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Abstract. The paper surveys the fundamental principles of evolvable
hardware, introduces main problems of the field and briefly describes
the most successful applications. Although evolvable hardware is typ-
ically interpreted from the point of view of electrical engineering, the
paper discusses the implications of evolvable hardware for the theory of
computation. In particular, it is shown that it is not always possible to
understand the evolved system as a computing mechanism if the evolu-
tion is conducted with real hardware in a loop. Moreover, it is impossible
to describe a continuously evolving system using the computational sce-
nario of a standard Turing machine.

1 Introduction

Evolutionary algorithms (EAs) are population-based search algorithms that have
been successfully applied to solve hard optimization problems in many applica-
tion domains [1]. In the recent years, EAs have been also utilized in the area of
engineering design [2].

In the field of evolvable hardware, EA is used to generate configurations for
reconfigurable chips that can dynamically alter the functionality and physical
connections of their circuits [3, 4]. Research in the field of evolvable hardware can
be split into the two related areas of evolutionary hardware design and adaptive
hardware. While evolutionary hardware design is the use of EAs for creating
innovative (and sometimes patentable) physical designs, the goal of adaptive
hardware is to endow physical systems with some adaptive characteristics in
order to allow them to operate successfully in a changing environment or under
presence of faults.

The recent years of development of this field can be characterized as a con-
tinuous search for promising problems/applications from the point of view of
evolutionary design. In this paper, we will survey the fundamental principles of
evolvable hardware, introduce main problems of the field and briefly describe
the most successful applications.

The second part of the paper (Sections 3 and 4) is more theoretically oriented.
Although evolvable hardware is typically interpreted from the point of view of
electrical engineering, we will discuss the implications of evolvable hardware for



the theory of computation. There are two significant features from the perspec-
tive of computer science: (1) Resulting systems are not designed conventionally;
they are created in the process of evolution which is based on the ‘generate-and-
test’ approach. We will show that it is not always possible to understand the
evolved system as a computing mechanism (in the sense of Turing machines) if
the evolution is conducted in a physical hardware. (2) It is impossible to de-
scribe a continuously evolving system in terms of Turing machine if EA is used
to dynamically adapt the system in a changing environment. Then, evolvable
machines can be characterized as super-computing systems.

2 Evolvable Hardware

This section presents the concept of evolvable hardware, introduces relevant
terminology, discusses open problems and briefly surveys some important appli-
cations.

2.1 The Method

Figure 1 shows the basic principle of the evolvable hardware method: electronic
circuits that are encoded as bit strings (chromosomes, in the parlance of EAs) are
constructed and optimized by the evolutionary algorithm in order to obtain the
circuit implementation satisfying the specification given by designer. In order to
evaluate the candidate circuit, the new configuration of a reconfigurable device is
created on the basis of the chromosome content. This configuration is uploaded
into the reconfigurable device and evaluated for a chosen set of input stimuli. The
fitness function, which reflects the problem specification, can include behavioral
as well as non-behavioral requirements. For example, the correct functionality
is a typical behavioral requirement. As a non-behavioral requirement, we can
mention the requirement for minimum power consumption or minimum area oc-
cupied on the chip. Once the evaluation of the population of candidate circuits
is complete, a new population can be produced. That is typically performed by
applying the genetic operators (such as mutation and crossover) on existing cir-
cuit configurations. High-scored candidate circuits have got a higher probability
that their genetic material (parts of configuration bitstreams) will be selected for
next generations. The process of evolution is terminated when a perfect solution
is obtained or when a certain number of generations is evaluated.

As the EA is a stochastic algorithm, the quality of resultant circuits is not
guaranteed at the end of evolution. However, the method has two important
advantages: (1) Artificial evolution can in principle produce intrinsic designs for
electronic circuits which lie outside the scope of circuits achievable by conven-
tional design methods. (2) The challenge of conventional design is replaced by
that of designing an evolutionary algorithm that automatically performs the de-
sign in a target place (e.g., in space). This may be harder than doing the design
directly, but makes autonomy possible.



Fig. 1. High-level description of the evolvable hardware approach

The main contribution of the evolutionary hardware design can be seen in
the areas where it is impossible to provide a perfect specification for target
implementations and conventional design methods are based on experience and
intuition rather than on a fully automated methodology. Then, the EA can
explore the “dark corners” of design spaces which humans have left unexplored
[5].

