n2), where n is the cardi-
nality of the solved problem. Seeing that chi-square is symmetric, and de-
pendencies between the same variables have no sense, the spatial complex-
ity can be reduced to O(2(n2 – n)). 

In contrast to the probabilistic model migration, the migration of indi-
viduals used in iBMDA works with the spatial complexity O(nkN), where 
kN is the number of migrating individuals. Because the communication 
overhead in modern interconnection networks depends more strongly on 
the start-up latency of communication than on a transported message size, 
we can consider that the communication overhead will be nearly the same 
for both approaches. Moreover, using an asynchronous or non-blocking 
type of migration [14], the communication overhead could be simply over-
lapped. 

Our parallel implementation of aBMDA derives benefits from overlap-
ping of communication and computation, based on non-blocking MPI [18] 
communication subroutines MPI_ISend, MPI_IRecv and MPI_Wait. The 
basic idea is shown in Fig. 5. 

The information exchange between the resident and the immigrant node 
begins with the initiation of receiving request. During the receiving proce-
dure, the resident node can compute its contingency tables and the mean 
fitness value FR of the resident population. Next, all computed data are 
packed into a simple send buffer using standard C routine memcpy and 
sent using non-blocking communication to the neighbor node. The resident 
chisqr-table is computed from the resident contingency tables in the next 
step. Now, the resident node has to wait until the immigrant data are com-
pletely received. After finalization, the data from the immigrant node are 
unpacked from a receive buffer and the immigrant chisqr-table is com-
puted. Now, the probabilistic model composition can be started. First, the 
resident and the immigrant chisqr-tables are combined together using beta 
parameter to produce a new chsqri-table. A new dependency graph is cre-
ated according to the information stored in the learned chisqr-table. Sec-
ond, a set of parameters Θ’ R are calculated using new dependency graph, 



and the original resident and the immigrant contingency tables. As a result 
the new probabilistic model M´R = (G´R, Θ´R), is determined. 

 
Procedure MakeExhangeIslandInformation(); 
  MPI_IRecv(Receive buffer); 
  Calculate the mean fitness value FR of the resident island; 
  Calculate resident contingency tables; 
  Pack resident contingency tables and FR into a send buffer; 
  MPI_ISend(Send buffer); 
  Calculate Chisqr_Table_Resident[i,j] = 
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,χ  

  MPI_Wait(Waiting for receiving finish); 
  Unpack immigrant contingency tables and FI from a receive buffer; 
  Calculate β; 
  Calculate the Chisqr_Table_Imigrant[i,j]=
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  Calculate items of the composed Chisqr_Table[i,j]:  
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  Build the new dependency graphs G´R according to new Chisqr_Table; 
  Calculate set of the parameters: ΘR(G´R) , ΘI(G´R) using contingency tables ; 
  Learning of the parameters: Θ´R = β ΘR + (1-β)ΘI 

  Compose new resident model: M´R = (G´R , Θ´R)  
  MPI_Wait(Waiting for sending finish); 
end 

Fig. 5. MPI communication between the resident and the immigrant node  

The migration of individuals used in iBMDA can be realized in the 
similar way. The computation of contingency tables and mean fitness 
value is simply replaced by the selection of individuals intended for the 
migration. In this case, only selected individuals are packed into a send 
buffer and transported to the neighbor node. Received solutions are then 
unpacked in the resident node and incorporated into resident population. 
Finally, a new population is created in the standard way.  

Besides the described type of communication, the MPI_Gather [18] op-
eration was employed after each generation. During this operation, all nec-
essary information from all processing nodes are collected to compute 
global statistics including the global mean fitness value, the best global so-
lution, etc. 



5 Experimental Results 

In our experiments, we compared four different variants of the BMDA al-
gorithm. The first group consists of two versions of parallel BMDA algo-
rithm: 

1. aBMDA, with adaptive learning of dependency graph.  
2. iBMDA, with the migration of individuals. 
These two parallel BMDA algorithms work with 8 island subpopula-

tions, each consisting of 256 individuals as a portion of the full population 
with 2048 individuals.  

The second group used for the comparison includes two classical vari-
ants of BMDA: 

3. sBMDA, sequential BMDA, with full population of 2048 individuals 
(as the whole eight-island model). 
4. oBMDA - sequential BMDA with reduced population consisting of 
256 individuals (as in case of one island). 
 
