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Abstract. Service-oriented architecture (SOA) is an architectural style
for software systems’ design, which merges well-established software en-
gineering practices. There are several approaches to describe systems
and services in SOA, the services’ derivation, mutual cooperation to
perform specific tasks, composition, etc. In this paper, we introduce a
new approach to describe behaviour of services in SOA, including be-
haviour of underlying systems of components, which form the services’
implementation. The behavioural description uses the process algebra
π-calculus and it is demonstrated on a case study of a service-oriented
architecture for functional testing of complex safety-critical systems.
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1 Introduction

Service-oriented architecture (SOA) is a well-established architectural style for
aligning business and IT architectures. It is a complex solution for analysis,
design, maintaining and integration of enterprise applications that are based on
services. It represents a model in which functionality is decomposed into small,
distinct units, “services”, which can be distributed over a network and can be
combined together and reused to create business applications [1]. A system that
applies SOA can be described at three levels of abstraction: as a system of
business processes, services, and components.

At the first level, the system is described as a hierarchically composed busi-
ness process, where each decomposable process (at each level of the composition)
represents a sequence of steps in accordance with some business rules leading to
a business aim.

The business processes or their parts are implemented by services, which
are defined as autonomous platform-independent entities enabling access to
their capabilities via their interfaces. Business services encapsulate distinct sets
of business logic, utility services provide generic, non-application specific and
reusable functionality, and controller services act as parent services to service
composition members and ensure their assembly and coordination to the execu-
tion of the overall business task [1].



Every service can be implemented as a component-based system (CBS) with
well-defined structure and description of its evolution for the benefit of the im-
plementation. Then, components are self contained entities, parts of component-
based systems accessible through well-defined interfaces and interconnected and
communicating via bindings of these interfaces. Primitive components are re-
alised directly, beyond the scope of architecture description (they are “black-
boxes”), while composite components are decomposable on systems of subcom-
ponents at the lower level of architecture description (they are “grey-boxes”).

This paper deals with formal description of behaviour of services and un-
derlaying component-based systems, by means of process algebra π-calculus and
with focus on dynamic aspects of SOA. The proposed approach is demonstrated
on a case study of a service-oriented architecture for functional testing of complex
safety-critical systems.

The remainder of this paper is organised as follows. In Section 1.1, we briefly
describe the π-calculus to provide formal basis for our approach. The case study
is introduced in Section 2 and described in more detail in Section 3 as a service-
oriented architecture and in Section 4 as an underlying component-based system.
Finally, Section 5 and Section 6 deal with formal description. In Section 7, the
proposed approach is discussed and compared with current approaches relevant
to our subject. To conclude, in Section 8, we summarise the contribution of this
paper and outline the future work.

1.1 Formal Basis

To describe services in SOA and CBS in formal way, we use the process algebra
π-calculus, known also as a calculus of mobile processes [2]. It allows modelling
of systems with dynamic communication structures (i.e. mobile processes) by
means of two concepts: processes and names. The processes are active communi-
cating entities, primitive or expressed in π-calculus, while the names are anything
else, e.g. communication links (known as “ports”), variables, constants (data),
etc. Processes use names (as communication links) to interact, and they pass
names (as variables, constants, and communication links) to another processes
by mentioning them in the interactions. Names received by a process can be
used and mentioned by it in further interactions (as communication links). For
description of our approach in this paper, we suppose basic knowledge of the
fundamentals of the π-calculus, a theory of mobile processes, according to [3]:

– x〈y〉.P is an output prefix that can send name y via name x (i.e. via the
communication link x) and continue as process P ;

– x(z).P is an input prefix that can receive any name via name x and continue
as process P with the received name substituted for every free occurrence of
name z in the process;

– P + P ′ is a sum of capabilities of P together with capabilities of P ′ processes,
it proceeds as either process P or process P ′, i.e. when a sum exercises one
of its capabilities, the others are rendered void;

