
Hardware Acceleration of Approximate Palindromes Searching

Tomáš Martı́nek
Faculty of Information Technology

Brno University of Technology
Božetěchova 2, Brno, 612 66, Czech Republic

Email: martinto@fit.vutbr.cz

Matej Lexa
Faculty of Informatics

Masaryk University
Botanická 68a, Brno, 602 00, Czech Republic

Email: lexa@fi.muni.cz

Abstract

Understanding the structure and function of DNA se-
quences represents an important area of research in modern
biology. Unfortunately, analysis of such data is often com-
plicated by the presence of mutations introduced by evolu-
tionary processes. They increase the time-complexity of al-
gorithms for sequence analysis by introducing an element of
uncertainty, complicating their practical usage. One class
of such algorithms has been designed to search for palin-
dromes with possible errors—approximate palindromes.
The best state-of-the-art methods implemented in software
show time-complexity between linear and quadratic, de-
pending on required input parameters. This paper investi-
gates the possibilities for hardware acceleration of approx-
imate palindrome searching and describes a parametrized
architecture suitable for chips with FPGA technology. A
prototype of the proposed architecture was implemented in
VHDL language and synthesized for Virtex technology. Ap-
plication on test sequences shows that the circuit is able to
speed up palindrome searching by up to 8000× in compar-
ison with the best-known software method relying on suffix
arrays.

1. Introduction

A palindrome is a sequence of symbols ordered in such
a way, that the order is identical when read forward and
backward (e.g. abba, ababa). Generally, palindromes can
be written in the form p = w.wR or p = w.c.wR, where
w is a string, wR is its reversed version and c is a central
unpaired symbol. Depending on the presence of the sym-
bol c, the palindrome is called even or odd. An occurrence
of palindrome p in string S is called maximal, if its exten-
sion by one character to the left or right does not form a
longer palindrome. Many algorithms for the detection of all
maximal palindromes inside an arbitrary long string exist.
Methods based on suffix arrays and the longest common ex-

tension [5] belong to the most significant works in this area
with their ability to find all maximal palindromes in linear
time O(n).

In molecular biology, analysis of DNA molecules is one
of the key subjects of research because it helps to under-
stand functioning of living organisms at the molecular level.
DNA is often represented as a long sequence of four let-
ters A, C, G and T (corresponding to basic chemical units
- nucleotides). Since the nucleotides are evenly spaced
and able to combine into complementary DNA strands,
palindromes in the DNA sequence can create structures
differing from the well-known general helical structure of
non-palindromic sequences. It is believed, that structures
formed by palindromic subsequences play a role in regu-
lation of gene activity or other processes in cells. For ex-
ample, hairpin and triplex palindrome-based structures are
known to be present in close vicinity of genes (e.g. in pro-
moters, introns and 3’-untranslated regions) contributing to
their normal functioning, or to diseases, such as cancer. A
DNA sequence can also be copied into a chemically re-
lated RNA molecule, which also adopts interesting struc-
tures when containing palindromes. In short, the knowl-
edge of the exact positions of palindromes in DNA is an
important bit of information for molecular biologists trying
to understand how entire genomes are organized and what
the functions of its individual components are.

The process of searching for palindromes in biological
data is often complicated by the presence of mutations in-
troduced by evolutionary processes. These mutations oc-
cur in sequences as character insertions, deletions or sub-
stitutions. The algorithms, which search for palindromes in
DNA sequences have to tolerate these changes, in order to
find not only exact palindromes but also approximate palin-
dromes. Unfortunately, the time-complexity of such algo-
rithms is higher, which complicates their practical usage.

While software tools capable of identifying DNA palin-
dromes exist [6], they differ in their ability to deal with large
datasets. Newest programs based on suffix arrays, such as
Reputer, try to reduce that problem, but are still slow for

A AGC CG

A

C

T

mismatch

ACGTATCCGATAGACAGACCCCCGT

approximate

exact

T

G

A

T

C

GACCCCCGT
A

A5’

3’

insertion

− 3’5’−

Figure 1. Schematic representation of a possible
DNA structure with palindromes present in the nu-
cleotide sequence.

interactive large-scale searches. The size of genomic data,
the progress in sequencing technology and the difficulty in
storing sets of palindromes interesting to biologists [8] point
towards the need for interactive searching of genomic data.
One of the ways to obtain interactivity is to implement the
searching procedures in hardware.