The fixed subpopulation size has been used for the whole range of prob-

lem size. We have not wittingly used the possibility of the adaptation of 
the subpopulation size according to problem size as discussed in [25]. Our 
goal was to compare namely the parallel adaptive aBMDA version with 
traditional iBMDA version under limited resources (subpopulation size). 
The value of the population size for sBMDA is set to 2048 derived par-
tially from our experience and from the experimental results published in 
[25] for the 3-Deceptive problem. 

In all BMDA variants, truncation-based selection strategy was used, i.e. 
all individuals were ordered by their fitness value and the better half was 
used for model building. The truncation-based replacement strategy was 
also used for the replacement operator, i.e. the new generated solutions 
(offspring) replace the worse half of the subpopulation. The probabilistic 
model is built in each generation. Frequency of the model migration or in-
dividual migration was even - once per five generations. In case of the al-
gorithm with migrating individuals, the elitism is used, that is, 13 best in-
dividuals of the immigrant subpopulation (i.e. about k=5 percent of the 
subpopulation) replace the worse individuals of the resident subpopulation. 
First stop condition was met after 500 generations; the second condition 
was activated if there was no improvement in the interval of 50 genera-
tions. 



5.1 Specification of Benchmarks 

For our experimental study, four well known benchmarks with various 
complexity and known global optimum were used. The OneMax and 
TwoMax problems served as the basic benchmarks for the testing of the 
basic performance. The Quadratic problem represents the adequate 
benchmark that should be solvable just by any BMDA algorithm. The 3-
Deceptive task belongs to the hard deceptive benchmark for BMDA and it 
is often used for the testing of BOA algorithms. 
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The four mentioned objective functions were used to form fitness func-
tions (FF) without additional modification. We have tested four variants of 
BMDA using 30 independent runs. To have baseline to island based ver-
sions, we first tested the classic sequential BMDA (sBMDA) with ordinary 
population of 2048 individuals and the classical sequential BMDA with 
reduced population (oBMDA). 

The first metric is represented by the often used success rate of the 
global optimum discovery. The second metric is calculated as the average 
value of the best fitness function (FF) over 30 runs. The third metric is 
computed as the mean value of the number of correctly discovered build-
ings blocks (BBs) over 30 runs. These metrics/statistics are discussed in 
the next sections. 



5.2 OneMax Problem 

The sBMDA and aBMDA algorithms succeeded in the whole range of the 
problem size, see Fig. 6. Classical iBMDA version produces comparative 
result only up to 260 variables. The rapid drop follows after this threshold. 
oBMDA was very significantly outperformed by all algorithms. 
 

Success rate for OneMax problem
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Fig. 6. Success rate for OneMax problem 

5.3 TwoMax Problem 

Success rate for TwoMax problem
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Fig. 7. Success rate for TwoMax problem 



In case of TwoMax problem, see Fig. 7, the results of the tested algorithms 
are similar to the results achieved for OneMax problem. The aBMDA ver-
sion outperformed all other versions and achieved the same results as 
sBMDA. The drop of success rate for the iBMDA version with migration 
of individuals is stronger than in the case of OneMax problem. 

5.4 Quadratic Problem 

To achieve global solution for this problem, the probability model with the 
bivariate dependency is required. This benchmark is thus perfectly suitable 
for testing and comparing all BMDA variants. 

 
Success rate for Quadratic problem
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Fig. 8. Success rate for Quadratic problem 

In Fig. 8, the success rate for all compared algorithms can be seen. The 
best results were reached by sBMDA that succeeded in the nearly whole 
range of the problem sizes. The similar behavior can be observed even for 
aBMDA version that achieved 100 percent success rate up to 260 vari-
ables. 

Besides the success rate metric the second metric represented by 
mean±std statistics of the fitness function are presented in Table 1. It is 
evident that aBMDA version and sBMDA version provide the same results 
up to 260 variables. For higher number of variables sBMDA achieves bet-
ter results. The best value achieved for each problem size is written in 
bold. 



Table 1. Statistics results (mean±std of FF) for Quadratic problem 

Algorithm Problem 
size aBMDA iBMDA sBMDA oBMDA Optimum 
60 30.0±0.00 30.0±0.00 30.0±0.00 29.9±0.06 30
80 40.0±0.00 39.9±0.30 40.0±0.00 39.8±0.10 40
100 50.0±0.00 49.8±0.80 50.0±0.00 49.6±0.14 50
120 60.0±0.00 59.7±0.13 60.0±0.00 59.3±0.24 60
140 70.0±0.00 67.7±3.14 70.0±0.00 69.1±0.25 70
260 130.0±0.00 127.1±0.37 130.0±0.00 126.3±0.57 130
280 139.9±0.24 136.5±0.30 139.9±0.02 135.8±0.54 140
300 149.7±0.46 146.1±0.27 149.9±0.02 145.3±0.64 150

 
In Table 2, the third metric represented by mean±std statistics for the 

number of correctly recognized buildings blocks (BBs) are shown. 