– P | P ′ is a composition of processes P and P ′, which can proceed indepen-
dently and can interact via shared names;



–
∏m
i=1 Pi = P1 | P2 | . . . | Pm is a multi-composition of processes P1, . . . , Pm,

for m ≥ 3, which can proceed independently interacting via shared names,
– (z)P is a restriction of the scope1 of name z in process P ;
– (x̃)P = (x1, x2, . . . , xn)P = (x1)(x2) . . . (xn)P is a multi-restriction of the

scope of names x1, . . . , xn to process P , for n ≥ 2,
– !P is a replication that means an infinite composition of processes P or,

equivalently, a process satisfying the equation !P = P | !P .

The π-calculus processes can be parametrised. A parametrised process, re-
ferred as an abstraction, is an expression of form (x).P .

When abstraction (x).P is applied to argument y it yields process P {y/x},
i.e. process P with y substituted for every free occurrence of x. Application is
a destructor of the abstraction. We can define two types of application: pseudo-
application and constant application.

Pseudo-application F 〈y〉 of abstraction F
def
= (x).P is an abbreviation of

substitution P {y/x}. On the contrary, the constant application is a real syntactic
construct, which allows to reduce a form of process Kbyc, sometimes referred as
an instance of process constant K, according to a recursive definition of process
constant K ∆= (x).P . The result of the reduction yields process P {y/x}.

2 Case Study Specification

As a case study, we adopt specification of a SOA for functional testing of com-
plex safety-critical systems, more specifically a testing environment of a railway
interlocking control system, which has been described in [4]. The environment
allows to distribute and run specific tests over a wide range of different testing
environments, varying in their logical position in the system’s architecture.

The testing environment is described as a composition of a tester and a set of
external system simulators. The external system simulators totally or partially
represent and simulate a tested environment interacting with system under
testing (SUT), e.g. a behaviour of field objects (points, track circuits, coloured
signals, etc.). The tester automatically executes specific tests that are coded in
test scripts and coordinates the SUT via a man machine interface (MMI) and
the external system simulators. The SUT is represented by the computer based
control system (CBCS), running the control software, interacting with operators
by means of the MMI and monitoring or controlling external systems of rail
yards by means of sensors or actuators, which are accessible via external systems
interface. Each rail yard has its own instance of the testing environment with
specific sensors and actuators where assigned tests are automatically executed.
For detailed description, see [4].

To implement a system for distribution and execution of the tests over various
instances of the testing environments, [4] proposes to use SOA. The system
consists of a test manager, which is able to receive a test script and execute it

1 The scope of a restriction may change as a result of interaction between processes.
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Fig. 1. Services of the testing environment and their interfaces (for notation, see [5]).

in an instance of the testing environment. Available testing environments are
registered by a broker and provided to the test manager at its request.

3 Service Identification

From the description of the testing environment and the system’s architecture,
the following tasks can be identified as invocations of services: “Submit Test”,
“Execute Test”, “Log Results”, “Read Log”, “Publish Environment”, and “Find
Environment”. The tasks can be implemented by the following business (entity)
services, as it is described in Figure 1: TestManager, TestEnvironment, TestEnvi-
ronmentBroker, and TestLogger.

At first, service TestManager receives a test script from a tester via its inter-
face SubmitTest. Then, it calls FindEnvironment of service TestEnvironmentBroker

to search for a testing environment that would be suitable for the test script.
The broker, which has previously accepted a registration request from a specific
service TestEnvironment via its interface PublishEnvironment, provides TestMan-

ager with a reference to the registered service as a return value of the call of
FindEnvironment.

After that, service TestManager passes the test script to the referred service
TestEnvironment via its interface ExecuteTest. When the test script is finished,
service TestEnvironment forwards its results back to service TestManager, which
logs the results via LogResults of service TestLogger. Those results can be viewed
later via ReadLog, which is provided by service TestLogger to the tester.