2.2 Extrinsic and Intrinsic Evolution

Most reconfigurable circuits consist of configurable blocks whose functions and
interconnections are controlled by the configuration bitstream. On the position
of the reconfigurable circuit we can find various reconfigurable device, includ-
ing Field Programmable Gate Arrays (FPGAs), Field Programmable Analog
Arrays (FPAAs), Field Programmable Transistor Arrays (FPTAs) and special
application-specific circuits (RISA [6], PAMA [7], Evolvable Motherboard [8],
REPOMO32 [9] etc.). More exotic devices include reconfigurable mirrors [10],
reconfigurable nanosystems [11], reconfigurable antennas [12] and reconfigurable
liquid crystals [13].

If all candidate circuits are evaluated in a physical reconfigurable device, the
approach is called intrinsic evolution. If the evolution is performed using a circuit
simulator and only the resulting circuit is uploaded to a reconfigurable device
the approach is called extrinsic evolution. Why is it important to distinguish
between these approaches?

In 1996 and the following years, Adrian Thompson performed a series of
experiments which clearly demonstrated that there can be a significant differ-
ence in the resulting behavior if candidate circuits are evaluated not in a circuit
simulator but directly in a physical reconfigurable device [14]. Thompson used
FPGA XC6216 chip to evolve a tone discriminator – a circuit discriminating



between square waves of 1 kHz and 10 kHz. With 10 x 10 configurable blocks
of an XC6216 device, the circuit should output 5V for one of the frequencies
and 0V for the other. The problem is that evolved circuit has to discriminate
between input periods five orders of magnitude longer than the propagation time
of each configurable block. Thompson evolved a surprising solution: Only 21 out
of 10x10 blocks contributed to the actual circuit behavior. However, some un-
connected blocks also influenced the circuit behavior. According to Thompson,
these blocks interacted with the circuit in some non-standard ways. Evolved cir-
cuit was carefully analyzed using simulators, tested under different conditions
and on other XC6216 chips [15]. Surprisingly, Thompson was not able to cre-
ate a reliable simulation model of the evolved circuit. In addition, he observed
that the circuit configuration works only with the chip used during evolution.
Although the circuit has a digital interface its internal behavior is typical for
analog circuits. It can be stated that the evolution was able to explore a full
repertoire of behaviors available from the silicon resources provided to create
the required behavior. This is an outstanding result, practically unreachable by
means of conventional design methods.

Similar results were observed by those doing evolutionary design in FPTA
[16], liquid crystals [13] and some other unconventional platforms.

2.3 Scalability Problems

The scalability problem has been identified as the most important problem from
the point of view of practical applicability of evolvable hardware. The scalability
of representation means that long chromosomes which are usually required to
represent complex solutions imply large search spaces that are typically difficult
to search. In order to evolve large designs and simultaneously keep the size of
chromosome small, the four main techniques have been developed:

– Functional-level evolution [17]: Instead of gates and single-wire connections,
the system is composed of complex application-specific functional blocks
(such as adders, multipliers and comparators) connected using multi-bit con-
nections. The selection of suitable functional blocks represents a domain
knowledge that has to be included into the system.

– Incremental evolution [18, 19]: Target circuit is decomposed onto modules
which are evolved separately. The decomposition strategy is a kind of domain
knowledge which has to be supplied by designer.

– Development [20, 21]: The above mentioned approaches employ a direct en-
coding of target circuit (phenotype) in the chromosome (genotype). Hence
the size of the chromosome is proportional to the size of the circuit. Develop-
mental approaches utilize indirect (generative) encodings which specify how
to construct the target circuit. The phenotype is, in fact, constructed by a
program which is encoded in the genotype. Designing these developmental
encodings is not trivial and represents a domain knowledge which has to be
supplied by designer.



– Modularization [22]: Some EAs enable to dynamically create and destroy
reusable modules (subcircuits). The reuse of modules make the evolution
easier even for large circuits.