Table 2. Statistics results (mean±std of BBs) for Quadratic problem 

Algorithm Problem 
size aBMDA iBMDA sBMDA oBMDA Optimum 
60 30.0±0.00 30.0±0.00 30.0±0.00 29.6±0.61 30 
80 40.0±0.00 39.8±0.37 40.0±0.00 38.8±1.02 40 
100 50.0±0.00 48.7±0.78 50.0±0.00 46.5±1.41 50 
120 60.0±0.00 56.7±1.26 60.0±0.00 53.8±2.48 60 
140 70.0±0.00 64.5±1.36 70.0±0.00 60.8±2.38 70 
260 130±0.00 101±3.71 130±0.00 93.4±5.86 130 
280 129±2.45 105±3.27 140±0.00 98.0±5.15 140 
300 147±4.64 111±2.77 149.9±0.25 104±4.93 150 
 

5.5  3-Deceptive Problem 

The problem was investigated for the variable range from 21 to 120, see 
Fig. 9. For higher number of variables, the drop of success rate is signifi-
cant for all proposed algorithms. It is caused by rather high complexity of 
the 3-Deceptive problem that requires a more complex model and also lar-
ger population size for efficient performance. The best success rate was 
achieved by aBMDA version. Very similar values were also achieved by 
sBMDA. On the other hand, the worst results were obtained by oBMDA 
and iBMDA. 
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Fig. 9. Success rate for 3-Deceptive problem 

In Table 3, the mean±std statistics of the fitness function are presented. 
The best results were obtained by the aBMDA version and by sBMDA. 
The worst mean fitness values were achieved by oBMDA algorithm fol-
lowed by iBMDA. The mean values and standard deviation of the discov-
ered BBs are presented in Table 4. The adaptive aBMDA version proves 
significant correlation between the mean value of fitness and the mean 
value of BBs. For the case of the 99–variable problem the mean number of 
BBs is 26.3 which is 80 percent of total 33 blocks. Note that iBMDA dis-
covered only 11.9 BBs (36 percent). It is interesting to compare these val-
ues with the experimental results published for BOA algorithm in [25], 
where the achieved number of building blocks (BBs) for 99 variables and 
for the population size estimated to 250 equals to 25 percent. 

Table 3. Statistics results (mean±std of FF) for 3-Deceptive problem 

Algorithm Problem 
size aBMDA iBMDA sBMDA oBMDA Optimum 
21 7.00±0.00 7.00±0.00 7.00±0.00 6.90±0.05 7
30 10.0±0.00 9.92±0.06 10.0±0.00 9.75±0.12 10
39 13.0±0.00 12.7±0.11 13.0±0.00 12.1±1.99 13
51 16.9±0.04 16.3±0.09 16.9±0.03 16.1±0.16 17
60 19.9±0.06 19.1±0.13 19.9±0.06 18.8±0.22 20
72 23.9±0.15 22.7±0.14 23.9±0.09 22.4±0.24 24
81 26.8±0.15 25.4±0.16 26.8±0.10 25.1±0.23 27
90 29.5±0.20 28.1±0.15 29.7±0.16 28.6±0.57 30
99 32.4±0.35 30.8±0.15 32.6±0.18 30.5±0.22 33
120 38.6±0.29 37.1±0.14 39.2±0.2 38.6±0.59 40



Table 4. Statistics results (mean±std of BBs) for 3-Deceptive problem 

Algorithm Problem 
size aBMDA iBMDA sBMDA oBMDA Optimum 
21 7.00±0.00 7.00±0.00 7.00±0.00 6.47±0.50 7
30 10.0±0.00 9.23±0.56 10.0±0.00 7.60±1.11 10
39 13.0±0.00 10.6±1.11 13.0±0.00 7.33±1.72 13
51 16.8±0.45 10.6±0.92 16.9±0.39 8.27±1.67 17
60 19.7±0.59 11.3±1.49 19.6±0.56 7.23±2.39 20
72 23.1±1.02 11.5±1.56 23.0±0.93 8.23±2.29 24
81 25.0±1.51 11.5±1.62 25.3±0.98 7.92±2.39 27
90 25.8±2.08 11.3±1.41 27.8±1.61 8.50±2.26 30
99 26.3±2.99 11.9±1.83 29.4±1.85 8.67±2.95 33
120 26.2±3.72 11.6±1.80 32.1±2.09 9.03±1.74 40

5.6 Discussion to pseudo-parallel version of algorithms 

In our experiments two groups of algorithms are compared:  
1. The new proposed island-based aBMDA with probabilistic model 

learning and the traditional island-based iBMDA with individual mi-
gration. 

