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Abstract 

 
Multi-terminal Binary Decision Diagrams 

(MTBDDs) are useful representation of multiple output 
Boolean functions. However, construction of such a 
diagram is a difficult task, especially when in some 
sense optimum diagram is sought. The paper presents 
an improved algorithm of MTBDD synthesis aiming at 
minimum MTBDD width or cost. The presented algo-
rithm is a core of the upgraded version of a synthesis 
tool that accepts incompletely specified integer-valued 
functions of Boolean variables specified by possibly 
compatible cubes. The suggested technique is suitable 
for hardware (LUT cascades) or firmware implemen-
tation (branching microprograms). 

   
Keywords: Incompletely specified functions, multi-
terminal BDDs, LUT cascades, iterative disjunctive 
decomposition, functional decomposition. 

 
1. Introduction 
 
Design of digital systems is based on various speci-

fications of Boolean functions, most often in a form of 
Boolean expressions or in cube notation (Espresso 
formats), [1]. Another popular machine representation 
of single-output Boolean functions uses binary deci-
sion diagrams (BDDs), which can have many forms, 
[2], [3]. 

Conversion of a single Boolean function into a BDD 
and related optimization problems were studied inten-
sively [2]. As the variable ordering influences the cost 
and shape of the diagram, we should find one ordering 
of variables among all possible, that produces a dia-
gram optimal in a certain sense (e.g. minimum cost, 
width or average path length). 

Generalization of BDDs to multiple-output Boolean 
functions are so called word-level BDDs, among them 
e.g. multi-terminal BDDs (MTBDDs) or BDDs for 
characteristic function BDD_for_CF [3], [4]. The latter 
diagrams use both input and output variables at deci-
sion nodes what makes them more complex; their 

width can be minimized in some cases by the known 
algorithm [5]. On the other hand, optimum MTBDD 
synthesis, basically optimum ordering of variables with 
respect to a certain goal, is covered very little in the 
literature [3]; and yet, tools for BDDs synthesis [6] and 
manipulation cannot be used for MTBDDs, nor can be 
a MTBDD obtained from BDDs of component Boo-
lean functions. Given the ordering of variables, the 
diagram may be obtained by decomposing the original 
function repeatedly, i.e. removing a group of 1 or more 
variables at each step. 
      In many cases integer values can be taken as iden-
tifiers for binary output vectors of multiple-output 
Boolean functions. This paper is more-less theoretical, 
presenting a heuristic technique of the MTBDD con-
struction for incompletely specified integer functions 
of Boolean variables. The main contribution of the 
paper is the upgraded algorithm of iterative decompo-
sition accepting incompletely specified functions. 

The paper is structured as follows. Section 2 deals 
with the basic definitions and notions. MTBDD con-
struction using a simple disjunctive decomposition 
iteratively is described in Section 3. Our heuristic ap-
proach to variable ordering is discussed in Section 4. 
The results and future research directions are com-
mented on in Conclusion. 

 
2.  Basic definitions and notions 

 
To begin our discussion, we define the following 

terminology. An integer function of n Boolean vari-
ables is defined as a set F of (n+1)-tuples, called func-
tion cubes, in which the first n components correspond 
to the binary inputs and the single integer component, 
to the output. Set F is only a shorthand description of a 
full function table, even though in the small example 
illustrated below (Table 1a, b) the full map looks 
smaller. The function F in Table 1 will be used as a 
running example in the sequel. 

The value of symbol “-“ is considered uncertain, 
whereas 0 and 1 are certain. An element c of {0, -, 1}n 
is called an input cube. We will be using notions of 
cube calculus [8]. 



 
Table 1. Integer function specification 

a) by the full map  b) by cubes 
 
   
 
 

x3x4
x1x2 00 01 10 11
00 0 0 2 dc
01 0 dc 2 1
10 3 3 dc 3
11 3 1 2 1

 x1 x2 x3 x4 F 
1 1 0 0 - 3 
2 1 - 0 0 3 
3 1 0 - 1 3 
4 0 - 1 0 2 
5 - 1 1 0 2 
6 - 1 - 1 1 
7 - 1 1 1 1 
8 0 - 0 0 0 
9 0 0 0 - 0 

 
A set of (n+1)-tuples does not necessarily define an 

integer function, because it is possible to assign con-
flicting output values. Similarly to Boolean fr func-
tions [1], we introduce integer-valued fr functions; 
they must satisfy the consistency condition, which 
guarantees that there are no contradictions; shortly, if 
two input cubes are compatible, their corresponding 
outputs must be identical. 
    Now we will define the basic notions related to 
MTBDDs (BDDs) and functional decomposition. 
     Def. 1. The cost of the MTBDD is given by the 
total number of true decision nodes, with outgoing 
edges directed to different nodes. 
     Def. 2. The width of the MTBDD at a certain height 
is the number of edges crossing the section of the 
MTBDD between adjacent levels of decision nodes, 
where the edges incident to the same node are counted 
as one. 
     Functional decomposition [3] of function F(X) 
is a serial disjunctive separation of F into two func-
tions G (residual) and H (detached) such that  

    F(X) = H(U,G(V)).                                       (1) 
We want functions G and H to have strictly fewer in-
puts than F. 
     The advantage of MTBDDs over BDDs_for_CF is 
that while the former diagrams can be cut into slices of 
arbitrary size, the latter diagrams must be recon-
structed after decomposition [5], because input and 
output variables are interleaved. 
 