The objective of this work is to study the best algorithms
for approximate palindrome searching and investigate pos-
sibilities for their hardware acceleration. This paper is or-
ganized as follows: Section 2 defines approximate palin-
dromes and describes state-of-the-art software methods for
approximate palindrome searching. Related work in this
area is summarized in section 3. Section 4 contains detailed
description of hardware architecture for acceleration of ap-
proximate palindrome searching. Evaluation of proposed
architecture and its comparison with software implementa-
tion is given in section 5. Conclusions are summarized in
section 6.

2. Approximate Palindromes

An approximate palindrome is formally defined by Porto
and Barbosa [9]. In comparison to exact palindrome, er-
rors in the form of character insertion, deletion and substi-
tution are allowed. Generally, these errors represent edit
operations and their number k is the number of necessary
changes for conversion of an approximate palindrome into
an exact palindrome. Unlike exact palindromes, the size of
an even approximate palindrome does not have to be even,
nor does the size of an odd approximate palindrome have to
be odd. Similarly, the definition of palindrome maximality
differs from exact palindromes. As described in [9], an ap-
proximate palindrome is maximal if no other approximate
palindrome for the same center c and number of edit opera-
tions k exists, while having strictly greater size or the same
size but strictly fewer errors. This definition clearly does
not guarantee the uniqueness of a palindrome maximality.

a b

c d

a) b)

m ii s s i s s p p i
i

0
0

0
0

0
0

0
0

0
0

00
0

0
0

0
0

0
0

0
0

0
0

m
i
s
s
i
s
s
i

p
p

0
0

0
0

0

0
0

1
1

1
1 1
1

1 1
1
1

1 1
1 1

1
1

1
11

1
1
11

11
1

1
1

12 2

2

2
2

2
2
2

2
2

3

3
32

3

2
3

c + 1
b + 1
a+1 mismatch

a match

insertion
deletion

d = min

match

Figure 2. Dynamic programming algorithm
demonstrated on the string mississippi: a) the
DP matrix with calculated score values b) the
scheme of DP rule calculating new score d based
on neighbouring values a, b and c.

The definition of exact or approximate palindrome has
to be slightly modified to be useful in molecular biology.
When a palindromic DNA sequence is read from the other
end it should not give the same sequence, but rather a se-
quence which is complementary to the original. As a rule,
in molecular biology only C −G and A−T pairs are com-
plementary (we call any such pair a match and a sequence
of complementary nucleotides written in opposite direction
is called reversed). A pair made by non-complementary nu-
cleotides is called a mismatch. For example, ACGT is a
palindrome, because when read backwards (TGCA) and
reversed according to the complementarity rule, we obtain
the original sequence (reverse(TGCA) = ACGT). An
example of a palindrome is given in Fig. 1.

Algorithms for palindrome searching have been stud-
ied intensively in the past. One of the first algorithms for
finding all palindromes [7] use dynamic programming (DP)
techniques to calculate a two dimensional matrix of all pos-
sible palindrome alignments. Unfortunately, the algorithm
time complexity converges to O(n2). The another (more
practical) approach does not calculate the whole DP matrix,
but only searches for palindromes with at most k errors. The
best algorithms of this kind are based on suffix trees or suf-
fix arrays [3, 1], which allow them to reduce time complex-
ity to O(kn). In the following subsections these important
approaches are described in more detail.

2.1. Palindrome detection by a dynamic
programming algorithm

A convenient way to search for approximate palindromes
is by the way of a dynamic programming algorithm. Origi-
nal algorithm can be traced back to [7]. A DP matrix is con-
structed so that one side represents the original sequence,
while the other contains the same sequence reversed (ac-
cording to the nucleotide-pairing rules for DNA sequences).

