
 

 

 

  

Abstract—The paper is focused on the problem of 

aggregation of probability distribution applicable for parallel 

Bivariate Marginal Distribution Algorithm (pBMDA). A new 

approach based on quantitative combination of probabilistic 

models is presented. Using this concept, the traditional 

migration of individuals is replaced with a newly proposed 

technique of probability parameter migration. In the proposed 

strategy, the adaptive learning of the resident probability model 

is used. The short theoretical study is completed by an 

experimental works for the implemented parallel BMDA 

algorithm (pBMDA). The performance of pBMDA algorithm is 

evaluated for various problem size (scalability) and 

interconnection topology. In addition, the comparison with the 

previously published aBMDA [24] is presented. 

I. INTRODUCTION 

he capability and performance of traditional parallel 

genetic algorithm (PGA) is well known. It flows from 

the idea that the large problem can be successfully solved 

using decomposition of the original one into smaller tasks. 

Consequently, the tasks can be solved concurrently using 

multiple processors. 

Mostly, the original population is divided into a few 

subpopulations or demes, and each of these demes evolves 

separately on different processor. Exchange of information 

among subpopulations is realized via a migration operator. 

In this context, the term island model is commonly used. 

Island populations are free to converge toward different 

optima. The migration operator is supposed to mix good 

features that emerge locally in the different demes. 

Many topologies are used for connecting the demes and 

migration can occur between neighboring demes. In [4], the 

theory is published providing rational decisions for the 

proper setting of control parameters. An interesting survey of 

PGA is published in [2]. An effective technique for the 

massive parallelization of compact GA was published in 

[12], [33]. An extremely prestigious PGA which is capable 

to solve billion-variable optimization problems was recently 

published in [7]. 
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This paper concerns the application of three differently 

interconnected island-based models for one of EDA 

algorithms known as Bivariate Marginal Distribution 

Algorithm (BMDA). The new approach, using the idea of 

probability model migration, is conceptually different from 

the traditional parallel evolutionary algorithms with 

migration of individuals/solutions. It differs also from the 

EDAs using parallel building of pseudo-sequential 

probabilistic models. 

The paper is organized as follows: Section II introduces 

the basic concept of EDA algorithm and current approaches 

used in the parallelization of EDA algorithms. In Section III, 

a short discussion is dedicated to the theory of probability 

distribution aggregation. The description of the sequential 

BMDA is presented in Section IV. Section V includes the 

specification of island based topology and the principles of 

quantitative combination of probabilistic models. The 

parallel implementation of pBMDA algorithm is presented in 

Section VI. Experimental works and results are included in 

Section VII, Section VIII concludes the paper. 

II. TRADITIONAL EDAS 

EDAs belong to the advanced evolutionary algorithms 

based on the estimation and sampling of graphical 

probabilistic models [8], [10], [19], [20], [22]. The canonical 

sequential discrete EDA is described in Fig. 1. 

 

Set t ← 0; 

Generate initial population D(0); 

While termination criteria is false do 

begin 

  Select a set of promising solution 

D
s(t); 

  Construct a new probability model Μ   
from Ds(t) using chosen metric; 

  Sample offspring O(t) from Μ; 

  Evaluate O(t); 

  Create D(t+1)as a subset of O(t) ∪ 
D(t) with cardinality N; 

  t ← t + 1; 

end 

Figure 1. The pseudocode of canonical EDA 

 

EDAs often surpass classical EAs in the number of 

required fitness function evaluations. However, the execution 

time is still a factor which determines the size of practically 

tractable problems. Referring to Fig. 1, the most time 

consuming task is the estimation of probability model. Most 

papers on EDAs concentrate on parallel construction and 
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sampling of probabilistic models. The well-known algorithm 

employing parallel construction of Bayesian network is 

EBNA algorithm targeted for MIMD architecture and 

designed both for MPI and POSIX threads, published in 

[14], [17], [18]. In [21], the theory of population sizing and 

timing to convergence is published. 

