Comparison of CGP and Age-Layered CGP
Performance in Image Operator Evolution

Karel Slany

Faculty of Information Technology, Brno University of Technology
Bozetéchova 2, 612 66 Brno, Czech Republic
slany@fit.vutbr.cz

Abstract. This paper analyses the efficiency of the Cartesian Genetic
Programming (CGP) methodology in the image operator design problem
at the functional level. The CGP algorithm is compared with an age
layering enhancement of the CGP algorithm by the means of achieved
best results and their computational effort. Experimental results show
that the Age-Layered Population Structure (ALPS) algorithm combined
together with CGP can perform better in the task of image operator
design in comparison with a common CGP algorithm.

1 Introduction

Cartesian Genetic Programming (CGP) was introduced by J. F. Miller and
P. Thomson in 1999 [8]. When comparing with a standard genetic programming
approach, CGP represents solution programs as bounded (¢ x r)-node directed
graphs. It utilizes only a mutation operator which is operating in small popula-
tions.

The influence of different aspects of the CGP algorithm have been investi-
gated; for example the role of neutrality [2, 14], bloat [6], modularity [13] and the
usage of search strategies [7]. In order to evolve more complicated digital circuits,
CGP has been extended to operate at the functional level [9]. Gates in the nodes
were replaced by high-level components, such adders, shifters, comparators, etc.
This approach has been shown to suite well for the evolution of various image
operators such as noise removal filters and edge detectors. In several papers it
has been reported, that the resulting operators are human-competitive [5, 10].

The literature describes many techniques designed to preserve diversity in
population as pre-selection [1], crowding [3], island models [11], etc. Escaping
the local optima can only be achieved by the introduction of new, randomly
generated individuals into the population. The simplest method, how to imple-
ment this technique, is restarting the evolution multiple times with different
random number generator seeds. This increases the chances to find the global
optima. But the evolutionary algorithm must have enough time to find a local
optima. More sophisticated methods do not restart the process from scratch, but
periodically introduce randomly generated individuals into the existing popula-
tion. The algorithm has to ensure, that the new incomes are not easily discarded

by existing better solutions and receive enough time to evolve. Such an algo-
rithm is the Age-Layered Population Structure (ALPS) algorithm introduced by
G. Hornby in 2006 [4].

This paper deals with the comparison of a standard CGP based algorithm
with a modification of ALPS in the case of image operator evolution. The perfor-
mance of these algorithms is measured by comparing the achieved fitness during
the evolution process.

2 Image Filter Evolution

As introduced in [9, 10], an image operator can be considered as a digital circuit
with nine 8-bit inputs and a single 8-bit output. This circuit can then process
grey-scaled 8-bit per pixel encoded images. Every pixel value of the filtered image
is calculated using a corresponding pixel and its neighbours in the processed
image.

2.1 CGP at the Functional Level

In CGP a candidate graph (circuit) solution is represented by an array of ¢
(columns) x r (rows) interconnected programmable elements (gates). The num-
ber of the circuit inputs, n;, and outputs, n,, is fixed through the entire evo-
lutionary process. Each element input can be connected to the output of any
other element, which is placed somewhere in the previous I columns. Feedback
connections are not allowed. The [parameter defines the interconnection degree
and influences the size of the total search space. In case of [= 1 only neighbour-
ing columns are allowed to connect; on the other hand, if [= ¢ then a element
block can connect to any element in any previous column. Each programmable
element is allowed to perform one function of the functions defined in the func-
tion set I'. The functions stored in I" influence the design level of the circuit.
The set I' can represent a set of gates or functions defined at a higher level of
abstraction. Every candidate solution is encoded into a chromosome, which is a
string of ¢ X r x (e; + 1) + n, integers as shown in fig. 1. The parameter e; is
the number of inputs of the used programmable elements. If we use two-input
programmable elements, then e; = 2.