With such setup, the main antidiagonal of the DP matrix
represents all the n possible starting positions for odd palin-
dromes. The neighboring antidiagonal contains the other
n− 1 possible starting sites of all the even palindromes that
can exist in the sequence. Consequently, diagonals starting
at any of these positions represent potential palindromes. If
we fill the cells representing the starting positions with ze-
ros, we can start filling the DP matrix along the diagonals.
The numbers entered will represent the number of errors
found so far in the evaluated palindromes. At each position
[i, j] of the DP matrix, we compare the symbols at positions
i and j in the original and reversed sequences. If they are
the same, no penalty is introduced. If the symbols differ,
the number of errors identified so far in the particular palin-
drome score is incremented by one.

The necessity for a dynamic programming algorithm
comes from the possibility to insert gaps into the palin-
dromes, where symbols in some positions have no sym-
bols to pair up with in the palindrome. In terms of the
described algorithms, this means moving from one diago-
nal to a neighboring one when calculating the number of
errors. At any position, three possibilities are evaluated:

1. Extending the existing palindrome along the diagonal
- match or mismatch,

2. Inserting a gap at position i of the original sequence -
insertion,

3. Inserting a gap at position j of the reversed sequence -
deletion.

The solution that leads to the lowest number of errors is
kept, the score is recorded in the DP matrix, while the other
possibilities are discarded.

2.2. Palindrome detection using suffix ar-
rays to obtain longest common prefix

When sequences contain long exact palindromes, the
above algorithm suffers from the need to evaluate every
cell of the DP matrix, while the overall score remains un-
changed throughout the palindrome. Moreover, when there
is a palindrome on diagonal d, no palindromes are usually
present on diagonals d + 1 and d− 1 (except special cases).
In the dynamic programming algorithm these neighboring
diagonals adopt the better score from diagonal d with the
addition of the appropriate penalty for character insertion
or deletion. If we had a method to calculate the length of
the next perfectly matching stretch of characters, we could
simply jump to the next error-containing position.

It turns out, that this is a problem of finding the longest
common prefix (LCP) at arbitrary positions in the two
strings (original and reversed). Fortunately, there is a linear-
time solution using suffix trees or suffix arrays for this prob-
lem [3]. The overall algorithm of searching for all approx-

a) b)

m ii s s i s s p p i
i

0
0

0
0

0
0

0
0

0
0

00
0

0
0

0
0

0
0

0
0

0
0

m
i
s
s
i
s
s
i

p
p

0
0

0
0

0

0
0

1
1

1
1 1

1
1

1
1 1

1

1
1

1
11

1
1 12 2

2

2
2

2
2
2

2
2

3

3
32

3

2
3

1

Longest Common Prefix

Cartesian Tree

Suffix Array

Neighboring cells with worse scores

Height Array

Figure 3. Suffix arrays algorithm demonstrated on
the string mississippi: a) DP matrix calculation
using the LCP, b) the scheme of suffix array, height
array and cartesian-based tree

imate palindromes with k errors operates in the following
steps:

1. Create a suffix array of a string S.SR, where S is
the original string in which the palindromes are to be
searched for. This suffix array (SA) is sorted alphabet-
ically by prefixes.

2. A rank array is created to link original positions of the
sorted suffixes with their positions in the sorted SA.

3. Create the corresponding LCP array identifying the
longest common prefix of neighboring items in the
sorted SA. The content of this array is also called
height.

4. Then, LCP for any given pair of substrings can be cal-
culated as the minimum over the height values corre-
sponding to positions of compared substrings in sorted
SA. A linear time solution for this problem exists as
well. One of the solutions is to use a cartesian-tree-
based algorithm [4] to issue a range minimum query
on the heights.

5. Starting from each possible palindrome position (on
the main and neighboring antidiagonal) perform:
(a) Find the longest common prefix of substrings at off-
sets i and j and for the appropriate diagonal d store the
reached position. This step jumps over the DP cells
matching the input strings and preserving the same
score (without errors); (b) The new reached position on
diagonal d is calculated as the maximum of the reached
positions at diagonals d − 1, d and d + 1 incremented
by one This step simulates single error in DP matrix.

6. Repeat step 4 k-times starting from the last reached
position.

The first three steps of the algorithm represent an ini-
tialization phase which can be performed in linear time.
Then the main algorithm loop is composed of an LCP
lookups and a single DP-like operation, both steps applied

to all matrix diagonals. As the LCP of substrings at ar-
bitrary positions can be identified in constant time using
cartesian-based-tree, the overall algorithm time complex-
ity is O(k.n). As depicted in Fig. 3, the algorithm effec-
tively jumps over the matches along the diagonals and also
updates the reached positions of neighboring diagonals.