A new idea of the multideme parallel estimation of 

distribution algorithm (PEDAs) based on PBIL algorithm 

was published in [1]. In [13], mixtures of distribution with 

Bayesian inference are discussed. Parallel learning of belief 

networks in large domains is investigated in [23]. Using the 

concept of PBIL algorithm [3], [9], [16], the classical 

phenomenon of migration in island based EAs was carried 

over into probability distribution of EDAs. A new approach 

of probability vector crossover was implemented with very 

good performance. 

III. AGGREGATION OF PROBABILITY MODELS 

Aggregation of probability models is a technique 

frequently used in statistics, expert knowledge combination, 

and in Artificial Intelligence (AI). Interesting surveys can be 

found in [25]. From the area of AI, they can be mentioned 

[26], [27] which are close to the topic of structured 

distribution aggregation. A new approach to learned 

probabilistic belief is published in [28]. Recently a very 

efficient tool for probability graphical model combination is 

published in [29] - the problem of aggregation of 

probabilities is mostly reduced to the linear opinion pool 

(LinOP), so named by Stone (1961): 
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where p1,,...,pk are given probability distributions from k 

data sources and weights βm ≥ 0, such that ∑ βm = 1 

Another typical combination approach uses multiplicative 

averaging and is often called a logarithmic opinion tool: 
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where r is a normalizing constant and x is atomic state 

In general, the graphical probabilistic model defined one 

data source can be formalized as M = (G, Θ), where G is 

dependency graph and Θ = (θ0, θ1,…, θn-1) is a set of 

parameters represented by local conditional or marginal 

probability for each node of the dependency graph. The 

previous references mentioned in Section II deal with the 

simple univariate probability model only. The 

aggregation/combination of probability models could be thus 

reduced to a quantitative combination of models only, 

resulting just in a combination of conditional probability 

tables (CPT), determining the set Θ. If the dependency graph 

is not trivial, the aggregation of particular models consists of 

qualitative and quantitative phases. Qualitative aggregation 

deals with the estimation of consensus models structure, the 

quantitative aggregation deals with the estimation of the 

consensus model parameters [21]. 

It is evident that the order in which the both type of 

aggregation are performed determines the proper approach to 

solve the task of model aggregation. If a consensus structure 

is firstly obtained and then the model’s parameters are 

estimated, we are referring to topological fusion. If we use 

the opposite order of these steps, we are referring to 

graphical representation of consensus. 

Let us assume, we have m-th particular graphical 

probability models M m each one stated by m-th engine (e.g. 

by EA subpopulation) or m-th observer in case of expert 

system. The aim is to construct an aggregated model which is 

capable to cover the whole world state. Generally it holds 

M = ∑
=

k

m 1

βmMm,                (3) 

where βm denotes the weight/importance of the particular 

model M m.  

Each dependency graph Gm(Vm, Em), m= 1, 2,…, k is 

represented by a set nodes Vm (representing 

variables/parameters) and set of oriented edges Em 

(representing mutual dependency of variables). The 

dependency graph Gm can be represented by Bayesian 

network, tree, polytree or chain. The systematic approach 

how to aggregate Bayesian networks (BN) was published in 

[29]. In the first step, qualitative combination has to include 

a technique how to avoid cycles after combining two 

candidate models. In the second step, the problem of the 

possible increase of dependency level must be solved, after 

addition an edge. It can cancel some independent 

relationships among the variables. In the third step, the 

quantitative computation must be performed. Generally, 

Conditional Probability Tables (CPTs) may be different in 

combined models, namely their sizes. 

In this paper we will deal with a simpler EDA model which 

includes only the bivariate dependency between nodes. The 

graphical model is represented by tree (forest) and associated 

algorithm is called Bivariate Marginal Distribution 

Algorithm (BMDA). As known, each node of the bivariate 

dependency graph (BDG) has only one parent.  

Next, we make some assumption about possibility to utilize 

the principles specified in [29]. 

In Fig. 2, two candidates of BDGs to be aggregated are 

shown. Unlike [29], the both dependency graphs have got the 

same number of nodes. Adding any arc to the BDG1 breaks 

the limitation on bivariate dependency, e.g. adding the edge 

BE from BDG2 to BDG1 is that case. On the other hand 

adding the edge AC from BDG1 to BGD2 leads to cycle 

between A and C nodes. The solution of the problem lies in 

an adjusting of variable ordering to maintain directed acyclic 

graph. The Order(v) of a node v∈V in BDG is defined as the 

longest path from a rooted node to node v. 