CGP, unlike genetic programming (GP), operates with a small population of
A elements, where usually A = 5. The initial population is randomly generated. In
each generation step the new population consists of a parent, which is the fittest
individual from the previous generation, and its mutants . In case of multiple
individuals sharing the best fitness, the individual, which was not selected to be
the parent in the previous generation, is selected to be the parent of the next
generation. This is used mainly to ensure diversity of the small population. The
mutants are created by a mutation operator, which randomly modifies genes of an
individual. Crossover operator is not used in CGP. In various applications, which
utilize CGP, crossover has been identified to have rather destructive effect. In
the particular case of image filter evolution at the functional level the crossover

‘I\)
‘—L

0o

™ [=

10

0
4 06

2 O 1 — —O

@@
—h

Fig.1. An example of a 3-input circuit. Parameters are set tol = 3, ¢ = 3, r = 2,
I' = {+(0), —(1)}. Gates 2 and 7 are not used. the chromosome looks like 1,2,1, 0,0,1,
2,3,0, 3,4,0 1,6,0, 0,6,1, 6, 8 The last two numbers represent the connection of the
outputs.

operator does not demonstrate a very destructive behaviour [12]. However no
benefits of utilizing crossover operators have been shown.

Filtered

Inputimage /_ image
000 — P
?

%:

Fig. 2. Example of an image filter consisting of a 3 x 3 input and output matrix
connected to the image operator circuit.

In image operator evolution the goal of CGP is to find a filter which minimizes
the difference between the filtered image Iy and the reference image I, which
must be present for a particular input image I;. If the input and the reference
image are of the size K x L pixels and a square 3 X 3 input and output matrix
is used, then the filtered image has the size of (K —2) x (L — 2) pixels. Because
of the shape of the matrices the pixels at the edge of the filtered images can be
read but they cannot be written. For an 8-bit grey-scale image the fitness value
fv can be defined by the following expression:

K—-2L-2

fv: ZZ'If(Z7])_Ir(Z7])| (1)

i=1 j=1

The expression (1) summarizes the differences of corresponding pixels in the
filtered and the reference image. When f, drops to f, = 0 then it means that
the images Iy and I, of the size K x L pixels are indistinguishable from each
other (except the pixels on the edges). Papers [10, 5] show that this approach
leads to good image filters. The results are satisfiable even in cases, when only
a single image in the fitness function is used.

2.2 ALPS Paradigm for CGP

Premature convergence has always been a problem in genetic algorithms. One
way to deal with this problem is to increase mutation probability. This will keep
the diversity high. But this can also very likely destroy good alleles, which are
already present in the population. When the mutation rate is set too high, then
the genetic operator cannot explore narrow surroundings of a particular solution.
Large population sizes can also be a solution to the diversity problem, but then
more time is needed to search for a good solution.

The Age-Layered Population Structure (ALPS) [4] algorithm adds time tags
into a genetic algorithm. These tags represent the age of a particular candidate
solution in the population. The candidate solutions are only allowed to mutually
interact and compete in groups, which contain solutions with similar age. By
structuring the population into age-based groups, the algorithm ensures that a
newly generated solution cannot easily be outperformed by a better solution,
which is already present in the population. Also, new, randomly generated solu-
tions are added in regular periods. These are the two main parts which maintain
population diversity in the ALPS algorithm.

The age measure is the count of how many generations the candidate solution
has been evolving in the population. Newly generated solution start with the age
of 0. Individuals which were generated by an genetic operator such as mutation
or crossover receive the age value of the oldest parent increased by 1. Every time
a candidate solution is taken to be a parent, its age increases by 1. In cases
a candidate solution is used multiple times to be a parent during a generation
cycle, its age is still increased by 1 only once.

The population is defined as a structure of age layers, which restrict the
competition and breeding among candidate solutions. Each layer, except for the
last layer, has a maximum age limit. This limit allows only solutions with the age
below its value to be in the layer. The last layer has no maximal age restriction, so
that any best solution can stay in this layer for an unlimited time. The structure
of the layers can be defined in various ways. Different systems for setting the age
limits, which can be used, are shown in tab. 1. The limit values are multiplied
by an age-gap parameter, thus obtaining maximum age of an individual in each
layer.

