
Fast and Scalable Packet Classification Using Perfect Hash
Functions

Viktor Puš ∗

CESNET z. s. p. o.
Zikova 4, 160 00 Prague, Czech Republic

pus@liberouter.org

Jan Kořenek †

Faculty of Information Technology
Brno University of Technology

Božetěchova 2, 612 66 Brno, Czech Republic
korenek@fit.vutbr.cz

Klasifikace paketż je dżleżitá operace pro aplikace jako
smżrovaże a firewally. Bylo vytvożeno mnoho algoritmż, ale
żádný se nemżże rovnat rychlosti TCAM. Navrhujeme nový
hardwarový algoritmus klasifikace paketż. żeżeńı je zalożeno
na dekompozici problému a je urżeno pro vysokorychlostńı
śıtż. Jedineżnou vlastnost́ı algoritmu je konstantńı żasová
slożitost. Algoritmus provede pżesnż dva pż́ıstupy do exterńı
pamżti pro klasifikaci jednoho paketu. S vyużit́ım FPGA a
jedné SRAM je możné dosáhnout propustnosti 150 milionż
paketż za sekundu. To odpov́ıdá 100 Gb/s na nejkratż́ıch
paketech. Dalż́ı zrychlováńı je możné s v́ıce nebo rychlejż́ımi
SRAM.

ABSTRACT
Packet classification is an important operation for applica-
tions such as routers, firewalls or intrusion detection sys-
tems. Many algorithms and hardware architectures for pac-
ket classification have been created, but none of them can
compete with the speed of TCAMs in the worst case. We
propose new hardware-based algorithm for packet classifica-
tion. The solution is based on problem decomposition and
is aimed at the highest network speeds. A unique property
of the algorithm is the constant time complexity in terms of
external memory accesses. The algorithm performs exactly
two external memory accesses to classify a packet. Using
FPGA and one commodity SRAM chip, a throughput of
150 million packets per second can be achieved. This makes
throughput of 100Gbps for the shortest packets. Further
performance scaling is possible with more or faster SRAM
chips.

∗This research has been partially supported by the Research
Plan No. MSM, 6383917201 – Optical National Research
Network and its New Applications
†This research has been partially supported by the Research
Plan No. MSM, 0021630528 – Security-Oriented Research
in Information Technology.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FPGA’09, February 22–24, 2009, Monterey, California, USA.
Copyright 2009 ACM 978-1-60558-410-2/09/02 ...$5.00.

Categories and Subject Descriptors
B.7.1 [Integrated Circuits]: Types and Design Styles—
Gate arrays, Algorithms implemented in hardware;
C.2.0 [Computer-Communication Networks]: General—
Security and protection (e.g., firewalls)

General Terms
Design, Performance, Security

Keywords
Packet Classification, FPGA, SRAM

1. INTRODUCTION
With the rapid development of computer networks, traf-

fic filtering has become one of the first steps in securing any
network or computer. Basic traffic filtering device is the fire-
wall, which makes per-packet decision based on the given set
of rules. As network speeds are increasing, the demand for
the speed of packet classification algorithms is also grow-
ing. Software solutions for the packet classification problem
are available [3, 4], but their performance is not sufficient
for wirespeed processing in the highest speed networks. Ex-
isting hardware approaches also do not fulfill performance
requirements, or they require excessive amount of memory.

A classification algorithm contains a set of rules ordered
by priority. Each rule defines a condition for all significant
packet header fields. These fields are typically: Source IP
Address, Destination IP Address, Source Port, Destination
Port, Protocol. A condition may be exact match, prefix
match (usually for IP addresses), range match (for ports),
or a wildcard (matching any value). The goal of a packet
classification algorithm is to find the matching rule with the
highest priority. The output of the algorithm is then the
number of the matched rule.