3.  MTBDD construction based on 
the disjunctive iterative decomposition    

 
     Decomposition can be applied iteratively to a se-
quence of residual functions with a decreasing number 
of variables. In this section we will present a method 
of iterative disjunctive decomposition based on notion 

of blankets [8], modified and simplified for our case of 
integer functions. We will select always a single input 
variable (|U|=1), from now on denoted as a detached 
variable, that will be removed from a residual function 
in such a way that the width or cost of the diagram will 
be minimized locally. More general techniques like 
non-disjunctive decomposition or multi-variable de-
composition (|U|>1) can be explored in future as well.  
     Instead of the exact formulation of a decomposition 
algorithm, we prefer to illustrate it on our running ex-
ample. At the beginning we will select input variables 
for iterative decomposition simply in a natural se-
quence, with no optimization in mind. A single vari-
able will be removed from the function in one decom-
position step. Starting with variable x1 in our running 
example, we first create two-block blankets β2, β3, β4 
for each input variable x2, x3, x4: 

β2 = {1, 2, 3, 4, 8, 9; 2, 4, 5, 6, 7, 8} 
β3 = {1, 2, 3, 6, 8, 9; 3, 4, 5, 6, 7}                      (2) 
β4 = {1, 2, 4, 5, 8, 9; 1, 3, 6, 7, 9}. 

Blankets consist of subsets (blocks) of cubes denoted 
by line numbers from Table 1b. The first block in each 
blanket includes cubes which contain “0” or “–” in 
place of variable x1, cubes in the second block have 
value “1” or “–” in place of variable x1. The input 
blanket for the subset (X\x1) is then obtained as an 
intersection of two-block blankets (2): 

β = {1, 2, 8, 9; 1, 3, 9; 4; 3; 2, 8; 6; 4, 5; 6, 7}.   (3) 
Each block in blanket β can be assigned an ordered 
pair of function values  
                [F(0, x2, x3, x4), F(1, x2, x3, x4)].          (4)                   
There are three types of these output pairs: 
a) type [u, v]: (true pair or decision node) 
two values in the pair are different, u ≠ v; e.g. blocks 
(1,2,8,9), (1,3,9) and (2,8) in blanket (3) generate pair 
[0,3]; 
b) type [u, u]: (degenerated pair or decision node) 
two values in the pair are identical; e.g. blocks (6) and 
(6,7) generate pair [1,1] and block (4,5) pair [2,2]; 
c) type [u,-] or [-,u]: 
one of the values (4) doesn’t exist in the list of cubes 
(it’s don’t care); e.g. block 4 generates pair [2,-] and 
block 3 generates [-,3]. Don’t care value will be re-
placed by a particular value later to match case a) or 
b). 

Now we can create compatible classes of these pairs 
with the goal to select a set of maximal classes, with 
minimal cardinality, that covers all the pairs; blocks 
with compatible output pairs get the same new id. In 
our example eight compatible classes in blanket β can 
be merged to three {1, 2, 3, 8, 9; 4, 5; 6, 7}, denoted 
with new id 0, 1, and 2, see Table 2. The minimal car-
dinality of merged blocks ensures that the number of 

dc = don´t care 



outputs log2|G| of the residual function G1(x2, x3, x4), 
is as small as possible. Finding maximal compatibility 
classes of pairs (4) is easy and can follow the algo-
rithm below: 

 
Algorithm 3.1. Assigning id’s to output pairs. 

1. List and enumerate all distinct output pairs with 
different certain values (type [u, v]); 
2. continue in listing and enumeration of output pairs 
with the same certain values (type [u, u]); 
3. output pairs with one certain value and one uncer-
tain value (types [u,-] or [-, u]): 

if there is a compatible pair [u, u] in the list , use its 
id; 
else if there is a compatible pair, type [u,w] or 
[w,u], in the list , use its id; 
else (hardware optimization) if possible, join two 
output pairs [v, -] and [-,w] into a single pair [v, w]   
and assign it a next new id; 
else insert a new output pair with certain values [u, 
u] into the list and assign it a next new id. 

 
   Uncertain values are replaced by certain values in 
such a way as to reduce the number of new id numbers 
to a minimum. This is in fact utilization of don’t cares 
for minimization. In more complex cases with ternary 
output vectors or when removing more than one vari-
able at a time, finding the minimal cover must be done 
by more general methods, e.g. by graph coloring [8]. 

The detached function H1 is obtained, even though 
not in the cube form but in the integer form, by reading 
the first table in Table 2 backward, 
  H1(x1, new id) = [F(0, x2, x3, x4), F(1, x2, x3, x4)]. 