The ALPS algorithm was designed for maintaining diversity in difficult GP
based problems. Its main genetic operator is crossover with tournament selection.
But crossover is not used in CGP, instead only mutation and elitism are utilized.
Some modifications need to be done in order to make the ALPS algorithm work

aging scheme maximum age in layer

0 1 2 3 4 5
linear 1 2 3 4 5 6
Fibonacci 1 2 3 5 8 13
polynomial 1 2 4 9 16 25
exponential 1 2 4 8 16 32
factorial 1 2 6 24 120 720

Table 1. Various aging scheme distributions, which can be used in the ALPS algorithm.

with CGP in the case of image filter evolution. These changes mainly involve
removing the crossover operator from the algorithm.

During every generation cycle each layer interacts with other layers by send-
ing individuals to the next layer or by receiving new individuals from the previous
layer. The original ALPS algorithm starts with randomly initialized first layer.
Other layers are empty and will be filled during the process of evolution. The
individuals grow older and move to next layers or are discarded. In regular in-
tervals the bottom layer is replaced by newly generated individuals. Let us call
the parameter describing this behaviour randomize-period. The value of the pa-
rameter stands for the number of generations between two randomization of the
bottom layer.

Whenever the age of a member in a particular layer exceeds the age limit for
this layer, then such a member is moved to the next layer. This formulation can
cause trouble in implementation of the algorithm. Just imagine the case, when
new members have to be moved into a fully occupied higher layer. In this case,
the layer, which has to accept members or offspring from a previous layer, is
divided into halves. The first half is used for generating new members from the
original layer and the second half is populated by the newly incomes. After this
step both halves behave again as a single layer.

Also elitism, similar to CGP, is used. Each layer keeps its best evolved mem-
ber and only replaces it with an individual with a better or a least the same
fitness. If this individual is selected to be a parent, its age is not increased in
order to keep it in the current layer.

During the process of evolution the size limits of the population do not
change, but the number of individuals in the layers may vary. This is caused by
the fact, that in the initial phase the algorithm starts with only one populated
layer. Also in certain situations a layer can lead into extinction, when current
layer members and its offspring are moved into next layer and no newcomers
have arrived.

3 Experimental Set-up

In order to evolve image operators a set of function has been adopted from [10].
The CGP and modified ALPS-CGP algorithms are used to find a random
shot noise filter and a Sobel filter using a set of three pictures as training data.

ID [Function|Description || ID|Function Description
4 |z +saty saturated addition
T Ay binary and [|5 |(z +y) >> 1|average
6
7

xVy binary or

Dy binary xor Maz(z,y) |maximum
T+y addition

W =IO

Min(z,y) |minimum

Table 2. Function set used in the experiments. All functions have 8-bit inputs and
outputs.

The evolved image operators are connected to a 3 X 3 input and output mask.
The size of the pictures is 256 x 256 pixels.

Fig. 3. Images used in described experiments. Top row contains input images enter-
ing the evolved image operators. Bottom row shows reference images used for fitness
evaluation. The evolution searches for a Sobel operator and for a random shot noise
removal filter.

The experiment consists of two main groups which differ in the way how
the evolved image operators is defined. In the first set of experiments the image
operator shall consist of 8 columns x 6 rows of programmable elements with the
interconnection parameter [= 1. The value [= 1 allows only interconnection of
neighbouring columns. This is because of an easy implementation as a pipelined
filter in hardware. The second set of experiments utilizes chromosomes which
consist of only a single row with 48 programmable elements with the intercon-
nection parameter set to [= 48. This value ensures unlimited interconnection,
except that the output of an evolved circuit cannot connect directly to its input.

The CGP algorithm uses population size of 8 individuals. Mutation proba-
bility is set to 8% in both algorithms. The ALPS-CGP algorithm uses 5 layers.
Each layer can hold up to 8 individuals. The polynomial aging scheme is used
with age-gap = 20. The bottom layer is regenerated with random individuals
every randomize-period = 5 cycles. Fach evolutionary process of 10000 genera-
tions is repeated 100 times. Average data are used to compare both of the two
algorithms.

The measured data are compared according to the evaluation number. That
means the fitness values are plotted against the number of evaluations which the
algorithm has performed rather than to the generation it has reached. This is
done because of the fact, that the ALPS-CGP algorithm uses larger populations.
Thus it has a greater chance of exploring larger amounts of search-space in a
single generation cycle than the CGP algorithm.