The traditional method of classifying packets makes use
of Ternary Content Addressable Memories (TCAMs). How-
ever, the TCAM is an expensive device with high power-
consumption [2]. It also matches only words with fixed data
width and can limit throughput for complex rules. There-
fore, algorithmic solutions without the use of TCAMs has
become a research subject. While many algorithms have
been published [7, 15, 17], none of them can match TCAM
speed, because all existing algorithms require non-constant
number of memory accesses in the worst case. This must be
compared to the performance of TCAM solution, which clas-
sifies packet in a single memory access and the throughput is

guaranteed. We propose a new packet classification method
which uses SRAM to store necessary data, and FPGA to
implement the algorithm. We will show that our solution is
fully competitive to TCAM.
The rest of the paper is organized as follows: in the next

section we discuss the related work and point out disadvan-
tages of current solutions. Section 3 introduces a new packet
classification algorithm. The most innovative part of the al-
gorithm is described in detail in Section 4. Experimental
results of our work are summed up in Section 5, and Section
6 concludes the paper. Finally, in Section 7 we discuss the
possibilities of the future work in this area.

2. RELATED WORK
As the packet classification problem is inherently hard

from a theoretical standpoint [7], a large number of hard-
ware and software solutions [7, 15, 17] have been proposed.
Solutions are based on exhaustive search, decision tree and
grid-of-tries.
An interesting approach was introduced by Gupta in Hi-

Cuts algorithm [14]. Hi-Cuts algorithm creates decision tree
which cuts the packet space across one dimension at each
level. The scheme was further improved by Hyper-Cuts [21]
to cut the space across more dimensions at each level. In
the Lucent bit vector scheme [17], range search is performed
in each dimension, returning a vector with one bit for each
rule. If one rule dimension is matched, its bit is set and
a simple logical conjunction over all dimension vectors re-
turns matching rules. Several improvements [8, 19, 22] were
introduced later.
From the wide choice of available algorithms, we discuss

only those which are related to our work. All of them belong
to the family of decomposition-based methods. In decompo-
sition methods, packet classification is divided into several
steps. First step is the Longest Prefix Match (LPM) opera-
tion, which is performed independently in each dimension.
From the given set of prefixes with various lengths, the LPM
algorithm finds the one that best fits to the given full-length
value. Range conditions (such as port ranges) in the ruleset
are converted to prefixes, so that LPM may be performed in
all dimensions.
LPM operation is performed in IP packet routing, so it is

well studied topic. In fact, packet routing is a classification
in one dimension only – the destination IP address. Basic
algorithm for LPM is a trie, often modified to process more
input bits in each step and to reduce memory consumption.
Popular example of such algorithm is Tree Bitmap [12], but
there are also many other solutions [10, 16, 18].
After LPM, all results must be combined together to get

the resulting rule number. Basic Crossproduct algorithm
[24] precomputes a crossproduct table, which contains re-
sulting rule numbers for all possible combinations of prefixes.
Because of the multiplicative nature of the crossproduct,
this table may become extremely large. This table is imple-
mented as a hash table, which yields issues with collisions.
The whole crossproduct word must be stored in the table to
detect a hash collision. In case a collision occurs, there must
be a pointer to the next item. In this way, a linked list is
created and performance may be reduced significantly.
Other method of combining LPM results together is the

Distributed Crossproducting of Field Labels [25]. LPM is
modified to return all valid prefixes (not only the longest

one) for the given field value. What follows is the hierarchi-
cal structure of small crossproduct engines. Inputs of each
engine are two sets of prefixes (or Labels, in general). En-
gine then performs set membership query for each possible
pair of Labels. Result of the engine is another set of Labels.
The result of the last engine is in fact a set of rules, from
which the one with the highest priority is selected. Even
when crossproducting is performed in a distributed way, it
is still a weak point of the algorithm, because it is multi-
plicative in nature. If, for example, both input sets of the
crossproducting engine have 10 items, then the engine has
to perform 10× 10 = 100 set membership queries.

Fast Packet Classification Using Bloom filters [11] brings
further improvements to decomposition methods. The au-
thors of this work replace crossproducts by pseudorules. To
cover all valid combinations, certain rules are added to the
ruleset. In fact, a pseudorule is always a special case of
some rule. Example of pseudorules generation can be seen
in Figure 1.

Figure 1: Three rules R1, R2, R3 and three added
pseudorules.

Rule Dimension 1 Dimension 2 Target rule

R1 1* *

R2 1* 00*

R3 101 100

P1 1* 100 R1

P2 101 00* R2

P3 101 * R1

Table 1: Rules and pseudorules.

We can see classification in two dimensions with three
rules. For example, there is no rule for packet with header
fields (111, 100), but the correct result is rule R1(1∗, ∗)1.
Therefore pseudorule P1(1∗, 100) has to be added to cover
this situation. Table 1 contains all rules and pseudorules
together. Target rule in this table points to the correct clas-
sification result of pseudorule.