2.3. Alternative definition of palindrome
quality

The methods for detection of palindromes that have at
most k errors are well-balanced, resulting in time complex-
ity O(kn). However, palindromes in real data may have
variable number of errors and variable length as well. We
tend to tolerate more errors in longer palindromes and less
errors in shorter ones. Therefore, it is more natural to de-
fine an acceptable average frequency of errors, rather than a
fixed value k. This frequency can be expressed as e = l/k,
where l is the length of the palindrome in question. The
matter becomes even more complex if we consider the pos-
sibility of different scoring schemes. In this case, e may be
replaced by eS (a measure of the average score S per unit
palindrome length) yielding the equation eS = l/S. How-
ever, this is beyond the scope of the presented paper. We
modified the suffix array-based method accordingly, so that
k is not fixed, but rather changes as calculation progresses
towards longer and longer palindromes to satisfy a fixed
value of e. Whenever the average frequency decreases be-
low the calculated threshold, we store the number of the di-
agonal to which the palindrome belongs and the palindrome
is exported (its position is recorded). In the worst case, the
palindrome never drops below e over its entire length and
covers the whole string of length n. In this case the method
has to go through k = n/e cycles of diagonal extensions.
The time complexity in such case will be in O(n2/e). Our
analysis of real-world data files of practical interest shows
that these cases are quite rare. Most palindromes are much
shorter (see detailed discussion in Section 5).

3. Related Works

Palindrome search acceleration in hardware has been
studied by Conti et al. [2]. Their architecture is made of
an array of processing elements connected into a loop The
input string progresses through the array from left to right,
changes direction at the end of the array and continues in the
opposite direction. The processing elements contain only
comparators which signal palindrome-forming matches on
individual positions. This architecture is able to detect ap-
proximate palindromes of all relevant lengths at every step.
Only mismatches can be evaluated. Time-complexity of
this approach is O(n) as compared to O(kn) for the best
algorithms implemented in software. Using a longer array

of processing elements leads to detection of longer palin-
dromes without changes in time-complexity.

The authors also address the problem of detecting palin-
dromes containing insertions and deletions. To do that they
rely on a triplet of the above mentioned arrays. The first
array operates as described for detecting palindromes with
mismatches. The second array compares one symbol ahead
and the third array compares one symbol behind the normal
position. Analyzing the results from these three arrays the
authors can detect possible insertions. Unfortunately, gen-
eralization of this approach to k-errors leads to high num-
ber of comparator arrays and an unnecessarily high use of
resources on the chip.

The objective of this work is to design a more scalable
hardware architecture that will be able to utilize the paral-
lelism inherent to palindrome searching. Computation array
of more processing elements should not only be capable of
analyzing longer palindromes, but also accelerate the com-
putation as such. Similarly, amount of accepted insertions
and deletions should not cause a huge increase of consumed
resources.

4. Hardware Architecture

We investigated the possibilities of hardware accelera-
tion of both basic approaches for palindrome searching de-
scribed in subsections 2.2 and 2.1. Our observations are as
follows:

1. The method based on suffix arrays is very effective
and calculates only the necessary number of DP matrix
items. Unfortunately, its hardware realization is com-
plicated by several factors: i) entire suffix array (or
cartesian-based-tree) would apparently have to reside
inside the chip and thus consume significant amount
of resources, and ii) during the computation the suffix
array would have to be concurrently accessed from a
number of chip locations corresponding to the level of
parallelization. This would result in a complex inter-
connection system.

2. On the other side, the method based solely on the dy-
namic programing (DP) technique offers easier par-
allelization and possible hardware acceleration. The
remaining problem is the algorithm time-complexity,
that requires up to n2/2 steps for DP matrix com-
putation. However, if we consider properties of real
data, then the probability of palindrome occurrence de-
creases exponentially with palindrome length. Based
on this fact, only a limited number of steps (the first k
antidiagonals) is sufficient for finding almost all palin-
dromes.