The variable ordering γ is specified as the sequence of 



 

 

 

nodes sorted by Order(v) in ascending order for all nodes of 

BDG.  

Cycles can be avoided when each edge in the candidate 

BDG originates in a node with lower order value and 

terminates in a node with higher order value. Two examples 

of candidate BDGs are shown in Fig. 2, and the final order 

values are explicated in Table 1.  

 
Figure 2. Example of two candidates of BDGs (BDG1 left, BDG2 right) 

 

TABLE 1. ORDER VALUE OF VARIABLES IN THE TWO BDGS 

Node    BDG1 BDG2 Final ordering 

Ordervalue (A) 0 1 1 

Ordervalue (B) 1 2 2 

Ordervalue (C) 1 0 3 

Ordervalue (D) 2 3 4 

Ordervalue (E) 2 3 5 

 

Using the final ordering the orientation of edges in BDG1 

remains unchanged, and in the BDG2 the arc CA is replaced 

by AC arc, see Fig.3. If we use the operation of intersection 

of BDG1 and BDG2 we achieve a common subtree 

involving the nodes A, B, C and it is possible to start the 

quantitative phase including the point combination of 

relevant CPT tables. The resulting tree can be then obtained 

as an alternation of the process of qualitative and 

quantitative aggregation with some limitations and 

optimization criterion. 

 

 
Figure 3. Resulting edge reversion in BDG2 (right) according to Table 1 

 

Generally, the fusion of BDG is not without serious 

problems. Our attempt with the topological fusion of 

particular BDGs resulted in not feasible efficiency. 

Therefore we have proposed a second strategy mentioned in 

the previous analysis as a graphical representation of 

consensus, see next sections. 

IV. SEQUENTIAL BMDA 

Before we will specify a new parallel version of the 

BMDA a short review about the principles of sequential 

BMDA algorithm is presented. 

The well known representative of bivariate EDAs is the 

Bivariate Marginal Distribution Algorithm (BMDA) 

proposed by Pelikan and Mühlenbein [1], [20]. This 

algorithm uses a factorization of the joint probability 

distribution that exhibits second-order dependencies.  

EDAs are also population based algorithm but unlike GAs 

the new population is generated by sampling the recognized 

probability model.  

Let us denote: 

D = (X
0
, X

1
,..., X

N-1
) with X ∈ D, is the population of 

strings /solutions/individuals, 

X = (X0, X1,..., Xn-1) is a string/solution of length n with Xi 

as a variable, 

x = (x0, x1,..., xn-1) is a string/solution with xi as a possible 

instantiation of variable Xi, xi ∈{0,1},  

p(X) = p(X0, X1,..., Xn-1) denotes the n dimensional 

probability distribution, 

p(x0, x1,..., xn-1) = p(X0 = x0, X1 = x1,..., Xn-1 = xn-1) denotes 

a probability of a concrete n dimensional vector. 

The probabilistic model used in BMDA can be formalized 

by Μ = (G, Θ), where G is dependency graph and Θ = (θ0, 

θ2,…, θn-1) is a set of parameters which are estimated by 

local conditional or marginal probability for each 

node/variable of the dependency graph. 

A greedy algorithm for building dependency graphs is 

used. At the beginning, the root node is randomly selected 

and subsequently the nodes with maximum dependency 

value are searched among the remaining nodes and joined. 

These pairwise dependencies in BMDA are discovered by 

Pearson’s chi-square statistics: 
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where N is the size of parent population and m(xi, xj), m(xi) 

resp. m(xj) denote the number of individuals in the parent 

population with concrete values of xi and/or xj; if the 

denominator acquires the zero value, the subsume will be set 

to zero. These values are stored in the contingency tables. 