The generation of pseudorules has the character of crosspro-
ducting, and it may potentially expand the ruleset signifi-
cantly, but not all possible combinations of prefixes need to
be added. If the universal rule (a rule covering all possible
packets) were in the ruleset, then all possible combinations
would have to be added, but this rule can be removed from

1Symbol * denotes prefix or wildcard

the ruleset and returned only if no other rule matches the
packet.
Because pseudorules expansion is similar to crossprod-

uct, the article provides heuristics on how to break rule-
set into several subsets, eliminating the majority of pseu-
dorules. The paper also identifies rules that generate exces-
sive amount of pseudorules. These rules are called spoilers
and are removed to small on-chip TCAM. LPM operation
is slightly modified to return result for each subset, because
subsets may contain different prefixes. One Bloom filter
is associated with each subset to perform set membership
query. If the result is true, one Rule Table memory access
is performed to retrieve resulting rule or pseudorule.
However, this scheme has several important disadvantages.

Firstly, Rule Table is implemented using external SRAM,
which imposes high requirements on SRAM throughput. If
a rule format is very wide (for classification in more than
five dimensions), the time required to read out one rule is
also longer. We claim that Rule Table must be stored in an
on-chip memory in order to achieve higher throughputs.
Secondly, an inherent property of the Bloom filter is non-

zero probability of false positive errors. This may lead to
a situation, when there exists a packet that causes false po-
sitives in several Bloom filters, resulting in several external
memory accesses. If huge amount of such packets occurs
in the network (e.g. during an attack), the classification
algorithm slows down significantly.
Thirdly, Bloom filters are used only to reduce external

memory accesses. Nevertheless, their implementation con-
sumes on-chip resources which could be used in a more useful
way.
Finally, the worst-case memory requirements are still ex-

ponential, even with the ruleset division into subsets and the
use of TCAM for spoilers. But the algorithm does not try
to reduce the size of one item – the whole rule or pseudorule
has to be stored in an off-chip memory.

3. ALGORITHM
We propose a novel high-speed hardware-suited packet

classification algorithm, which has a modular design and
removes the drawbacks of Bloom filters, which were men-
tioned in Section 2. The algorithm consists of LPM for rule
fields followed by a mechanism to search a rule. LPM and
the rest of the classification algorithm have a very simple
unidirectional interface and both parts may be changed sep-
arately, when a better solution is available. Recent research
results for LPM operation have outstanding results even over
100Gbps [18], therefore we do not propose any new archi-
tecture for LPM and focus on the rule searching mechanism.
With the bandwidth of the off-chip memory being the per-

formance and scaling limitation for many existing solutions,
we try to reduce amount of off-chip memory accesses for
every incoming packet. Therefore, we propose to store the
whole Rule Table in the on-chip memory using simple rule
compression scheme and utilize the off-chip memory only to
search the rule.
The primary goal is to find a solution with the constant

packet rate and a good scalability with the size of the rule.
Therefore, we propose to use a perfect hashing mechanism
to provide the Rule Table search in a constant time and
utilize the off-chip memory to store Perfect Hash Table.
The process of packet classification is divided into three

basic steps (see Figure 2). The first step is the Longest Prefix

Match operation, which is similar to approaches mentioned
in Related work. The second step is mapping LPM results
to the rule number, where we propose to use perfect hash
function to perform fast searching. Even if the packet does
not match any rule, the hash function will map the packet
to some rule number. Because such invalid mapping can
occur, it is necessary to include the third step, in which the
packet is checked against the resulting rule. Therefore, the
complete Rule Table has to be stored in the third step.

Figure 2: Three basic steps of the algorithm.

The perfect hash function must find a correct rule number
for every packet. Thanks to LPM used in the first step,
the packet state space is reduced significantly. The hash
table is stored in the off-chip memory and its construction
is described in the Section 4 of the paper.