Another problem is related to the fitness calculation time. In case of the
combinational circuit evolution, the evaluation time of a candidate circuit grows
exponentially with the increasing number of inputs (assuming that all possible
input combinations are tested in the fitness function). Hence, the evaluation
time becomes the main bottleneck of the evolutionary approach when complex
circuits with many inputs are evolved. This problem is known as the problem
of scalability of evaluation. In order to reduce the time of evaluation, various
techniques have been adopted:

– Only a subset of all possible input vectors is utilized. That is typical for
evolution of filters, classifiers or robot controllers [23]. Evolved circuits have
to be validated at the end of evolution using a test set — a representative
set of input vectors which differs from the training set.

– In some cases it is sufficient to evaluate only some structural properties (not
the function) of candidate circuits which can be done with a reasonable time
overhead. For example, because the testability of a candidate circuit can be
calculated with the O(n2) complexity, very large benchmark circuits (more
than 1 million gates) have been evolved with predefined testability properties
[24].

– In case that the target system is linear, it is possible to perfectly evaluate
a candidate circuit using a single input vector independently of the circuit
complexity. Multiple-constant multipliers composed of adders, subtractors
and shifters were evolved for tens of multibit outputs [25].

An obvious conclusion is that the perfect evaluation procedures are applicable
only for small circuits or in very specific cases of large circuits. On the other
hand, when more complex circuits have to be evolved, only an imperfect fitness
calculation method may be employed due to time constraints.

2.4 Applications

The applications of evolvable hardware fall into two categories: evolutionary
design and adaptive hardware. We will briefly survey them.

Evolutionary Hardware Design Innovative designs were presented in the
areas of small combinational circuits (multipliers [26]), digital filters [27], im-
age operators [28], classifiers [29], diagnostics benchmark circuits [24] and many
others.

Innovative implementations of analog circuits, antennas and optical systems
were mostly obtained using indirect encodings, for example, developmental ge-
netic programming introduced by John Koza [21, 30]. Koza’s team has clearly
illustrated that genetic programming can automatically produce a circuit that



is competitive with human performance. In particular, genetic programming has
created patentable new inventions and created circuits that either infringe or
duplicate the functionality of previously patented inventions.

Adaptive Hardware Examples of adaptive hardware systems can be presented
according to the types of changes which usually lead to the requirement for
system adaptation. These changes can be classified either as changes

– in the hardware platform itself (i.e., faults),
– in the input data characteristics, or
– in the specification.

A promising application for evolution of analog circuits is the adaptation in
extreme environments. JPL’s evolvable hardware group has demonstrated for
simple circuits created in the FPTA-2 that the evolutionary approach can re-
cover the functionality lost (1) after a fault artificially injected into FPTA-2, (2)
in extreme high and low temperatures (from –196◦C to 320◦C) and (3) in high
radiation environments (up to 250 krad of total ionizing dose) [31, 32, 16, 33]. For
example, the Self-Reconfigurable Analog Array (SRAA) developed at JPL pro-
vides the capability of continual temperature compensation using evolutionary-
oriented reconfiguration [34].

Adaptive image compression methods allow for modifying the compression
algorithm according to the particular data which has to be compressed. In conse-
quence, a higher compression ratio can be achieved. A chip for adaptive lossless
data compression was presented in [35]. Another evolvable hardware chip was
designed to control a myoelectric prosthetic hand which processes the signals
generated with muscular movements (electromyography, EMG signals). It takes
a long time, usually almost one month, before a disabled person is able to con-
trol a multifunction prosthetic hand freely using a fixed controller. The evolvable
chip allows the myoelectric hand to adapt itself to the disabled person and thus
significantly reduce the training period to several minutes [36].

A post-fabrication calibration of ASICs can be also considered as a kind of
hardware adaptation. Fabrication variances in the manufacture of chips can cause
problems for some high-performance applications, especially when a cutting-edge
manufacturing technology is employed. In other words, only some of the fabri-
cated chips really meet the specification. Hence an EA is used to tune selected
circuit parameters with the aim of obtaining required circuit function even for the
chips which do not work because of variance of the fabrication process. Although
some area of the chip has to be spent for implementing the reconfiguration logic
and controller, the overall benefits are significant: It is possible to fabricate sim-
pler, smaller and low-power designs which do not contain large circuits needed
to compensate fabrication variances. A typical chip in which the post-fabrication
tuning was successfully applied is an intermediate filter (IF), commonly found
in mobile telephones [37].