From the theoretical point of view this metric can be seen as 

statistical testing of hypothesis – for example binary 

variables Xi and Xj are considered to be independent at 95 

percent confidence level if 84.3
2

, <jiχ . Algorithm BMDA 

uses a variant of minimum spanning tree technique to learn a 

model. However, during the tree construction, if none of the 

remaining variables can be “rooted” to existing tree, BMDA 

starts to form additional tree from remaining variables. The 

final probability distribution is thus a forest distribution (a 

set of mutually independent dependency trees): 
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where V is the set of nodes of dependency tree, R is the set of 

root nodes and Xj(i) denotes the parent node of Xi. Given the 

tree dependence structure, the univariate marginal 

probability distributions are estimated from the 

promising/parent population: 

N
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and the bivariate conditional probability distributions 
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For example, the joint probability distribution for the 

dependency graph in Fig. 4 can be expressed by the 

factorization: 

p(X) = p1(X) p2(X), with specified terms 

p1(X) = p(X2) p(X3 |X2) p(X0 |X4) p(X4) p(X1 |X4) 

p2(X) = p(X6) p(X5 |X6) p(X7 |X5) p(X8 |X5)  

 

 
Figure 4. Example of dependency graph for BMDA 

V. ISLAND-BASED BMDA 

A. Migration of the probabilistic model 

The principal motivation for the proposal of a new 

concept of BMDA parallelization is to discover the 

efficiency of the transfer of probabilistic parameters in 

comparison with the traditional transfer of individuals. The 

main goal is to find a robust computational tool for hard 

optimization problems. The present approaches recently 

published in [1], [5], [6] use a simpler probability model 

only (PBIL, UMDA). 

To investigate the influence of underlying topology, a 

unidirectional ring with one direct neighbor, bidirectional 

octagon [31] with three direct neighbor and fully connected 

topology with synchronization have been used, see Fig. 5. 

 

          
(a) ring                   (b) octagon               (c) fully connected 

Figure 5. Investigated topologies of island-based BMDA 

 

We have implemented the island-based system on a real 

parallel system composed of a cluster of Linux-based 

workstations equipped by Intel Core E6600 processor and 

2GB RAM interconnected by 1Gb Ethernet. In case of ring 

topology, it is evident that we can simply decomposed the 

migration process on the ring loop into pairwise interactions 

of two adjacent islands - one of them is considered to be a 

resident island specified by resident probabilistic model, and 

the second one is considered to be an immigrant island which 

probabilistic model is transferred to participate on the 

building up a new resident model after a predefined 

migration rate. Generally, on the more complex topologies 

like octagon, the resident island can be influenced by many 

immigrants.   

We focused on the problem of how to compose the 

resident model with the models belonging to the immigrant 

islands. In the simplest case, the modification of the resident 

model by one immigrant model can be formalized by the 

adaptation rule [3], [16]: 

M´R = β M R + (1- β) M I,                                          (8) 

where coefficient β in the range <0, 1> specifies the 

influence of the immigrant model, indexes I and R belong to 

the immigrant and resident model.  

If we consider S immigrants, the combination model will 

be extended to this formula 

M´R= βR M R + (βI1 M I1 + βI2 M I2 +…+ βIS M IS)     (9) 

B. Adaptive Learning of Dependency Graphs 

We use the adaptive learning for the both parts of the 

probabilistic model (GR, ΘR) – the dependence graph GR and 

the parameter set ΘR. The process of adaptive learning is 

sequential - first the complete quantitative learning of 

residential parameters is realized, and then the residential 

dependency graph is learned and used for sampling. 

The adaptation coefficient β is defined by the formula in 

case of one immigrant: 
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where FR represents the mean fitness value of the resident 

subpopulation, and FIi represents the mean fitness value of 

the i-th immigrant subpopulation. 

VI. PARALLEL IMPLEMENTATION OF BMDA 

In the parallel version of pBMDA, it is necessary to 

transfer some components of the probability model from 

immigrant island/islands to resident one. In the proposed 

version, the contingency tables are transferred. The number 

of all transported values/parameters from one island is 4n
2
, 

where n is the size of the solved problem. Seeing that chi-
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square is symmetric, and dependencies between the same 

variables have no sense, the number of transferred tables is 

reduced to 2(n
2
 – n). Thus the spatial complexity of the 

transferred data is O(n
2
).  