The last part of the algorithm is the comparison of the rule
to corresponding packet header fields. As high throughput
memory is needed to read a rule, the Rule Table is stored
in on-chip memories. The on-chip memory has a limited ca-
pacity, therefore all rules are compressed to save as many
memory resources as possible. We propose simple prefix in-
dexing scheme (see Figure 3) to reduce the Rule Table size
significantly. The rule itself contains only several indexes to
adjacent Prefix Tables, where all prefixes are stored. Port
number is stored directly in the Rule Table, because it is a
small field. This exploits the property of Rule Tables we and
others [25] have observed: the number of unique prefixes in
each dimension is usually quite small, therefore Prefix Ta-
bles will be also small. The experimental results for rulesets
mentioned later in the text show that memory was reduced
at least by one half, compared to simple direct storage of
rules.

This compression makes use of hardware parallelism, be-
cause all Prefix Tables are accessed in the same time. Off-
chip Rule Table implementation cannot be fast enough when
using this scheme.

4. PERFECT HASH FUNCTION

Figure 3: Prefix indexing scheme to reduce the Rule
Table size.

The problem of designing the perfect hash function could
be described as follows: each independent LPM returns one
word for every packet. Each word represents one prefix and
all prefixes together have a meaning of one (possible) pseu-
dorule. Each pseudorule is associated with one rule. We
seek a function mapping all valid pseudorules to their asso-
ciated rules. Invalid pseudorules (for a packet that matches
no rule) may be mapped to any rule, because this false pos-
itive is resolved later by simple comparison.
We chose static perfect hashing, because dynamic schemes

have significantly greater overhead. Instead of dynamic rules
insertion or removal, we can simply recompute the whole
static perfect hash. We propose to use a perfect hash con-
struction algorithm described in [9] to get a hash function,
which for each pseudorule returns a number of its associated
rule. From a wide choice of static perfect hashing schemes,
we chose this one because of its simplicity and good results.
Perfect hashing has been proposed to be used in networks
applications before [20, 13, 23, 6], but according to our
knowledge, the idea of using perfect hash functions is novel
in the field of multidimensional packet classification.
The perfect hash construction algorithm creates acyclic

graph, where edges are the keys, and vertices are results of
two different hash functions. Vertices are then assigned va-
lues so that they sum up to the desired hash value. Detailed
description can be found in [9]. The algorithm consists of
seven basic steps:

1. Input: K keys, each associated with a number which
it is to be hashed to.

2. Create graph with N = cK vertices, where c > 1.

3. Pick any two different ordinary hash functions f1, f2
that output values 0 . . . N − 1.

4. For each key, compute h1 = f1(key), h2 = f2(key),
draw an edge between vertices h1 and h2 of the graph
and associate the desired hash value with that edge.

5. Check if the graph is acyclic. If not, increase c and go
to step 2.

6. Associate values to each vertex such that for each edge
you can add the values of both its vertices and get the
desired value for the edge. This may be done by depth-
first search algorithm, because the graph is acyclic.

7. f1, f2 and vertex values now make up the desired func-
tion.

In our algorithm, keys are rules and pseudorules in the
form of concatenated LPM results, and associated numbers
are numbers of the correct rule. This way, we get a function
that hashes rule and all its associated pseudorules directly
to the correct rule number. In fact, we introduce intended
collisions of the hash function. The idea of intended hash
collisions is a non-traditional usage of perfect hash functions.
The important point is that none of pseudorules is stored
in our scheme. Therefore, we save significant amount of
memory.

Table 2 and Figures 4 and 5 show how a graph for the
example in Table 1 could look like. When the graph is cre-
ated, the hash function is simple. At first, two different hash
functions are evaluated over the input word. Then two ver-
tex values are read from the Vertex Table and added. For
each vertex, only one integer is stored.

Input word f1 f2

<1*, *> 0 7

<1*, 00*> 6 0

<101, 100> 5 4

<1*, 100> 0 4

<101, 00*> 1 3

<101, *> 3 2

Table 2: Two hypothetical hash functions’ results
for inputs in the form of encoded and concatenated
LPM results

Figure 4: Example graph with 6 (pseudo)rules and
8 vertices.

By theory, acyclic graph with n edges must have at least
n + 1 vertices. This means that a table with more items
than the number of rules and pseudorules is needed. The
perfect hash algorithm usually needs greater overhead. Our

Figure 5: Example of computing perfect hash func-
tion.

experiments in Section 5 show that the table size must be
approximately twice the theoretical minimum, which is good
result among other perfect hash algorithms.
Similarly to [11], we use small on-chip TCAM to store

spoilers and save significant amount of memory. Identify-
ing the greatest spoilers is a complex task, which needs to
be further investigated. For our experiments, we use semi-
automatic method, and we intend to do more research in
finding an automatic heuristic method with good results.