Figure 2 shows a choreography of the services as an UML sequence diagram.
Detailed description of the services as classes and their interfaces with relevant
stereotypes is described in the UML class diagram in Figure 3. Service TestEn-

vironment is invoked asynchronously via ExecuteTest, i.e. a reply corresponding
to the request will be returned later via the service’s interface AsyncReplyET.

4 Component-Based System

Railway interlocking control systems are safety-critical systems and can be de-
scribed as component-based systems [6]. A testing environment of such systems
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Fig. 2. The choreography of services in the testing environment.
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Fig. 3. Services of the testing environment as UML classes.

has to interact with the systems’ components, as it is described in Section 2. For
that reason, a part of the testing environment, which is directly connected to a
system under testing (via the external systems simulators), has character of a
component neighbouring to the system and can be described as CBS.

Figure 4 describes composite component testEnvironment, which represents
service TestEnvironment from Section 3. The used notation is based on our
component model [7] (it is not standard UML), whose detailed description is
out of the scope of this paper. However, in this section, we try to outline the
main ideas and informally describe structure of the composite component and
behaviour of its subcomponents controller, environment, test and output.

Component testEnvironment receives a test script via provided interface ex-

ecuteTest, which is internally processed by component controller. The script is
represented by a fresh component, which does required testing after binding of
its interfaces to component environment.
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Fig. 4. Composite component TestEnvironment (a specific UML-like notation).

At first, component controller attaches the new component as a subcompo-
nent test of component testEnvironment via its control interface teAttachP. Then,
it binds interfaces tInteract and tResult of the new component to interface
eInteract of component environment and interface oResult of component output,
respectively. Finally, component test is activated via interface startTestP and
executed with a new identifier via interface executeWithID. The identifier is also
returned by component testEnvironment as a reply of the test script’s submission.

Component test performs the test script by interacting with component envi-
ronment via its interface eInteract. When the test script is finished, component
test sends the test’s results and its identifier to component output via its in-
terface oResult. Then, component output notifies component controller via its
interface cDone and forwards the results and the identifier out of the component
testEnvironment via its external interface asyncReplyET.

After component controller is notified about the finished test script, it is able
to receive and execute another test script, i.e. to attach a new component in
the place of component test. Before that, component test with the old script is
stopped via interface stopTestP and detached via control interface detachTestP2.

5 Formal Description of the Services

In this section, we describe behaviour of the services in the testing environment.
Behaviour of services TestManager, TestEnvironmentBroker, TestEnvironment, and

2 In the diagram in Figure 4, only these two interfaces of test are connected with
controller, because the rest of the test’s interfaces are used only during its nesting
and their connections do not exist outside of controller component.



TestLogger can be described by means of π-calculus process abstractions TM ,
TEB, TE, and TL, respectively. These process abstractions use names st, pe,
fe, et, ar, lr, and rl as representations of the services’ interfaces SubmitTest,
PublishEnvironment, FindEnvironment, ExecuteTest, AsyncReplyET, LogResults,
and ReadLog, respectively.

According to the description of TestEnvironment in Section 3, process ab-
straction TM describing behaviour of service TestManager is defined as follows:

TM
def
= (st, fe, lr).(s)(TMstbst, fe, sc | TMarblr, sc)

TMst
∆= (st, fe, s).st(test, ret).(r, r′)

(fe〈r〉.r(et′, ar′).et′〈test, r′〉.(r′(id).ret〈id〉 | s〈ar′〉 | TMstbst, fe, sc))

TMar
∆= (lr, s).s(ar′)ar′(res, id).lr〈res, id〉 | TMarblr, sc

where st, fe, and lr are names representing the service’s interfaces and subse-
quently processed by constant applications of TMst and TMar.