3.1 Results

In the first set of experiments image operators with rectangular arrangement of
programmable elements with the interconnection parameter | = 1 were evolved.

xle7

p— P

09 ---- ALPS-CGP

0 100 200 300 400 500
evaluation

Fig. 4. The progression of the fitness value during the first 500 evaluations when evolv-
ing the Sobel filter by using the camera pictures. The image operator consists of 8 x 6
elements.

The graphs in fig. 4, 5 and 6 show that the ALPS-CGP algorithm is behaving
slightly better than the standard CGP algorithm. In average we have obtained
similar or better image operators in less time than using only the CGP algorithm.
The average fitness values, measured after reaching final generation number, are
summarized in tab. 3.

In the second set of experiments the evolutionary process searched for image
operators with a linear structure with high interconnection parameter, allowing
more complex structures to be designed. This also increases the search space of
all possible solutions. The graphs in fig. 7, 8 and 9 show the behaviour of the
algorithms in the first 500 evaluations. Again we have obtained similar results.

800000C

‘ ‘ ‘ —— cop
2000000 _—--- ALPS-CGP_| |

6000000

5000000
4000000

3000000

2000000F T T T T T e e e e e e e e e e e m e e e e e e e e e e m e mm e mm - .

100000‘/0 100 200 300 400 500

evaluation

Fig. 5. The progression of the fitness value during the first 500 evaluations when evolv-
ing the Sobel filter by using the circle pictures. The image operator consists of 8 x 6
elements.

x1le7

1.0

—— CGP
---- ALPS-CGP
0.8

0.6f

fitness

0.4f

0.2p

. e R R R e T e
O.CO

evaluation

Fig. 6. The progression of the fitness value during the first 500 evaluations when evolv-
ing the random shot noise removal filter by using the Lena pictures. The image operator
consists of 8 X 6 elements.

4 Discussion

In the first group of experiments we can observe a performance gain, when using
the ALPS-CGP algorithm. In the initial phase, when the algorithms are started,
the ALPS-CGP algorithm converges faster to local optima than the simple CGP
algorithm. But then still keeps improving the fitness value of the evolved image
operators. The ALPS algorithm in average achieves better fitness values.

In the second group of experiments the algorithms show similar behaviour
as in group one. Again ALPS has achieved better fitness values than the CGP
algorithm. Only in the case of the random shot noise filter the algorithms show
approximately the same performance. This may be because the random shot
filter is easier to construct from the function set I'. Also the second group of
experiments showed, that the evolved image operators achieve slightly worse
results, as in the first case. The explanation may be the fact, that in the second
case the elements, which the image operator consists of, are allowed to connect

x1le7

cGP
---- ALPS-CGP

0 100 200 300 400 500
evaluation

Fig. 7. The progression of the fitness value during the first 500 evaluations when evolv-
ing the Sobel filter by using the camera pictures. The image operator consists of 1 x 48
elements.

xle7

p— P

---- ALPS-CGP

o 100 200 300 400 500
evaluation

Fig. 8. The progression of the fitness value during the first 500 evaluations when evolv-
ing the Sobel filter by using the circle pictures. The image operator consists of 1 x 48
elements.

more freely in comparison with the first experimental set. The search space is
much greater. Another explanation may be the fact, that the configuration of
the image operator is taken from [10], and might be more optimized for the role
of an image operator.

The whole system is implemented in SW. To finish all runs in the first or
second set of experiments 6 days of computation time are needed when using a
two 1800 MHz dual-core AMD Opteron system. This is mainly caused by the
time-consuming fitness function - every pixel in the training images has to be
computed separately. The slow performance is also a drawback, when the op-
timal performance parameters need to be found. The ALPS-CGP algorithm is
not much more complex than the CGP algorithm. In fact the main differences
are the time-tags and the consequent restriction. These are not difficult to im-
plement in hardware. Therefore the next step will be implementing the system
in a FPGA. This will give a greater chance of evaluating the ALPS-CGP and

l.CXIe7

— CGP

0.9F ---- ALPS-CGP
0.8
0.7f

% 0.6

3

g

£ 0.5F
0.4
0.3f

0.2p

0.1

0 100 200 300 400 500
evaluation

Fig. 9. The progression of the fitness value during the first 500 evaluations when evolv-
ing the random shot noise removal filter by using the Lena pictures. The image operator
consists of 1 x 48 elements.

set of experiments| image set |average fitness CGP|average fitness ALPS
1 camera Sobel 2 034 740 1371 492
1 circle Sobel 1 948 039 1 345 093
1 Lena impulse 52 980 31 681
2 camera Sobel 2 323 204 1 893 629
2 circle Sobel 2 176 023 1 580 389
2 Lena impulse 47 557 31 284

Table 3. The average achieved fitness after finishing 10000 generations.