5. RESULTS
The proposed algorithm was implemented in FPGA and

utilizes one external static memory. We have studied sev-
eral rulesets to get information about typical properties of
rules. Similarly to [25], we have found that the number of
unique prefixes in each dimension is usually quite small (see
Table 3). Therefore, the data structures for LPMs may be
easily stored in small on-chip memories, either BlockRAMs
or distributed memories. Also the Rule Table itself is not
greater than a few kilobytes; therefore, we do not need an
external memory for its storage.
The table of graph vertices may become large, therefore,

we propose to use an external memory to store the Perfect
Hash Table. On-chip memories could be used only in case of
small rulesets. For example, Xilinx FPGA Virtex5 LX110
[5] contains 4 608 kb of BlockRAM memory, which gives us
262 144 vertices (suppose 18 bits for one vertex).

SRC DST SRC DST Proto-
Ruleset Rules Addr Addr Port Port col

fw1 32 13 2 10 22 4

fw2 58 26 24 4 1 2

fw3 103 28 48 36 1 4

fw4 171 84 84 1 6 3

synth1 40 12 19 10 22 5

synth2 49 35 41 8 22 3

synth3 49 26 14 14 1 4

synth4 70 27 62 1 48 3

synth5 82 20 37 3 3 4

synth6 100 73 85 1 54 4

Table 3: Numbers of unique prefixes in each dimen-
sion.

The proposed solution significantly reduces the bottleneck
caused by the speed of external memory. Only two 18-bit

words need to be read for every packet, which is many times
less than one whole rule (or even worse, several rules) [11].
Moreover, performance of our algorithm is not affected by
the complexity of rules. Other fields (i.e. MAC addresses,
TCP flags, etc.) can be added to rules and the throughput
remains the same, only on-chip Rule Table size increases
linearly. It means that our solution scales well with com-
plexity of rules.

5.1 Performance
Similarly to [11], we suppose 300MHz DDR memory with

the burst length of two words. The throughput of our solu-
tion is compared to the Crossproduct algorithm and Bloom
filters in Table 4. We do not take into account the speed of
LPM operation, because we consider it is fast enough [18].
It can be seen that our solution has a constant throughput
and does not require very wide external memory data bus.
The time to recompute all necessary data structures was al-
ways below 4 seconds. We use two Jenkins hash functions [1]
with various seeds to implement the perfrect hash function.

Data Crossproduct Bloom Filter-Based Perfect

Width Based 4 6 8 Hash

9 37.5 9.375 6.25 4.6875 150

18 75 18.75 12.5 9.375 150

36 150 37.5 25 18.75 150

72 300 75 50 37.5 150

Table 4: Throughput (in millions packets per sec-
ond) for several data bus widths of 300MHz DDR
memory. Rule word width of 144 bits is considered.
For the algorithm exploiting Bloom filters we con-
sider three cases: match of four, six and eight rules
for each packet.

5.2 Memory requirements
We performed pseudorules expansion and perfect hash

function search for several rulesets from university campus
network (fw) together with several synthetic ruleset generat-
ed by ClassBench [26] (synth) to determine off-chip memory
requirements. Memory requirements are compared to Bloom
filters-based and Crossproduct algorithm in Table 5.

As can be seen, numbers of graph vertices may become
prohibitive for on-chip memories, but is acceptable for com-
modity SRAM chips. Each vertex is stored as one signed
integer, actual range of vertex values determines number of
bits required to represent it. If SRAM works with larger
data width, words can be split into several parts to multiply
the available table size.

Overall chip area is hard to compare to other solutions,
because every implementation has many variable parameters
(speed, number of stored prefixes, selection of classification
dimensions). However, we provide informal comparison to
[11]:

• Both schemes use LPM as the first step.

• In our solution, we need only two various on-chip hash
functions to compute the perfect hash function, while
[11] uses many hash functions to implement Bloom fil-
ters.