In our first approach, we design a hardware circuit that
implements the basic DP technique, but calculating only a

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0 0

0
0

0

0
0

0
0 0

0
0

0

0
0

0

SR

SR

PE PE PE PE

PE PE

0
0

0
0

0

0
0

0
0

S

a b
c d

S

1

2

3

4

b)a)

Figure 4. (a) Allocation of PEs for DP ma-
trix computation (b) Computation of the first k-
antidiagonals split into stripes

limited number of cells (the first k antidiagonals). The pro-
posed architecture is similar to the one used in acceleration
of approximate string matching (ASM) [10]. Nevertheless,
there are some important differences between the two ar-
chitectures. While the whole area of the DP matrix is com-
puted in ASM, only the lower triangular part is significant
in palindrome searching (see Fig. 4a).

Similarly to ASM, the architecture of the circuit is based
on a systolic array of processing elements, where each el-
ement calculates a single column of the DP matrix. Note
that the first ASM element begins computation in the upper
left corner of the matrix and the next elements start their
computation consequently in an ordered fashion because of
data dependencies. On the other hand, palindrome detec-
tion begins on the central antidiagonal and all elements can
proceed on the diagonals in parallel. Data dependency does
not require the elements to wait for each other.

If the number of processing elements is lower than the
length of the input string, computation is divided into bands,
so that results generated by the last element are temporarily
stored in a buffer. Upon transfer of computation to the next
band, the first processing element accesses the data in the
buffer (see Fig. 4b).

4.1. Processing Element

Detailed architecture of the processing element is shown
in Fig. 5. The main part is the Matching cell, which car-
ries out the basic DP rule (see Fig. 5b). The unit compares
two characters in the relevant column and row of the ma-
trix and calculates the score for a match/mismatch. At the
same time it calculates values for an insertion/deletion by
adding penalization constants to the values on the neighbor-
ing diagonals (inputs B, C). As resulting score (output D)
determines the minimum of these three values.

While the horizontal character is the same for the whole
column, the vertical character moves from element to ele-
ment from right to left in a pipeline fashion. Initialization

>

−1 DIAGONAL_OUT

POSITION_OUTSTEP

m
inVER_SCORE D

HC B

C

MATCHING_CELL

VC

A

VER_CHAR

HOR_CHAR INIT

VER_CHAR_OUT

VER_SCORE_OUT

STAT(d)

STATUS

STATUS_OUTREF_SCORE
STAT(d+1)

STAT(d−1)

Diagonal
Counter

Palindrome Export Logic

b)a)

MATCHING CELL

VC
HC

+

+

+

A

B

C

<>

D

INS_PEN

DEL_PEN

0
PEN

Figure 5. (a) Processing Element Architecture (b)
Matching Cell Architecture

of computation is somewhat special. Please, note that the
rows are reversed columns and therefore the vertical char-
acter can be taken from the horizontal character at the pre-
vious pipeline stage. Distribution of the vertical character is
therefore quite simple and requires only little amount of re-
sources. Similarly, the last score of each diagonal is passed
to the neighboring element via an auxiliary register.

4.2. Palindrome Detection

Compared to an ordinary ASM element, in palindrome
detection, we have to wait for the moment when the palin-
drome cannot be extended any further without loss of qual-
ity, as measured by the e ratio (see description in Sec-
tion 2.3). A comparator is used for this, which compares
the resulting ratio with a pre-defined threshold and stores
the logical value of such comparison in a status register. If
the score is higher than the threshold, the number of the di-
agonal and the achieved position are stored and the resulting
palindrome is exported.

Usually, when there is a palindrome on diagonal d, no
palindromes are present on diagonals d + 1 and d − 1 (ex-
cept a few special cases). In the DP algorithm these di-
agonals adopt the score from diagonal d with the addition
of the appropriate penalty for character insertion or dele-
tion. Because of this, palindromes are also exported from
these neighboring diagonals. This happens just before the
d-diagonal palindrome gets exported. To prevent this be-
havior, additional logic circuits are included in the design
to export a palindrome only if the neighboring diagonals
have also exceed the threshold for palindrome exporting.