To obtain the residual function G1 is a bit trickier. 
The input blanket for the subset (X\x1) completed by 
function values “new id” contains redundant cubes 
which must be removed. On the other hand, all rele-
vant minterms of G1 must be covered in the reduced 
cube set as well. Function G1 in our example is speci-
fied by five cubes, Table 2. 

In the 2nd decomposition step we repeat the same 
procedure: the input blanket γ for the subset X\{x1,x2} 
consists of four blocks that can be merged to only 
three. Functions H2 and G2 are obtained as before, the 
rest of procedure is straightforward. 

By now, we have obtained a sequence of detached 
functions H1 to H4 that can be implemented by four 
layers of a MTBDD. Construction of the MTBDD 
starts from leaves and goes left to the root, Fig. 1. The 
new id is used as a decision node label and integer 
values of the detached function H|x=0, H|x=1 for two 
values of the detached variable x are labels of succes-
sor nodes. 

 

Table 2. Iterative decomposition procedure 
 

  x1 new    
β   0 1 id      

1,2,8,9  0, 3 0 H1  x2 x3 x4 G1
1,3,9  0, 3 0  1 0 0 - 0

4  2, - 1  2 - 0 0 0
3  -, 3 0 → 3 0 - 1 0

2,8  0, 3 0  4 - 1 0 1
6  1, 1 2  5 1 - 1 2

4,5  2, 2 1    G1   
6,7  1, 1 2       

       
  x2 new      

γ   0 1 id    x3 x4 G2
1,2  0, 0 0 H2  1 0 0 0

1,3,5  0, 2 1 →  2 - 1 1
4  1, 1 2   3 1 0 2

3,5  0, 2 1       
          
  x3 new    

δ   0 1 id    x4 G3
1,3  0, 2 1 H3   1 0 1
2  1, 1 0 →   2 1 0

          
  x4 new       

ε   0 1 id       
1,2  1, 0 0 H4   0  
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Fig. 1. MTBDD as a result of disjunctive 
iterative decomposition 

 
4. Heuristic iterative decomposition 

 
The remaining question not addressed as yet is, 

which variable should be used in any given step. We 
use a heuristics that strives to optimize one level of the 
MTBDD at a time. There are more sophisticated heu-
ristics such as sifting where the window of several 
variables is moved from the root to leaves in order to 
optimize the position of several variables at a time [3]. 
However, if desired, our approach could be extended 
to more than one detached variables. 



There are three parameters of MTBDDs that can be 
optimized: size (cost), width and an average path 
length (APL). For firmware implementation of 
MTBDDs, only cost minimization is of interest (de-
generate nodes do not count). In our heuristics we 
minimize the number of regular nodes level by level, 
from leaves to the root. We expect that the total cost 
will be close to the minimum total cost. That is why we 
also talk about suboptimal MTBDD synthesis.   

If hardware LUT cascades are to be generated, a 
slightly modified optimization criterion is required. 
The main concern is the cascade width defined as the 
number of binary rails connecting adjacent LUTs. It is 
related to the MTBDD width, the number of edges 
between adjacent levels of the diagram, as 

                # rails = ⎡log2 (# edges)⎤.                    (5) 
The following algorithm minimizes the local width:  
 

Algorithm 4.1. Selection of a variable to minimize 
the local width/cost of the MTBDD. 
step ← 0; 
do { 

repeat the simple disjunctive decomposition  with 
each of (n – step) variables; 
apply the minimum local width criterion: select the 
variable that generates the minimum number of new 
id numbers (labels of decision nodes, LUT rows); 
in case of a tie and (firmware optimization only): 
apply the lowest cost criterion: select a variable pro-
ducing the lowest number of output pairs of type [u, 
v] – true decision nodes; 
in case of a tie again, select one variable randomly; 
step ← step +1; 

} while step < n-1. 
 

To aid MTBDD synthesis, the program tool HIDET 
has been developed [7]. The first version accepted only 
completely specified integer-valued fr functions speci-
fied by disjoint cubes. The new version adopting the 
algorithm from Section 3 (now under construction) 
allows incomplete fr functions and compatible input 
cubes. As functions with many don’t cares are quite 
common, this is important innovation. 

 
6. Conclusion 
 
The presented method of heuristic MTBDD synthe-

sis of multiple-output Boolean functions concentrated 
on theoretical basis of the more general key algorithm 
of HIDET accepting incomplete integer-valued fr func-
tions specified by possibly compatible cubes. Decom-
position used in the algorithm is based on notion of 
blankets. The procedure to minimize the local width or 

cost of diagrams has been formally presented. It is re-
lated to minimum cover of maximal compatibility 
classes that is in our case not too difficult to find. 

Future research will be devoted to experiments with 
the upgraded version of HIDET and possible to its 
further extension, namely replacing integer values by 
ternary output cubes. This would make possible to 
clarify applications best suitable for MTBDDs on one 
hand and for BDD_for_CF diagrams on the other.  
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