Ruleset Rules Crossprod. Bloom F. Perf. Hash

fw1 32 3 618 823 740

fw1 58 13 086 1 492 3 424

fw3 103 1 008 954 2 651 252 220

fw4 171 443 484 4 401 116 356

synth1 40 11 070 1 029 2 740

synth2 49 29 520 1 261 6 601

synth3 49 19 278 1 261 5 035

synth4 70 10 512 1 801 2 451

synth5 82 90 324 2 110 22 495

synth6 100 17 010 2 574 3 827

Table 5: Off-chip memory requirements (in Bytes)
for several rulesets. For Bloom Filter-Based algo-
rithm we assume that pseudorules expand the rule-
set by the factor of 1.43 (average from the origi-
nal paper [11]). For Crossproduct and Perfect Hash
scheme we use on-chip TCAM for 16 spoilers.

• Our solution stores the ruleset in on-chip memories.

• In [11], small bit array is stored for each Bloom filter.

• Both schemes use external memory and other common
blocks (packet recieve and transmit modules etc.).

To verify our results, we have implemented the described
algorithm for the Virtex 5 LX110T FPGA.We used 125MHz
working frequency and set the throughput to two cycles per
packet. This limitation of the particular implementation
is induced by our current needs – we have connected two
10Gbps network interfaces and one PCI-Express x8 bus to
the FPGA.
We added four other classification dimensions: Source and

Destination MAC address, TCP flags and Input interface
number. We were able to load up to 1 000 rules into the de-
vice. Data structures (LPMs, Vertex Table, etc.) generation
time was below 0.5 second on a PC with 2GHz Intel Pen-
tium processor. This is also the update delay if the ruleset
changes.
Using the proposed algorithm, we have created two-port

firewall with the constant aggregated throughput of 62.5 mil-
lion packets per second.

6. CONCLUSION
We have proposed a novel algorithm for fast packet clas-

sification using perfect hash functions. Our algorithm in-
troduces intended hash collisions to reduce memory require-
ments. By creating custom hash function, we make sure that
all pseudorules are hashed to associated rule, which means
that no pseudorule has to be stored in the memory and sig-
nificantly less memory is needed. The results in Section 5
show that the only larger amount of memory is utilized to
store Perfect Hash Table, even for large rulesets.
Because only two external memory accesses are needed to

classify a packet, 150 million packets per second can be pro-
cessed with commodity FPGA and SRAM. This packet rate
corresponds to 100Gbps Ethernet for the shortest packets.
Moreover, the throughput doesn’t depend on ruleset com-
plexity and is well scalable with number of external memo-
ries.

According to our knowledge, the proposed algorithm is
the first algorithm which requires reasonable amount of me-
mory and has constant processing time even for complex
ruleset. High throughput together with constant process-
ing time makes the proposed algorithm fully competitive to
widely used TCAM solutions. As the proposed solution uses
commodity SRAM, the price and power consumption is sig-
nificantly lower than classification with TCAM memory.

7. FUTURE WORK
We continue to explore this method to further improve

memory efficiency by reducing size of the Vertex Table for
large rulesets. If the memory requirements drop under cer-
tain limit, only on-chip memory can be used to store the
Vertex Table and the classification process can be signifi-
cantly faster. Moreover, if external memory is removed, the
price and power consumption is decreased. We also believe
that the idea of intended hash collisions has potential value
for other tasks which allow relatively slow precomputation,
but require extremely fast search times.

8. REFERENCES

[1] A hash function for hash table lookup.
http://burtleburtle.net/bob/hash/doobs.html, December
2008.

[2] IDT Generic Part: 75K72100.
http://www.idt.com/?catID=58523&genID=75K72100 ,
June 2008.

[3] Netfilter: firewalling, NAT and packet managing for Linux.
http://www.netfilter.org/ , June 2008.

[4] PF: The OpenBSD Packet Filter.
http://www.openbsd.org/faq/pf/ , June 2008.

[5] Xilinx Virtex–5 Family FPGAs. Xilinx, Inc.
[6] N. S. Artan and H. J. Chao. Tribica: Trie bitmap content

analyzer for high-speed network intrusion detection.
INFOCOM 2007. 26th IEEE International Conference on
Computer Communications. IEEE, pages 125–133, May
2007.

[7] F. Baboescu, S. Singh, and G. Varghese. Packet
classification for core routers: Is there an alternative to
CAMs? In INFOCOM, 2003.