In comparison with the probabilistic model migration, the 

migration of individuals used in [24] works with the spatial 

complexity nkN, where kN is the number of migrating 

individuals. Since the communication overhead in modern 

interconnection networks depends more strongly on the start-

up latency of communication than on a transported message 

size, we can consider that the communication overhead will 

be nearly the same for both approaches. Using asynchronous 

or non-blocking type of migration [11], the communication 

overhead could be simply overlapped. 

The information exchange between the resident and the 

immigrant island/islands, common to both model 

combination types, starts with initiation of receive requests. 

During the receive procedure, the resident island can 

compute its own contingency tables and the mean fitness 

value FR of the resident population. Next, all computed data 

are packed into a simple send buffer and sent using non-

blocking communication to the neighbor islands.  

 

Procedure MakeExhangeIslandInformation(); 

  for (i <Neighbour_count) do begin 

    MPI_IRecv(Receive_bufferI); 

  end;  

 

  Calculate the mean fitness value FR of the resident island; 

  Calculate resident contingency tables; 

  Pack resident contingency tables and FR into a send buffer; 

 

  for (i <Neighbour_count) do begin  

    MPI_ISend(Send buffer); 

  end; 

 

  MPI_WaitAll(Waiting for receiving finish); 

   

  Model_Combination(); 

 

  MPI_WaitAll(Waiting for sending finish); 

end 

Figure 6. The scheme of MPI communication between the resident and the 

immigrant islands 

 

Now, the resident island waits until all data from all 

immigrant islands will be delivered. Then, the model 

combination can start. Finally, the MPI_WaitAll function is 

called to synchronize the islands after migration phase. 

Besides the described type of communication, the 

MPI_Gather [15] operation was used after each generation. 

During this operation, all necessary information from all 

processing nodes is collected to compute global statistics 

including the best global solution, the global mean fitness 

value, etc. 

A. Two-phase Model Combination (aBMDA) 

Previously proposed method [24] of adaptive learning of 

probabilistic model uses the two-phase combination of 

contingency tables, see Fig. 7. For simplicity, let consider 

only one immigrant island. 

The resident chisqr-table is computed from the resident 

contingency tables, and the immigrant chisqr-table is 

computed according to unpacked data from receive buffer. 

Consequentlly, the probabilistic model composition is 

started. In the first phase (1) the resident and the immigrant 

chisqr-tables are combined together using the beta parameter 

to produce a new chsqri-table. A new dependency graph is 

created based on the information stored in the learned chisqr-

table. The second phase (2) determines the parameters 

values. A set of parameters Θ’R is calculated using new 

dependency graph, and the original resident and the 

immigrant contingency tables. As a result, the new 

probabilistic model M´R = (G´R, Θ’R), is determined. 

 

Calculate Chisqr_Table_Resident[i,j] = 
RR ji

2
,χ  

Unpack immigrant contingency tables and FI from receive 

buffers; 

Calculate β; 

Calculate the Chisqr_Table_Imigrant[i,j]=
II ji

2
,χ ;  

(1) Calculate items of the composed Chisqr_Table[i,j]:    

IIRRRR jijiji
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2
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2

, )1( χββχχ −+←  

     Build the new dependency graphs G´R according to new   

Chisqr_Table; 

(2) Calculate set of the parameters: ΘR(G´R) , ΘI(G´R) using  

contingency tables ; 

Learning of the parameters: Θ´R = β ΘR + (1-β)ΘI 

Compose new resident model: M´R = (G´R , Θ´R)  

Figure 7. Two-phase model combination (aBMDA) 

B. One-phase Model Combination (pBMDA) 

In the newly proposed parallel pBMDA algorithm the 

contingency tables of resident and immigrant islands are 

joined together prior to graph G´R building and parameters 

learning. The model building and parameters setting 

procedure is then same as in sequential version.  