Off line as well as on line evolution if often applied in the area of evolutionary
robotics to design a reactive robot controller [38]. In more sophisticated scenario,
robot controllers are evolved together with robot physical bodies [39].



3 Are Evolved Systems Computing Mechanisms?

A common feature of the conventional design process and evolutionary design is
that target system’s input/output behavior (and interpretation) has to be de-
fined in advance. In the case of evolutionary design, this interpretation is used
to define the fitness function. However, the main difference between the two de-
sign approaches is that while the conventional design is based on a systematic
transformation of the abstract problem model into the implementation in a given
platform, the evolutionary approach is based on the ‘generate-and-test’ method.
When not constrained, the evolution can utilize all the resources available, in-
cluding normally unused characteristics of the reconfigurable platform and envi-
ronment to build the target system. Although the evolution is often able to find
an implementation perfectly satisfying the specification, we can have problems
to understand how and why the solution works. Therefore, nothing is known
about the mapping between an abstract computational model and its physical
implementation [40]. The next paragraph will demonstrate this phenomenon.

Assume that a simple non-trivial circuit performing required transforma-
tion has been evolved in an FPTA, liquid crystals or another ‘physically-rich’
platform. Moreover, assume that the environment is stable (i.e., temperature,
radiation and all the phenomena that could influence its behavior are stable). In
principle, we are able to interpret the signals at the inputs and outputs because
we had to declare our interpretation in the fitness evaluation process (i.e., in
advance, before the circuit was evolved). However, we don’t exactly understand
at the end of evolution how the platform performs the required computation. We
have specified only the required input/output relation in the fitness function, i.e.
we have not introduced any abstract model indicating the way of computation.

Does the evolved system really perform a computation? Since we can inter-
pret the input/output behavior of the circuit as computation we can agree that
the system really computes. However, there are problems with the interpretation
of internal behavior of the evolved system. Copeland, Johnson and others would
like to see that the symbols within the system have a consistent interpretation
throughout the computation and that the interpretation is specified beforehand
[41, 42]. It makes no sense to establish the mapping before the evolution is ex-
ecuted because the evolution can use various physical properties of the physical
device to implement the required behavior. On the other hand, establishing the
mapping at the end of evolution could solve the problem because (under some
assumptions, such as that the environment does not influence the physical de-
vice at all) it could be possible to identify the physical states that correspond to
the abstract computational states. Unfortunately, the discovery of the computa-
tional states/functions within the physical system is not quite sure. Although we
could apply all the physical theories we currently know to analyze and explain
the evolved system, we could obtain no satisfactory answer. As Bartles et al.
have shown [43], the evolution is able to utilize those physical behaviors that are
physically impossible from the point of view of current physical theories.

If we agree that (1) it does not matter how the system realizes a function as
long as the system is digital from the outside (a digital system can be treated



as a “black box” with digital inputs and outputs), (2) we are able to interpret
its input/output behavior as computation and (3) this interpretation is defined
in advance then the evolved system is computational system (computing mech-
anism). On the other hand, if the correspondence between the abstract states
and physical states is crucial to qualify the system as computational one then
the evolved system is not a computing mechanism.

Table 1 compares ordinary computers, evolved computational systems and
the brain (the brain represents here all biological systems that are often studied
as computational devices). We can observe that the evolved computational de-
vices represent a distinctive class of devices that exhibits a specific combination
of properties, not visible in the scope of all computational devices up till now.

Table 1. Comparison of different types of computational devices

Property Processor The brain Evolved device

I/O behavior can be interpreted as computing Yes Yes Yes
Device is a computing mechanism Yes Unsure Unsure
An abstract model exists before implementation Yes No No
The required behavior is specified beforehand Yes No Yes
Engineers can design&build Yes No Yes

4 Evolvable Computational Machines as Super-Turing
Machines

In this paragraph, we will investigate computational properties of evolvable sys-
tems that can be adapted in a dynamically changing environment. In order to
provide a simple formal framework for machine evolution in a dynamic envi-
ronment, a mathematical model of the evolvable computational machine will be
defined (according to [28]) as a quadruple M = (E,M, g, f), where

– E denotes a search (evolutionary) algorithm. Note that classical evolutionary
algorithms utilize the fitness function of the form Φ : C → R where C denotes
a set of chromosomes.