Constant application TMstbst, fe, sc receives a pair of names (test, ret) from
a client via name st. In the pair, name test represents a submitted test script and
name ret will be used later to send a return value to the client. Then, a request
for a testing environment is sent via name fe and the environment as a reply is
received via name r. Name et′, which represents an interface ExecuteTest of the
environment, is used to send test. Name id, which is received as a return value,
is forwarded to the client, while name ar′ is sent via shared name s into process
constant TMar. Constant application TMarblr, sc receives name ar′ via shared
name s. After the test script is finished, name ar′ is used to receive the test’s
result res and its id. These names, as a pair (res, id), are immediately sent via
name lr.

Process abstraction TEB, which describes behaviour of service TestEnviron-

mentBroker, is defined as follows:

TEB
def
= (pe, fe).(q)(TEBpubbq, pec | TEBfindbq, fe, pec)

TEBpub
∆= (t, pe).pe(i, d).(t′)(t〈t′, i, d〉 | TEBpubbt′, pec)

TEBfind
∆= (h, fe, pe).h(h′, i, d).(TEBfindbh′, fe, pec | (fe〈i〉.pe〈i, d〉 + d))

where pe and fe are names representing the service’s interfaces PublishEnvi-

ronment and FindEnvironment, respectively, and subsequently processed by the
constant applications of TEBpub and TEBfind. By the composition of their
constant applications with shared name q, process abstraction TEB implements
basic operations on a simple queue (i.e. a First-In-First-Out (FIFO) data struc-
ture).

The application of process constant TEBpub receives a pair of names (i, d)
via name pe and creates a new name t′. Then, it proceeds as a composition
of a constant application of TEBpubbt′, pec, which handles future requests, and
process t〈t′, i, d〉, which enqueues the received pair (i, d) by sending them via
name t, which is the current tail of the queue, together with name t′, a new tail
of the queue used in the future requests.



The application of process constant TEBfind dequeues a front item of the
queue as a triple of names (h′, i, d) via name h, which is the current head
of the queue. Then, it proceeds as a composition of a constant application of
TEBfindbh′, fe, pec, which handles future requests, and a sum of capabilities of
process fe〈i〉.pe〈i, d〉, which provides name i as an interface for potential service
requesters and enqueues it back to the queue via name pe, and process d, which,
after receiving a name via name d, allows to remove the interface and does not
provide it to potential service requesters anymore.

Behaviour of service TestEnvironment is described as process abstraction TE
and defined as follows:

TE
def
= (et, ar, pe).TEinit〈et, ar, pe〉.TEimpl〈et, ar〉

TEinit
def
= (et, ar, pe).pe〈et, ar〉

TEimpl
def
= (et, ar).(s0, s1, ars, etg)

(ars〈ar〉 | (d, t)(etg〈t〉.t(p).Wirebet, p, dc) | TEcomp〈s0, s1, etg, ars〉)

where et, ar, and pe are names representing the service’s interfaces ExecuteTest,
AsyncReplyET, and PublishEnvironment, respectively. Initialisation of the service
is described as process abstraction TEinit, which sends the service’s interfaces
represented by names et and ar via name pe (i.e. publishes the corresponding
interfaces via interface PublishEnvironment). After the initialisation, names et
and ar are processed by pseudo-application TEimpl〈et, ar〉, which describes be-
haviour of a component-based system implementing the service (service TestEn-

vironment is implemented as the component-based system, see Section 4). Pro-
cess abstraction TEcomp will be described later, in Section 6.

Finally, process abstraction TL, which describes behaviour of service Test-

Logger, is defined as follows:

TL
def
= (lr, rl).(s)(TLlrblr, sc | TLrlbrl, sc)

TLlr
∆= (lr, t).lr(res, id).(t′)(t〈t′, res, id〉 | TLlrblr, t′c)

TLrl
∆= (rl, h).h(h′, res, id).rl(ret).ret〈res, id〉.TLrlbrl, h′c

where lr and rl are names representing the service’s interfaces LogResults and
ReadLog, respectively, and subsequently processed by the applications of process
constants TLlr and TLrl. The process abstraction TL uses an internal queue to
store log results. The queue is accessed in process constants TLlr and TLrl via
name h for a head of the queue and name t for a tail of the queue, respectively.
At the beginning, h and t are identical to name s in process abstraction TL.