4.3. Systolic Array

The overall architecture of the systolic array is shown
in Fig. 6. The input string or its fragment is stored in the
String Memory block. All the characters have to be pre-
pared before the first computation cycle. This is reflected in
the appropriate output memory width. The main part of the

VER_CHAR
INIT
PIPE_EN HOR_CH

VER_SCORE

Processing Element

REF_SCORE
STEP POSITION

VER_CHAR
INIT
PIPE_EN HOR_CH

VER_SCORE

Processing Element

REF_SCORE
STEP POSITION

Position Memory

Ref. Score
Generator

REF_SCORE
STEP

Address
Decoder

ADC_RD
ADC_WR

ADC_DI
ADC_DO

ADC_ADDR

FIFO
Score

String Memory

0

BUSY PIPE_EN
INITREQ

LENGTH

Controller

Controll
Interface

Interface
Memory

Figure 6. Systolic Array Architecture

architecture is an array of processing elements connected so
as to pass the vertical bits, score values and diagonal num-
bers to their neighbors.

In each step, the actual threshold score and position val-
ues are incremented for all elements by the Reference Score
Generator block. Positions and diagonal numbers of the ex-
ported palindromes are stored in the output Position Mem-
ory. When a long string is analyzed, computation is split
into bands and the output score of the last element is stored
into an auxiliary FIFO memory. Subsequently, these val-
ues are used by the first element when analyzing the next
band of the DP matrix. The overall activity of the array is
controlled by a Controller unit.

Using a simple modification of the architecture, it is pos-
sible to achieve incremental computation. If the acceler-
ated software operating at higher level decides that the orig-
inally given number of k steps is not sufficient for finding
all needed palindromes, it can direct the hardware to calcu-
late the next k steps from the last reached antidiagonal. At
hardware level, it is only necessary to store the intermediate
scores from the last two antidiagonals and take these values
for the initialization of the next run (instead of zero values at
the central antidiagonals). Using this approach, there is no
limit on the maximal length of sequences or palindromes,
apart from linearly growing computation time.

The proposed architecture represents a general template
of a circuit for palindrome searching. When applying this
template to the target application, it is necessary to spec-
ify several parameters such as character data width. While
two bits are sufficient for expression of DNA characters,
general ASCII text requires 7 bits per character. Further, it
is possible to configure penalization constants for character
ins/del/mismatch or even to change the function for char-
acter comparison. While a general text palindrome is com-
posed of pairs of identical characters, for DNA sequences
the characters have to be complementary (A-T, C-G).

The configurability of the chips with FPGA technology
allows us to specify all these parameters before the synthe-
sis process and thus create a circuit optimized for target ap-
plication. Created circuit can achieve higher working fre-
quency, consume less resources and contain more PEs.

5. Results

When analyzing real-world sequences, such as DNA, we
can see that with increasing palindrome length the number
of palindromes exponentially decreases almost to zero. This
is very similar to random sequences, where this decrease
corresponds to the probability of complementary character
pair occurrence. The histogram in Fig. 7 compares the num-
ber of palindromes for random and DNA sequences. The
depicted values were calculated as an average on ten sam-
ples of random and DNA sequences, each with 10k charac-
ters in length. Additionally, the histogram was measured for
different parameter e, which impacts the quality of exported
palindromes (as described in Section 2.3). The graphs in
Fig. 7 show, the DNA sequences have approximately iden-
tical characteristics as the random sequences, when the four
matches per one mismatch are allowed. However, with in-
creasing e, the differences between random and DNA se-
quences become more significant and confirms the surmise,
that the DNA have a reason for creating the palindrome
structures and does not generated them in random only.

The main goal of this chapter is to compare the perfor-
mance of the software-implemented method for palindrome
detection with its hardware counterpart proposed in this pa-
per. The comparison of method has to be established on
the common criterion. As the histogram in Fig. 7 indicates,
it seems reasonable to search palindromes only to the lim-
ited length. We will therefore concentrate on hardware and
software approaches that can detect all palindromes of pre-
scribed quality up to length l.