 

Unpack immigrant contingency tables and FI from receive 

buffers; 

Calculate β ; 

Calculate the joined contingency tables 

     C_TableR[i,j] ← β *C_TableR[i,j]+ (1-β) *C_TableI[i,j] 

Calculate Chisqr_Table[i,j] using new 

     C_Table R[i,j] 

Build the new dependency graphs G´R according to  

 Chisqr_Table; 

Learning of the parameters: Θ´R according to 

Chisqr_Table[i,j] 

Compose new resident model: M´R = (G´R , Θ´R)  

Figure 8. One-phase model combination (pBMDA) 



 

 

 

VII. EXPERIMENTAL RESULTS 

We pursued two aims. The first one is a mutual 

comparison of pBMDA and aBMDA algorithms. The second 

aim was directed to the investigation of the scalability and 

the influence of underlying topology of the proposed 

pBMDA that was not covered by [24], [32]. 

We investigated two concepts of subpopulation size. The 

first one described in subsections B, C works with the fixed 

size of 256 individuals per island derived partially from our 

experience and from the experimental results published in 

[21] for the Quadratic problem. This fixed subpopulation 

size of each island has been used for the whole range of 

problem and topology size. The second concept presented in 

subsection D used the phenomenon of limited resources. The 

whole population of island system was set to 2048 

individuals so each subpopulation size was determined by 

the number of islands (e.g. 256 individuals for each of 8 

islands). In pBMDA, truncation-based selection strategy was 

used, i.e. all individuals were ordered by their fitness value 

and the better half was used for model building. The 

truncation-based replacement strategy was also used for the 

replacement operator, i.e. the new generated solutions 

(offspring) replace the worse half of the subpopulation. The 

probabilistic model is built in each generation. The 

frequency of the model migration is permanent - once per 

five generations. First stop condition was met after 500 

generations; the second condition was activated if there was 

no improvement in the interval of 50 generations. In all 

measurements 30 independent runs were carried out. 

A. Specification of Benchmarks 

For our experimental study, the well known Quadratics 

and 3-Deceptive benchmarks with various complexities/sizes 

and known global optima were used:  
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In our previous paper [31], we have applied the complete 

set of benchmarks including OneMax, TwoMax, Quadratic 

and 3-Deceptive problem. The Quadratic problem represents 

the adequate benchmark that should be solvable just by any 

BMDA algorithm. The 3-Deceptive task belongs to the hard 

deceptive benchmark for BMDA and is often used for the 

testing of BOA algorithms.  

B. Comparison of pBMDA and aBMDA Algorithms 

We have compared performance of the newly proposed 

one-phase aggregation model (pBMDA) with the recently 

published two-phase one (aBMDA) on eight island 

configurations, see Fig. 9.  

Three basic interconnection topologies are mutually 

compared. Firstly, we installed the simplest possible 

topology - the unidirectional ring. Secondly, the islands were 

connected by Octagon topology [31], and finally, the fully 

connected topology has been studied.  

The success rate curves for Quadratic problem are quite 

similar but better results were obtained by the one-phase 

model, see Fig. 9. The one-phase algorithm pBMDA 

provides higher variable range with 100% success rate on the 

octagon topology. Whereas aBMDA variant loses its 

searching capability after 280 variables, the pBMDA variant 

preserves its searching capability even up to 400 variables. 

On the contrary, the one-phase model loses its power in case 

of unidirectional ring topology. The success rate under fully 

connected topology is comparable for the both variants. 

 

The influence of topology and aggregation type, Quadratic problem 
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Figure 9. The dependency of success rate on the aggregation type and the 

interconnection topology. 

 

The influence of topology and aggregation type, 3-Deceptive problem 
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Figure 10. The dependency of success rate on the aggregation type and the 

interconnection topology. 

 

Similar results were obtained for 3-Deceptive benchmark, 

see Fig. 10 but the success rate curves are rather compressed. 

The success rates of both variants of model combination on 

octagon topology and fully connected (not shown for lucidity 

of the Fig. 10) are comparable, such that it is not possible to 

choose simply the best one. The aBMDA provides better 

results with the simple ring topology. 



 

 

 

C. Scalability of One-phase Model  

In the following set of experiments, the scalability of the 

proposed method for fixed subpopulation size of 256 

individuals has been investigated. The influence of the 

number of islands on success rate is demonstrated in Fig. 11. 