Constant application TLlrblr, tc receives a pair of names (res, id) via name
lr, which will be added into the internal queue. It creates name t′ (as a new
tail of the queue) and sends via t′ the pair of names (res, id) and name t (an
original tail of the queue). Concurrently, the process proceeds as the application
of process constant TLlr with name t′ (the new tail of the queue).

Constant application TLrlbrl, hc receives a first queued item via name h
(from a head of the queue). This item contains a pair of names (res, id) and



name h′ (a new head of the queue). After the pair of names (res, id) is requested
via name rl, it is sent via name ret as a reply and the process proceeds as the
application of process constant TLrl with name h′ (the new head of the queue).

Behaviour of the whole system of the interconnected services can be described
as process abstraction System, which provides names st and rl representing
interfaces SubmitTest and ReadLog, respectively, and which is defined as follows:

System
def
= (st, rl).(et, ar, lr, pe, fe)

(TM〈st, fe, lr〉 | TE〈et, ar, pe〉 | TL〈lr, rl〉 | TEB〈pe, fe〉)

6 Formal Description of the Component-Based System

All processes, which represent behavioural descriptions of individual services,
have been described completely, except for process abstraction TE of service
TestEnvironment implemented as a component-based system with behaviour de-
scribed by pseudo-application TEcomp〈s0, s1, ars, etg〉. In this section, we de-
scribe behaviour of primitive components controller, environment, test, and out-
put, as process abstractions Ctr, Env, Test, and Out, respectively, and their
parent composite component testEnvironment, as process abstraction TEcomp.

6.1 Core Behaviour of Primitive Components

Core behaviour of primitive components output and controller can be defined as
process abstractions Outcore and Ctrcore, respectively, as follows:

Outcore
def
= (poResult, roDone, roReply).Out′corebpoResult, roDone, roReplyc

Out′core
∆= (poResult, roDone, roReply).poResult(res, id).roDone〈id〉.

(roReply〈res, id〉 | Out′corebpoResult, roDone, roReplyc)

Ctrcore
def
= (pcDone, pteExecTest, rteAttach, rdetachTest, rstopTest, rprovRefEInt,

rprovRefORes).Ctr′
corebpcDone, pteExecTest,

rteAttach, rdetachTest, rstopTest, rprovRefEInt, rprovRefOResc

Ctr′
core

∆= (pcDone, pteExecTest, rteAttach, rdetachTest, rstopTest, rprovRefEInt,
rprovRefORes).pteExecTest(ts, ret).ts(r′

stopTest, r
′
startTest, r

′, p′).
rstopTest.rdetachTest.rteAttach〈r′

stopTest, r
′
startTest, rdetachTest〉.

r′(p′
bindTInt, p

′
bindTRes).p

′(p′
provRefExecuteWithID).(ret′)(

rprovRefEInt〈ret′〉.ret′(eInteract).p′
bindTInt〈eInteract〉.

rprovRefORes〈ret′〉.ret′(oResult).p′
bindTRes〈oResult〉.

p′
provRefExecuteWithID〈ret

′〉.ret′(p′
executeWithID).r′

startTest.

((id)ret〈id〉.p′
executeWithID〈id〉.id | pcDone(id

′).id′.

Ctr′
corebpcDone, pteExecTest, rteAttach, rdetachTest,
r′
stopTest, rprovRefEInt, rprovRefOResc) )



where the components’ provided or required interfaces are represented by names
p... or r..., respectively, without the last character (. . . P/R, see Figure 4).

Process abstraction Outcore is defined as the constant application of Out′core.
It receives a pair of names (res, id) via name poResult representing interface
oResultP. Then, id is sent via name roDone (interface oDoneR) and (res, id) is
forwarded via name roReply (interface oReplyR) out of the composite component.