As software implementation, we selected suffix array-
based method described in [3], which seems to be the most
time-efficient method for palindrome detection to date. The
method utilizes the open source libraries for LCP and RMQ
computation with slight modification in order to accomplish
the common criterion. The detection of all palindromes of
prescribed length and quality is ensured only if the algo-
rithm exceeds the boundary (corresponding to the specified
length) at all diagonals. We implemented this algorithm in
C language and tested it on a computer system with a Xeon
3GHz processor and 4GB of RAM. In repeated tests on a se-
quence of 10k characters we determined the performance of
the processor to be p1 = 0.03B (billion) steps per second,
where one step is the calculation of LCP (using an access to
the suffix array) plus application of one DP matrix rule.

The hardware architecture proposed in Section 4 was
implemented in VHDL and synthesized into FPGA chip
xc2vp100 with a Xilinx Virtex II Pro technology, speed
grade 7. The basic characteristics of the circuit after carry-
ing out Place and Route are shown in the following table 1.
Single chip can harbor a systolic array of up to 1015 pro-
cessing elements working at 241 MHz. Multiplication of
the frequency and the number of elements indicates that the

Figure 7. Histogram of exported palindromes for random (the first column) and DNA (the second column) se-
quences. The histogram is repeated for different values of parameter e

performance of the hardware is up to p2 = 244B (billions)
steps per second.

Table 1. Comparison of Hardware and Software
HW SW

PE Resources FDD/LUTs 31/54 -
Number of PEs 1015 1
Working frequency 241 MHz 3 GHz
Performance 244 BSps 0.03 BSps

Because it is not possible to directly compare hardware
and software performance, let us consider the number of
steps each method has to go through. To find all palin-
dromes up to length l, the hardware architecture needs
(n/nPE).2l steps, where n is the length of the input se-
quence, nPE is the number of processing elements and the
calculation is done in (n/nPE) bands.

On the other hand, it is not possible to determine the ex-
act number of steps for the software method without con-
sidering the characteristics of the analyzed sequence. In
general, the time-complexity of the method is 2kn, where
k is the number of allowed errors. For example, if the in-
put sequence is an (palindromes at every position), the soft-
ware method finds them in the first batch of 2n steps while
k = 1 (the best case). On the other hand, if there is no
palindrome in the sequence, the software method has to go
through k = l batches of computation, making all the 2kn
steps necessary (this is equal to hardware). Depending on
the input sequence, k will varying the range 1..l.

Let us now derive an expression for the speed-up of
hardware-implemented palindrome detection as compared
to software implementation. The computation time in soft-
ware resp. hardware is:

TSW =
2kn

p1

, THW =
n

nP E

.2l

p2

. (1)

Speed-up α of hardware against software is:

α =
THW

TSW

=
k

l
.
p2.nPE

p1

(2)

Please, note that the expression p2.nP E

p1

is constant. After
substituting appropriate values we arrive at: α = 8255. k

l
.

It is clear, that the obtained speed-up will depend on the
ratio of steps necessary to cover length l and length itself.
We determined the value of k for different values of l ex-
perimentally using the following DNA sequences of length
5*10000 nucleotides:

1. human DNA sequence from promoter regions (the first
25 promoters from chromosome 1 in the hg18 release
of UCSC Human Genome)

2. Randomly generated sequence of symbols A, C, G, T
(each character with equal probability),

3. String which (under DNA complementarity rules) has
no palindromes: cn.

4. String with palindromes at each positions: (cg)n.
The obtained relationships of k and l are shown in Fig. 8.

As expected, k = l for a sequence with no palindromes.
Also, k = 1 when there is a large palindrome in the se-
quence. For random and DNA sequences, the k lies some-
where between 1 and l. Interestingly, DNA sequences
require slightly more computation steps then random se-
quences. This means, that the random sequences contain
better conditions for longest common prefix searching and
application of DP rule. On the other hand, the histogram
shows, that the DNA sequences contain more palindromes
than the random sequences. This is caused by the fact, that
DNA sequences creates the palindromes only in restricted
areas while other parts remain palindrome free.

The graph shows that the relationship of k and l is al-
most linear for the first three sequences. Consequently, the
k/l ratio allows us to express acceleration obtained in hard-
ware as compared to software using equation (2). The ta-

 0

 50

 100

 150

 200

 250

 300

 0 50 100 150 200 250 300

K

L

DNA
Random

All palindromes
No palindrome

Figure 8. Number of software algorithm steps k for
searching all palindromes of given length

ble 2 summarizes the values of the k/l ratio and the result-
ing speed-up.