[8] F. Baboescu and G. Varghese. Scalable packet
classification. In SIGCOMM ’01: Proceedings of the 2001
conference on Applications, technologies, architectures, and
protocols for computer communications, pages 199–210,
New York, NY, USA, 2001. ACM.

[9] Z. J. Czech, G. Havas, and B. S. Majewski. An optimal
algorithm for generating minimal perfect hash functions.
Information Processing Letters, 43(5):257–264, 1992.

[10] S. Dharmapurikar, P. Krishnamurthy, and D. E. Taylor.
Longest prefix matching using Bloom filters. In SIGCOMM
’03: Proceedings of the 2003 conference on Applications,
technologies, architectures, and protocols for computer
communications, pages 201–212, New York, NY, USA,
2003. ACM.

[11] S. Dharmapurikar, H. Song, J. Turner, and J. Lockwood.
Fast packet classification using Bloom filters. In ANCS ’06:
Proceedings of the 2006 ACM/IEEE symposium on
Architecture for networking and communications systems,
pages 61–70, New York, NY, USA, 2006. ACM.

[12] W. Eatherton, G. Varghese, and Z. Dittia. Tree bitmap:
hardware/software IP lookups with incremental updates.
SIGCOMM Computer Communication Review,
34(2):97–122, 2004.

[13] S. Giordano, F. Oppedisano, G. Procissi, and F. Russo. A
novel high-speed micro-flows classification algorithm based
on perfect hashing and direct addressing. Global

Telecommunications Conference, 2007. GLOBECOM ’07.
IEEE, pages 448–452, November 2007.

[14] P. Gupta and N. McKeown. Packet classification using
hierarchical intelligent cuttings. In Proc. Hot Interconnects,
1999.

[15] P. Gupta and N. McKeown. Algorithms for packet
classification, 2001.

[16] P. Gupta, B. Prabhakar, and S. P. Boyd. Near optimal
routing lookups with bounded worst case performance. In
INFOCOM, pages 1184–1192, 2000.

[17] T. V. Lakshman and D. Stiliadis. High-speed policy-based
packet forwarding using efficient multi-dimensional range
matching. SIGCOMM Comput. Commun. Rev.,
28(4):203–214, 1998.

[18] H. Lee, W. Jiang, and V. K. Prasanna. Scalable
High-Throughput SRAM-Based Architecture for IP Lookup
Using FPGA. In FPL ’08. IEEE, 2008.

[19] J. Li, H. Liu, and K. Sollins. AFBV: a scalable packet
classification algorithm. SIGCOMM Comput. Commun.
Rev., 32(3):24–24, 2002.

[20] Y. Lu, B. Prabhakar, and F. Bonomi. Perfect hashing for
network applications. Information Theory, 2006 IEEE
International Symposium on, pages 2774–2778, July 2006.

[21] S. Singh, F. Baboescu, G. Varghese, and J. Wang. Packet
classification using multidimensional cutting. In
SIGCOMM ’03: Proceedings of the 2003 conference on
Applications, technologies, architectures, and protocols for
computer communications, pages 213–224, New York, NY,
USA, 2003. ACM.

[22] H. Song and J. W. Lockwood. Efficient packet classification
for network intrusion detection using FPGA. In FPGA ’05:
Proceedings of the 2005 ACM/SIGDA 13th international
symposium on Field-programmable gate arrays, pages
238–245, New York, NY, USA, 2005. ACM.

[23] I. Sourdis, D. Pnevmatikatos, S. Wong, and S. Vassiliadis.
A reconfigurable perfect-hashing scheme for packet
inspection. Field Programmable Logic and Applications,
2005. International Conference on, pages 644–647, Aug.
2005.

[24] V. Srinivasan, G. Varghese, S. Suri, and M. Waldvogel.
Fast and scalable layer four switching. SIGCOMM Comput.
Commun. Rev., 28(4):191–202, 1998.

[25] D. Taylor and J. Turner. Scalable packet classification
using distributed crossproducting of field labels. In IEEE
INFOCOM 2005, 24th Annual Joint Conference of the
IEEE Computer and Communications Societies., pages
269–280, July 2005.

[26] D. E. Taylor and J. S. Turner. Classbench: a packet
classification benchmark. IEEE/ACM Trans. Netw.,
15(3):499–511, 2007.