Process constant Ctr′
core, which is applied by process abstraction Ctrcore,

receives a pair of names (ts, ret) via name pteExecTest. Moreover, via name ts,
the constant receives also names r′

stopTest, r
′
startTest, c, and indirectly also names

p′
bindTInt, p

′
bindTRes, and p′

provRefExecuteWithID, which represent interfaces of a
new component compatible with component test and implementing a test script.
Name ret will be used later to send an identifier of the test’s results as a return
value. Then, a process of an old component test is deactivated and detached by
means of names rstopTest and rdetachTest. A process, which describes behaviour of
the new component (i.e. the actual test script), is attached via name rteAttach as
a subcomponent, bound via names p′

bindTInt and p′
bindTRes, activated via name

r′
startTest, and finally, it is executed via name p′

executeWithID with a new name id
(the identifier). Processing of Ctr′

core continues after the identical id is received
via name pcDone, i.e. the test script is finished and its results forwarded outside.

Core behaviour of components environment and test depends on a specific
implementation of the testing environment and on a specific test script. However,
for demonstrating purposes, we define process abstractions Envcore and Testcore:

Envcore
def
= (peInteract).Env′

corebpeInteractc

Env′
core

∆= (peInteract).peInteract(ret).((val)ret〈val〉 | Env′
corebpeInteractc)

Testcore
def
= (pexecuteWithID, rtInteract, rtResult).pexecuteWithID(id).

(ret)(rtInteract〈ret〉.ret(val).rtResult〈val, id〉)

Process constant Env′
core receives a request from a test script via name

peInteract and returns a new name val as a reply. Process abstraction Testcore
receives identifier id via name pexecuteWithID, sends a request to a process
representing behaviour of a test environment via name rtInteract, receives a reply
and forwards it as the test’s results together with id via name rtResult.

6.2 Behaviour of a Composite Component

To assemble (sub)components into a composite component, we need to imple-
ment control actions. Components, primitive or composite, provide control inter-
faces for referencing their provided functional interfaces, binding their required
functional interfaces (to the referred provided interfaces), and controlling their
life-cycle (to start and stop the components). Moreover, each composite compo-
nent provides its subcomponents with (internal) control interfaces for attaching
and detaching other subcomponents, exporting their functional interfaces as
the composite component’s (external) functional interfaces, and importing the
composite component’s (external) functional interfaces to its subcomponents.



Behaviour associated with those control actions can be described in π-
calculus, however, full definitions of related process abstractions [7] are out of
the scope of this paper. For purpose of the following description, let us assume
that CtrlIfs〈r1, . . . , rn, ps1, . . . , psn, p1, . . . , pm, p

g
1, . . . , p

g
m〉 represents behaviour,

which is associated with binding of interfaces represented by names r1, . . . , rn
via control interfaces represented by names ps1, . . . , p

s
n and referencing of inter-

faces represented by p1, . . . , pm via control interfaces represented by pg1, . . . , p
g
m.

Moreover, let us assume that CtrlEI〈r1, . . . , rn, p1, . . . , pm, r
′
1, . . . , r

′
m, p

′
1, . . . , p

′
n〉

represents behaviour of interconnections between external required and provided
interfaces represented by names r1, . . . , rn and p1, . . . , pm and internal provided
and required interfaces represented by names p′

1, . . . , p
′
n and r′

1, . . . , r
′
m, respec-

tively. Finally, let us assume that CtrlSS〈s0, s1, a〉 represents behaviour, which
is associated with a component’s life-cycle (s0 for stopping and s1 for starting
the component) and attaching new subcomponents (via a). Let us define an
auxiliary constant application Wirebx, y, dc, which can receive a message via
name x (an input) and send it via name y (an output) repeatedly till it receives
a message via name d (i.e. disable processing). Detailed definitions of the above
mentioned process abstractions and constants can be found in [7].