It can be recognized that the success rate grows with the 

increasing number of connected island. The addition of the 

other island to 1-island algorithm expands the area of 

successfully solved benchmark instances approximately 

twice. The addition of another two islands also scales the 

benchmark size very well. Naturally, with higher number of 

islands, the improvement of success rate tends to decrease. 
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Figure 11. The dependency of success rate on the number of islands with 

fixed size of subpopulation (256 individuals per island). 
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Figure 12. The execution time of pBMDA algorithm for varying number of 

islands with fixed subpopulation size. 

 

The real execution times were also measured for 

increasing problem size. Fig. 12 presents the mean values 

and standard 0.95 confidence interval of execution time from 

runs that achieved global optima. The curves of execution 

times are very similar, it is caused by a very small overhead 

of model aggregation and data exchange between islands that 

grows very gently with the number of islands The evolution 

will consume almost the same time for both one or 16 

islands, but naturally it will produce much better results. 

Consequently, we can utilize all available computational 

resources to achieve the highest possible success rate. 

D. Scalability of One-phase Model with limited resources 

This set of experiments examines the scalability using 

limited total resources, such that the total population of 2048 

individuals is uniformly distributed over varying number of 

islands. Fig. 13 illustrates the success rate according to the 

number of islands. The best results were produced by one-

island (sequential) BMDA with the population of 2048 

individuals. Similar results were obtained with two and four 

islands (with adequate subpopulation size of 1024 and 512 

individuals). But it is evident that the 16-islands topology is 

not able to offer sufficient genetic material to produce good 

residential model. Its subpopulation size is too small. 
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Figure 13. The dependency of success rate on the number of islands with 

limited total resources. 
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Figure 14. The speedup of pBMDA with the limited resources. 

 

Fig. 14 demonstrates the speedup towards the sequential 

variant under limited resources calculated from runs that 

achieve global optima. The speedup of two and four islands 

attacks the maximal possible values (2 and 4 respectively). 

Actually, a super-linear speedup can be observed in some 

benchmark instances. The speedups for 8 and 16 islands do 

not reach the theoretical values due to low population size. 

VIII. CONCLUSIONS 

In the paper, the problem of probabilistic model 

aggregation used for efficient parallelization of BMDA 

algorithm was investigated. In Section III, a short survey of 

references dealing with the theory and practice in this area is 

presented. The published results of research are mostly 

oriented on Bayesian network combination and very often 

are focused on various expert systems from medicine area. 

Much of this work is rather theoretical without a possibility 

to utilize its result for concrete applications. 

The reference [29] is an exception to the rule, but its topic 

is focused on the aggregation of particular probabilistic 

models with relatively small intersection of variables. A 

perspective theoretical tool is published in [30]. The concept 



 

 

 

of extraction of independency model from each Bayesian 

graphical model and their consequential union or intersection 

appears to be very promising.  

The first experimental works have been arranged for 

island topologies with fixed subpopulation size. From Fig. 9 

it flows that the one-phase algorithm pBMDA outperformes 

aBMDA for Quadratic problem on the octagon topology. In 

case of 3-Deceptive problem, the results are comparable due 

to difficulty of the solved benchmark (see Fig.10). 

From Fig. 11 and Fig. 12 it is evident that using the 

concept of fixed subpopulation size, it is beneficial to use as 

much as possible number of islands to achieve higher value 

of success rate. But it is clear that execution time does not 

evidently increase since the process of model aggregation 

and data exchange is appropriately overlapped. 

The second experimental works have used the concept of 

limited resources. From Fig. 13 it can be derived that the 

optimal number of island lies between 2 and 4. The speedups 

of these configurations are close to theoretical limits, 

moreover in same cases, the super-linear speedup occurs. 

The 8-island configuration provides still comparable success 

rate on the 100% level. The speedup does not meet the 

theoretical value, but it provides very good values about 6. 

It can be concluded that the aBMDA is more suitable for 

unidirectional ring, generally for sparser interconnection 

topologies. On the other hand, the more complex topologies 

were advantageous for the newly proposed pBMDA. 

In the future, we have an intension to test the approach 

published in [26], [30] for the aggregation of probabilistic 

model utilizing Bayesian networks. The great challenge is to 

propose an aggregation technique which is based on a partial 

learning of the residential probabilistic model by promising 

parts of immigrant models only.  
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