2. Sequential sBMDA version with the full population size and reduced 
sequential oBMDA version.  

In the first experiment, the success rate metric was applied. Both aB-
MDA and sBMDA versions are capable to find global optima with 100 
percent success rate up to 500 variables in case of OneMax and TwoMax 
problems and up to 260 variables in case of Quadratic problems. For diffi-
cult problems, like 3-Deceptive, the algorithms lack the ability to find re-
peatedly the optimal solution for problem size larger than 39. 

It is evident that aBMDA is effective optimization tool outperforming 
iBMDA version based on the traditional migration of individuals. From 
this point of view the range of solvable problem size is at least two times 
larger in case of aBMDA version. 

In the second experiment the statistics including mean±std values of fit-
ness function (FF) was processed for two harder problems – the Quadratic 
problem in Table 1 and 3-Deceptive problem in Table 3. The best values 
are written in bold. From Table 1, it is evident that for Quadratic problem, 
aBMDA and sBMDA have reached the global optima up to 260 variables 
and outperformed very significantly iBMDA version. In the case of 3-
Deceptive problem, aBMDA outperformed all other algorithms besides the 
sBMDA that is better for the problem size exceeding 90 variables. Note 
that for the 120-variable problem the mean value of FF in case of aBMDA 
equals to 38.6 which is close to global optimum represented by value 40. 



 In Table 2 and Table 4, the statistics results for BBs are shown for 
Quadratic and 3-Deceptive problems. From Table 2 it is evident, that in 
case of Quadratic problem, aBMDA discovered all BBs up to 260 vari-
ables while iBMDA was successful up to 30 variables only. In case of 3-
Deceptive problems, see Table 4, aBMDA outperformed iBMDA in the 
whole range of problem size. Note that aBMDA achieved approximately 
two time higher mean value of BBs for the problem size exceeding 60 
variables. 

The computational complexity of all algorithms measured by the num-
ber of generation is comparable. For example, in case of Quadratic prob-
lem with 60 variables the average computational time is about 20 genera-
tions, see Fig. 10. Note that oBMDA was able to find the global optima for 
this instance of Quadratic problem only in 66 percent of the 30 runs, see 
Fig. 8. 
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Fig. 10. Time complexity of the proposed algorithms for Quadratic problem 

5.7 Performance of parallel implementation 

The parallel implementation of aBMDA and iBMDA was tested on a clus-
ter of 8 Linux-based workstations equipped with Intel E6550 processor 
and 2GB RAM connected together by 1Gb LAN network. In case of se-
quential sBMDA only one station was used. 

First, the comparison of the mean execution time TG related to one gen-
eration was performed. For TG calculation, five independent runs, each 



composed of 20 generation (including 4 migration cycles), were carried 
out.  

The algorithms were compared using OneMax benchmark, see Fig. 11. 
Let us note that the convergence toward global optima was not checked in 
this case. From Fig. 11, a marked difference between sequential and paral-
lel approaches is evident, as it was expected. The values of TG for the both 
parallel algorithms are comparable. Finally, OneMax benchmark is rela-
tively simple, as the fitness function evaluation does not influence the exe-
cution time very much. For more complex problems, a gap between se-
quential and parallel approaches will be deeper, because computational 
complexity will dominate communication complexity. 
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Fig. 11. The mean execution time TG for OneMax 

The speed-up of parallel implementations for OneMax problem is dis-
played in Fig. 12. It varies between 5 and 9 for both parallel algorithms. 
The decrease of the speed-up for larger instances of OneMax problem is 
caused by the increased parallelization overhead. The overhead consists of 
the quadratic time complexity of contingency tables transport and the sub-
sequent model composition in the resident node. 