Behaviour of components output, environment, and test including their control
parts can be defined as process abstractions Out, Env, and Test, respectively:

Out
def
= (s0, s1, p

g
oResult, p

s
oDone, p

s
oReply).(poResult, roDone, roReply)

(CtrlIfs〈poResult, pgoResult〉 | CtrlIfs〈roDone, p
s
oDone〉

| CtrlIfs〈roReply, psoReply〉 | Outcore〈poResult, roDone, roReply〉)

Env
def
= (s0, s1, p

g
eInteract).(peInteract)

(CtrlIfs〈peInteract, pgeInteract〉 | Envcore〈peInteract〉)

Test
def
= (s0, s1, p

g
executeWithID, p

s
tInteract, p

s
tResult).

(pexecuteWithID, rtInteract, rtResult)(CtrlIfs〈rtInteract, pstInteract〉
| CtrlIfs〈pexecuteWithID, p

g
executeWithID〉 | CtrlIfs〈rtResult, p

s
tResult〉

| Testcore〈pexecuteWithID, rtInteract, rtResult〉)

Behaviour of component controller is defined as process abstraction Ctr with
free names rteAttach, rdetachTest, rstopTest, rprovRefEInt and rprovRefORes repre-
senting required control interfaces of other components:

Ctr
def
= (s0, s1, p

g
cDone, p

g
teExecTest,

rteAttach, rdetachTest, rstopTest, rprovRefEInt, rprovRefORes).
(pcDone, pteExecTest)(CtrlIfs〈pcDone, pgcDone〉
| CtrlIfs〈pteExecTest, pgteExecTest〉 | Ctrcore〈pcDone, pteExecTest,

rteAttach, rdetachTest, rstopTest, rprovRefEInt, rprovRefORes〉)

Behaviour of composite component testEnvironemt, i.e. the implementation of
the core of service TestEnvironment, is described as process abstraction TEcomp:



TEcomp
def
= (s0, s1, p

g
executeTest, p

s
asyncRepltET ).(pexecuteTest, rteExecTest,

psteExecTest, rasyncRepltET , pteReply, p
g
teReply, pteAttach)

(CtrlIfs〈pexecuteTest, pgexecuteTest〉 | CtrlIfs〈rteExecTest, p
s
teExecTest〉

| CtrlIfs〈rasyncRepltET , psasyncRepltET 〉 | CtrlIfs〈pteReply, p
g
teReply〉

| CtrlEI〈pexecuteTest, rteExecTest〉 | CtrlEI〈pteReply, rasyncRepltET 〉
| CtrlSS〈s0, s1, pteAttach〉 | TE′

comp〈pteAttach, psteExecTest, p
g
teReply〉)

TE′
comp

def
= (pteAttach, psteExecTest, p

g
teReply).(sctr0 , sctr1 , sout0 , sout1 , senv0 , senv1 ,

pgcDone, p
g
eInteract, p

g
oResult, p

g
teExecTest, p

s
oDone, p

s
oReply,

rdetachTest, rprovRefEInt, rprovRefORes, rstopTest, rteAttach)
(Ctr〈sctr0 , sctr1 , pgcDone, p

g
teExecTest, rteAttach, rdetachTest, rstopTest,

rprovRefEInt, rprovRefORes〉 | Env〈senv0 , senv1 , pgeInteract〉
| Out〈sout0 , sout1 , pgoResult, p

s
oDone, p

s
oReply〉 | (d)pteAttach〈sctr0 , sctr1 , d〉

| (d)pteAttach〈sout0 , sout1 , d〉 | (d)pteAttach〈senv0 , senv1 , d〉
| Testplug〈rdetachTest, rstopTest〉 | (d)WirebrprovRefEInt, pgeInteract, dc
| (d)WirebrprovRefORes, pgoResult, dc | (d)WirebrteAttach, pteAttach, dc
| (ret)(pgteExecTest〈ret〉.ret(pteExecTest).psteExecTest〈pteExecTest〉)
| (ret)(pgteReply〈ret〉.ret(pteReply).psoReply〈pteReply〉)

| (ret)(pgcDone〈ret〉.ret(pcDone).psoDone〈pcDone〉) )

