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1. INTRODUCTION

Design of digital systems is based on various specifications
of Boolean functions, most often in a form of Boolean ex-
pressions or in PLA format. Recently also binary decision
diagrams (BDDs) became popular means of design, verifi-
cation and testing. Conversion of a single Boolean function
into a BDD was studied intensively [4] including related op-
timization problems. As the ordering influences the size and
shape of the diagram, we should find among all possible or-
derings of variables the one that produces a optimal diagram.

Another machine representation of single-output Boo-
lean functions uses binary decision diagrams (BDDs), which
can have many forms, [4]. Ordered BDDs (OBDDs) use the
same order of variables along all paths; for a given variable
order there exists a unique reduced OBDD with a minimum
number of decision nodes.

Generalization of BDDs to multiple-output Boolean func-
tions are so called word-level BDDs, among them e.g. Multi-
terminal BDDs (MTBDDs), BDDs for characteristic func-
tion BDD for CF [1]. Optimum synthesis of these diagrams,
basically optimum ordering of variables with respect to a cer-
tain goal, is being solved with the aid of heuristic approaches.
If the variable ordering is given, then the diagram may be
obtained by decomposing the function repeatedly.

In this paper we present a heuristic technique of the it-
erative decomposition of incompletely specified multiple-
output Boolean functions. Its main contribution is that the
bottom-up synthesis of MTBDD does not require knowl-
edge of optimum ordering of variables, because the order of
variables is generated concurrently. Obtained MTBDDs can
be used in hardware (LUT cascades), firmware (branching
microprograms) and software implementation of combina-
tional and sequential functions.
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2. MTBDD CONSTRUCTION BASED ON THE
DISJUNCTIVE ITERATIVE DECOMPOSITION

In this section we will present a heuristic technique of a sub-
optimal MTBDD construction. It is generalization of the
approach taken in [2]. Let us recall that under a decom-
position of function F (x1, x2, . . . , xn) = F (X) we under-
stand a serial disjunctive separation of F into two functions
G and H such that F (X) = H(U, G(V )) where U , V are
disjunctive subsets of X , U ∩ V = ∅, U ∪ V = X , and
|U | + log2 |G| < |X|, |V | < |X|, [3]. We will refer to G
and H as to residual and detached functions, respectively.

Decomposition can be applied iteratively to a sequence
of residual functions with a decreasing number of variables.
We will select always a single input variable (|U | = 1), from
now on denoted as a detached variable, that will be removed
from a residual function in such a way that the width or cost
of the diagram be minimized. More general techniques like
non-disjunctive decomposition or multi-variable decompo-
sition (|U | > 1) can be explored in future.

A single variable will be removed from the function in
one decomposition step. Starting with variable x1, we first
create a list of all compatible cube pairs of remaining input
variables, their products and ordered pairs of function values

[F (0, x2, x3, x4), F (1, x2, x3, x4)] (1)

produced by them, for example on four variable function.
We have to include also pairs (1) generated by single cubes
with x1 uncertain, that generate pairs of identical function
values. This approach based on compatible cube pairs dif-
fers from the one creating sets of compatible cubes covering
all minterms [3]; it was taken because it seems to be compu-
tationally less demanding.

The next phase of the decomposition step is merging
pairs of output cubes in the previous list to as few compatible
classes as possible. The reason for reducing the number of
compatible classes to the minimum is a direct impact on the
number of outputs of the residual function G(x2, x3, x4).

The problem of finding maximal compatibility classes of
output cube pairs and then the selection of a set of maximal
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Fig. 1. Result of iterative decomposition: a) MTBDD,
b) a generic LUT cascade

classes, with minimum cardinality, so that all input cubes
are covered, can be solved by several methods [3].

By now, we have obtained a sequence of detached func-
tions that can be implemented by a generic cascade of small
lookup tables (LUTs). By combining LUTs in the generic
cascade, shorter cascades with larger LUTs can be obtained,
Fig. 1a. Construction of the MTBDD is equally easy. Each
LUT is converted to a layer of the MTBDD, Fig. 1b.

3. HEURISTIC ITERATIVE DECOMPOSITION

The remaining question not addressed as yet is, which vari-
able should be used in any given step. We use a heuristics
that strives to optimize one level of the MTBDD at a time.
There are more sophisticated heuristics which move the win-
dow of several variables from the root to leaves and optimize
the position of several variables at a time [4]. However, if
desired, our approach can be extended to groups of variables
as well.

There are three parameters of MTBDDs that can be op-
timized: size (cost), width and an average path length APL.
For firmware implementation of MTBDDs, only cost opti-
mization is of interest. In our heuristics we minimize the
number of regular nodes level by level, from leaves to the
root. We expect that the total cost will be close to the min-
imum total cost. That is why we talk about suboptimal
MTBDD synthesis.

LUT cascades require slightly modified optimization cri-
terion. The main concern is LUT size and therefore the cas-
cade width. At each step a variable is selected, that gener-
ates the minimum number of LUT rows. In the case of a tie
the lowest cost criterion is applied: a variable producing the
lowest number of rows with distinct function values in the
pair is taken. In the case of a tie again, a variable is selected
randomly.

To aid MTBDD synthesis, the program HIDET (Heuris-
tic Iterative Decomposition Tool) has been developed [2]. In
the meantime it accepts only a restricted class of multiple-
output Boolean functions, namely integer functions of Boo-
lean variables specified by cubes that are pairwise uncom-

patible. Surprisingly, quite a few functions can be specified
this way, arbiter and allocators functions among others [2].

The above mentioned restriction simplifies the process
of creating compatible cube pairs and their merging. It is not
necessary to explore all cube pairs, but only those with de-
tached variable value 0 and 1 and separately cubes with un-
certain detached variable. On the other hand, the restriction
disables application of the heuristics on a standard bench-
mark set, because specification of most of the benchmark
circuits contains compatible cubes. The next version of HI-
DET under construction is therefore addressing the more
general case, too.

4. CONCLUSION

The presented method of MTBDD/LUT cascade synthesis
of multiple-output Boolean functions aided by HIDET tool
proved to be suitable for synthesis of a restricted class of
combinational and sequential designs with up to around 20
input and state variables. Arbiters, as well as other digi-
tal systems frequently used in practice, have relatively low
complexity, what makes their cost-effective cascade imple-
mentations possible.

Firmware implementation of a MTBDD is usually a mat-
ter of trade-off between performance and the size of memory
storing the microcode. The memory size can be derived as
an aggregate size of all dispatch tables, and the performance
is given by the number of dispatch tables in series from the
root to leaves of the MTBDD.

Future research should address a tool accepting a more
general specification of multiple-output Boolean functions
in a form PLA matrix (fr functions). Also the quality of
heuristic optimization of variable ordering should be put un-
der a test against results obtained by exhaustive testing of
all permutations of variables in problems of reasonable size.
Comparison with other design techniques will be undertaken
as soon as HIDET-2 is up and running. Security and safety
oriented applications will be the nearest target.
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