This table shows that acceleration is maximal for se-
quences with no palindromes. The corresponding speed-up
is 8255. DNA sequences and random sequences provide for
intermediate acceleration of about 4400 compared to soft-
ware. A sequence with palindrome at every position is a
special case. While software needs only one set of calcula-
tion steps, hardware needs l steps. As a result, the software
implementation will become faster above a certain value of
l. This threshold length can be determined from equation
(2), if we substitute k = 1 and α = 1. This results in
threshold length of: l = p2.nP E

p2

= 8255.

6. Conclusions

This paper describes a novel hardware architecture for
approximate palindrome searching. The proposed circuit
is based on dynamic programming and allows concurrent
computation of a large number of antidiagonal DP matrix
cells. The presented architecture ensures very good scal-
ability. Increasing number of processing elements allows
processing proportionally longer sequences. Very long se-
quences can be processed in bands.

The proposed hardware architecture utilizes the advan-
tages of FPGA technology. Configurability of the chips al-
lows us to specify parameters such as character width, pe-
nalization scores for character ins/del/sub and comparison
function before the synthesis process and thus create cir-
cuit optimized for target application. The created circuit can
achieve higher working frequency, consume less resources
and contain more processing elements.

Comparing our architecture to an equivalent software
implementation of a well-known algorithm using suffix ar-
rays, the circuit shows 8255× acceleration. In such com-
parisons, one has to take into account the characteristics of
the sequences to be analyzed, especially their ability to take

Table 2. Speed-up of HW for different sequences
Tangent Speed Up

Sequence without palindromes 1 8.255
Random sequences 0,536 4.410
DNA sequences 0,535 4.404

advantage of suffix arrays. Experimental treatment of this
problem showed that we should expect acceleration 4400×
on DNA sequences.

Acknowledgment

This research has been partially supported by the Re-
search Plan No. GACR, 204081560 – In vitro and in silico
identification of non-canonical DNA structures in genomic
sequences and Research Plan No. MSM, 0021630528 –
Security-Oriented Research in Information Technology.

References

[1] L. Allison. Finding approximate palindromes in strings
quickly and simply. CoRR, abs/cs/0412004, 2004. informal
publication.

[2] A. A. Conti, T. V. Court, and M. C. Herbordt. Processing
repetitive sequence structures with mismatches at streaming
rate. In Field Programmable Logic and Application (FPL
2004), Lecture Notes in Computer Science, pages 1080–
1083. Springer, 2004.

[3] R. de Castro Miranda and M. Ayala-Rincón. A modification
of the landau-vishkin algorithm computing longest common
extensions via suffix arrays. In BSB, pages 210–213, 2005.

[4] H. N. Gabow, J. L. Bentley, and R. E. Tarjan. Scaling and re-
lated techniques for geometry problems. In STOC ’84: Pro-
ceedings of the sixteenth annual ACM symposium on Theory
of computing, pages 135–143, New York, NY, USA, 1984.
ACM.

[5] D. Gusfield. Algorithms on stings, trees, and sequences:
Computer science and computational biology. SIGACT
News, 28(4):197–198, 1997.

[6] S. Kurtz, J. V. Choudhuri, E. Ohlebusch, C. Schleiermacher,
J. Stoye, and R. Giegerich. Reputer: the manifold appli-
cations of repeat analysis on genomic scale. Nucleic Acids
Research, 29(22):4633–4642, 2007.

[7] G. M. Landau and U. Vishkin. Efficient parallel and serial
approximate string matching. Technical Report Computer
Science Department Technical Report #221, February 1986.

[8] L. Lu, H. Jia, P. Dr oge, and J. Li. The human genome-wide
distribution of dna palindromes. Functional and Integrative
Genomics, 7(3):221–227, 2007.

[9] A. H. L. Porto and V. C. Barbosa. Finding approximate
palindromes in strings. Pattern Recognition, 35:2581, 2002.

[10] C. W. Yu, K. H. Kwong, K.-H. Lee, and P. H. W. Leong. A
smith-waterman systolic cell. In Field Programmable Logic
and Application (FPL 2003), pages 375–384, Lisbon, Por-
tugal, September 2003.