The performance of aBMDA algorithm is slightly better. For simpler in-
stances (say up to 200 variables) the achieved speed-up was larger than a 
number of processing nodes (8 in our experiment) – it is known as the 
phenomenon of superlinear speed-up [3]. 
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Fig. 12. Speed-up of iBMDA and aBMDA with regard to sBMDA for OneMax 
problem  

The value of speed-up was also investigated for Quadratic problem, see 
Fig. 13. Both parallel algorithms achieved superlinear speed-up in the 
whole range of problem instances as the consequence of the more complex 
benchmark. 
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Fig. 13. Speed-up of iBMDA and aBMDA with regard to sBMDA for Quadratic 
problem 

Let us note that the knowledge of the concrete speed-up can be utilize 
for prediction of the execution time of the optimization process and also 



for the setting of proper population size and the number of processing 
nodes. 

Finally, we investigated the speed-up of the optimization tasks which 
resulted in 100% success rate. The value of the speed-up was calculated 
using the following schema: a) first the number of generation required for 
achievement the global optima for each version of BMDA and for each in-
stance of the problem was measured and averaged during 30 independent 
runs, b) this value was multiplied by the mean execution time of one gen-
eration TG for relevant version of BMDA, c) finally, this value was nor-
malized according the values obtained by sequential sBMDA and plotted 
in the Fig. 14 and Fig. 15. 

From Fig. 14, it is evident that iBMDA algorithm was not able to find 
optimal solutions for the whole range of OneMax instances. It succeeded 
only in the range from 20 to 220 variables. aBMDA solved the tasks relia-
bly with the speed-up higher than 6 and even with superlinear speed-up up 
to 280 variables. 
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Fig. 14. Speed-up of iBMDA and aBMDA with regard to sBMDA for OneMax 
problem in case of 100% success rate 

The capability of the speed-up for Quadratic problem (Fig. 15) was in-
vestigated up to 260 variables, whereas aBMDA was still able to produce 
optimal solutions with 100% success rate. The speed-up varied between 
4.4 and 8.7. iBMDA algorithm achieved comparable speed-up as aBMDA 
but only up to 60 variables. 



Speed-up for Quadratic with 100% success rate
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Fig. 15. Speed-up of iBMDA and aBMDA with regard to sBMDA for Quadratic 
problem in case of 100% success rate 

5.7.1 Discussion to parallel implementation 

The message passing interface MPI used for parallel implementation of 
BMDA algorithms appears as an efficient software tool. Two variants of 
parallel BMDA was investigated – aBMDA and iBMDA. They are mutu-
ally compared and also compared to the sequential sBMDA.  

From Fig. 12 and Fig. 13 it is possible to conclude, that the communica-
tion overhead is negligible. The values of achieved speed-up of processing 
were very close to the number of utilized processing nodes, and even 
higher in some cases. The ability of finding global optima and its speed-up 
was also examined for both tested parallel algorithms. From Fig. 14 and 
Fig. 15, it is evident that aBMDA algorithm is much more robust than iB-
MDA. The speed-up of optimization process with respect to sBMDA (with 
100 percent success rate) varies from 4.4 to 8.7, but for the most of prob-
lem instances it is higher than 6. 

6 Conclusions 

This chapter has presented a new idea of parallel BMDA algorithms using 
island-based model with the unidirectional ring topology. The cooperation 
of demes was realized via migration of probabilistic models instead of the 
traditional migration of individuals. Each two neighbor demes are organ-
ized as a pair of resident and immigrant demes. We have introduced an 



adaptive learning technique, based on the quality of resident and immi-
grant subpopulation, which consists of the adaptation of the resident prob-
abilistic model by the incoming neighbor immigrant model.  

We have introduced an efficient tool how to learn graphical probabilistic 
model and associated probabilistic parameters. The comparative experi-
mental studies demonstrated that the proposed parallel algorithm aBMDA 
outperforms the traditional iBMDA using migration of individuals, mainly 
according to the problem size and the level of the success rate. This is true 
for all the applied benchmarks beginning with OneMax and ending with 
the Quadratic problem. The 3-Deceptive problem is a hard problem for all 
compared algorithms but aBMDA and sBMDA provide relatively best so-
lutions. Note that the sequential sBMDA with full population provides 
competitive results compared with the aBMDA, indeed but the time com-
plexity of aBMDA version can be significantly reduced by parallel proc-
essing. 

The future work will be focused on more sophisticated modifications of 
learning techniques with limited size of parameter transfer. We also aim to 
parallelize the Bayesian Optimization Algorithm (BOA) using a modified 
concept of probabilistic model migration. 
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