– M denotes a set of machines which can be constructed from chromosomes
for a given problem domain using

– genotype-phenotype mapping g : C →M.
– f is a ‘machine’ fitness function f : M → R which is used to evaluate

candidate machines. Φ is expressed as composition Φ = f ◦ g.

Note that f is a problem specific function, g can cover any type of construc-
tional process and M is defined implicitly or explicitly before the evolution is
executed.

In order to model evolvable machine M in a dynamic environment, the fol-
lowing specification of machine context (environment) is proposed according to



[28]. The machine context is considered as a set of (machine) fitness functions
(we can call them context functions) together with a mechanism of transition
among them. Context functions are changed in discrete time points modeled as
natural numbers N = {1, 2, . . .}. A set of all mappings from M into R will be
denoted RM. Formally, machine context is defined in terms:

– Γ ⊆ RM – a set of context functions (ϕi ∈ Γ specifies the fitness function
in environment i).

– ϕ0 ∈ Γ – an initial context function.

– ε : Γ × N→ Γ – a relation that determines a successive context function.

The following example illustrates the proposed formal definitions: Consider
a real-time adaptive and reactive robot controller implemented as evolvable ma-
chine (as evolvable hardware in practice). The controller controls the motors of a
flying robot which is deployed to monitor Mars surface. The goal is to maximize
the measurement accuracy and minimize robot’s power consumption. The qual-
ity of measurement is proportional to the number of active sensors, i.e. to the
power consumption. It is assumed that the robot’s operational time is endless.
The system exhibits three important properties:

– The computation is reactive because the robot is controlled according to the
data coming from sensors. The robot also influences its environment (e.g.,
other robots).

– The control algorithm is dynamically changed. The changes are unpredictable
because the stimuli from environment (e.g., the occurrence of a meteorite)
or hardware failures are uncomputable.

– It is not assumed that the computation will be terminated. In reality, the
computation will terminate because of unavoidable hardware failures or in-
sufficient power supply.

The evolvable machine, in fact, produces a (potentially endless) sequence of
controllers (i.e., machines fromM), one for the most recent environment/specification.
The type of environment is reflected in the context function ϕi. The change of
environment (i.e., the change of context function described by ε) is not com-
putable.

It is evident that proposed robot does not share the computational scenario
of a standard Turing machine and hence it can not be simulated on Turing
machine. Nevertheless, van Leeuwen and Wiedermann have shown that such
computations may be realized by an interactive Turing machines with advice
[44]. The interactive Turing machine with advice is a classical Turing machine
endowed with three important features: advice function (a weaker type of oracle),
interaction and infinity of operation. The same authors have proposed that any
(non-uniform interactive) computation can be described in terms of interactive
Turing machines with advice.



We can observe that evolvable computational machines (theoretical mod-
els!) operating in a dynamic environment show simultaneous non-uniformity of
computation, interaction with an environment, and infinity of operations. Fur-
thermore, relation ε is in general uncomputable. It was proven that computa-
tional power of an evolvable computational machine operating in a dynamic
environment is equivalent with the computational power of an interactive Tur-
ing machine with advice, however, only in the case that evolutionary algorithm
is efficient [28].

Also physical implementations of evolvable machines, Internet and other sim-
ilar devices are very interesting from a computational viewpoint. At each time
point they have a finite description. However, when one observes their compu-
tation in time, they represent infinite sequences of reactive devices computing
non-uniformly. The “evolution” of machine’s behavior is supposed to be endless.
In fact it means that they offer an example of real devices (physical implementa-
tions!) that can perform computations that no single Turing machine (without
oracle) can.

5 Conclusions

In this paper, we have surveyed the fundamental principles of evolvable hard-
ware, introduced main problems of the field and mentioned the most successful
applications. Proposed theoretical analysis of evolvable hardware which was con-
ducted from the perspective of computer science should help in understanding of
what we can obtain from a design method that utilizes the evolutionary design
instead of conventional design techniques. Finally, we have shown that adap-
tive hardware does not reflect the computational scenario of a standard Turing
machine.
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