CGP performance. Also larger input masks can be used, which can lead to better
image operators.

5 Conclusions

An analysis of the performance of a standard CGP approach and an ALPS
enhanced CGP algorithm in the task of image operator evolution was performed.
The performance of the algorithms was measured in six cases of system settings.
Experiments have shown that the ALPS-CGP algorithm performs better than
the standard CGP algorithm. However in more difficult cases the performance of
the ALPS-CGP algorithm appears not to be much superior. Further experiments,
including hardware implementation, are needed to receive a better comparison
of the two algorithms.

Acknowledgements

This work was supported by the Grant Agency of the Czech Republic under
No. 102/07/0850 Design and hardware implementation of a patent-invention
machine and the Research intention No. MSM 0021630528 — Security-Oriented
Research in Information Technology.

References

1]

2]

8]

[4]

[5]

[6]

[7]

8]

[9]
[10]

[11]

[12]

[13]

[14]

Daniel J. Cavicchio. Adaptive search using simulated evolution. PhD thesis, Uni-
versity of Michigan, 1970.

Mark Collins. Finding needles in haystacks is harder with neutrality. Genetic
Programming and Evolvable Machines, 7(2):131-144, 2006.

Kenneth Alan DeJong. Analysis of the Behavior of a Class of Genetic Adaptive
Systems. PhD thesis, University of Michigan, 1975.

Gregory Scott Hornby. Alps: the age-layered population structure for reducing
the problem of premature convergence. In GECCO ’06: Proceedings of the 8th
annual conference on Genetic and evolutionary computation, pages 815-822, New
York, NY, USA, 2006. ACM.

Tomdas Martinek and Luk&d3s Sekanina. An evolvable image filter: Experimental
evaluation of a complete hardware implementation in fpga. Lecture Notes in
Computer Science, 2005(3637):76-85, 2005.

Julian Francis Miller. What bloat? cartesian genetic programming on boolean
problems. In 2001 Genetic and Evolutionary Computation Conference Late Break-
ing Papers, pages 295-302, 2001.

Julian Francis Miller and Stephen L. Smith. Redundancy and computational effi-
ciency in cartesian genetic programming. I[EEE Trans. Evolutionary Computation,
10(2):167-174, 2006.

Julian Francis Miller and Peter Thomson. Cartesian genetic programming. In
Proceedings of the 3rd European Conference on Genetic Programing, Lecture Notes
in Computer Science, pages 121-132, Berlin, 1999. Springer Verlag.

Lukas Sekanina. Image filter design with evolvable hardware. Lecture Notes in
Computer Science, 2002(2279):255-266, 2002.

Luk&s Sekanina. FEwvolvable Components: From Theory to Hardware. Springer-
Verlag, Berlin Heidelberg, 2004.

Zbigniew Skolicki and Kenneth Alan DeJong. Improving evolutionary algorithms
with multi-representation island models. In Late Breaking Papers at the 2004 Ge-
netic and Evolutionary Computation Conference, pages 420-429. Springer, 2004.
Karel Slany and Luk&s Sekanina. Fitness landscape analysis and image fil-
ter evolution using functional-level cgp. Lecture Notes in Computer Science,
2007(4445):311-320, 2007.

James Alfred Walker and Julian Francis Miller. Investigating the performance of
module acquisition in cartesian genetic programming. In GECCO °05: Proceedings
of the 2005 conference on Genetic and evolutionary computation, pages 1649-1656,
New York, NY, USA, 2005. ACM.

Tina Yu and Julian Francis Miller. Neutrality and the evolvability of boolean
function landscape. In EuroGP ’01: Proceedings of the 4th European Conference
on Genetic Programming, pages 204-217, London, UK, 2001. Springer-Verlag.