Testplug
def
= (rdetachTest, rstopTest).(rdetachTest | rstopTest)

Process abstraction TE′
comp, which is applied in process abstraction TEcomp,

creates concurrent processes given by pseudo-applications of Ctr, Out, and Env
and sends their names s...0 and s...1 via name pteAttach, i.e. attaches components
controller, output, and environment, respectively, as subcomponents of component
testEnvironment. It also interconnects names representing required and provided
control interfaces of the components by means of three constant applications of
Wire. Concurrently with the previous step, TE′

comp applies process abstraction
Testplug and binds name pteExecTest of the pseudo-application of Ctr to name
rteExecTest of the pseudo-application of TEcomp, name pcDone of Ctr to name
rcDone of Out, and name pteReply of TEcomp to name rteReply of Out. The pseudo-
application of process abstraction Testplug handles requests initiated by the
pseudo-application of Ctr and received by names rstopTest and rdetachTest to stop
and to detach a process representing behaviour of a previous but non-existent
component with a test script (e.g. a non-existent predecessor of component test).

7 Related Work and Discussion

Related works relevant to our subject can be divided into two groups, as for-
mal approaches to describe service-oriented architectures (SOAs) and as formal



approaches to describe component-based systems (CBSs). In this section, we
outline current state of the art in both groups and discuss advantages and
drawbacks of our approach, which intends to bridge the gap and to provide
formal description of service-oriented architecture from choreography of services
to individual components of underlaying component-based systems.

In the first group, there are approaches mostly based on Business Process Ex-
ecution Language for Web Services [8], such as [9], [10] or [11]. Those approaches
focus on the web services, as a specific implementation of SOA, and provide for-
mal description of choreography and orchestration based on business processes.
The description ends up at the level of individual services implementing business
processes and does not include underlying CBSs.

The second group consists of several component models3 [12], such as Dar-
win/Tracta [13], Fractal [14] or SOFA 2.0 [15]. Those models usually focus only
on pure CBSs without considering SOA at the higher level of abstraction. In
some cases [16], the component models brings features of SOA into CBD, so
that SOA becomes a specific case of a CBS. However, this solution mixes two
different levels of abstraction (see Section 1).

Our approach is similar to the Reo coordination language [17], which is also
based on π-calculus and able to describe both service in SOA and components in
CBSs. In comparison with Reo and the above mentioned approaches (especially
those in the second group), our approach describes services and components
separately and with respect to their differences (i.e. services are not components
and vice versa). We allow to go smoothly from services level to components
level and describe behaviour of a whole system, services and components, as
one π-calculus process. Moreover, we use standard polyadic π-calculus without
any special extensions, which allows to utilise a wide range of existing tools for
model-checking of π-calculus processes and formal verification of their properties.

However, our approach can have also drawbacks, e.g. complex description
of behaviour of primitive components’ control actions processing or insufficient
visibility of a component-based system’s structure during its evolution. After
several dynamic reconfigurations and a corresponding sequence of reductions
of the π-calculus process, it may be difficult to determine a final configuration
from the resulting π-calculus process, especially without knowledge of the exact
sequence of reductions.

8 Conclusion and Future Work

We have demonstrated an approach to formal description of behaviour of service-
oriented architecture on a case study of a testing environment of a railway
interlocking control system. The approach is innovative, it captures behaviour
of services as well as behaviour of underlying systems of components, yet it dis-
tinguishes these two levels. Future work is related to integration of the approach
into modelling tools and automatic generation of the formal description.
3 i.e. meta-models of architectural entities, their properties, styles of their intercon-

nections, and rules of evolution of the architecture of component-based systems
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