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Abstract—As the speed of current computer networks in-
creases, it is necessary to protect networks by security systems
such as firewalls and Intrusion Detection Systems operating
at multigigabit speeds. Pattern matching is the time-critical
operation of current IDS on multigigabit networks. Regular
expressions are often used to describe malicious network patterns.
This paper deals with fast regular expression matching using
the Deterministic Finite Automaton (DFA) with perfect hash
function. We introduce decomposition of the problem on two
parts: transformation of the input alphabet and usage of a fast
DFA, and usage of perfect hashing to reduce space/speed tradeoff
for DFA transition table.

I. INTRODUCTION

In recent years, Internet has become a very popular method

to connect computers all over the world. While the availability

of continuous communication has created many new opportu-

nities, it has also brought new possibilities for malicious users.

The importance of network security is therefore growing; one

of the ways of malicious activity detection on a network is by

using Intrusion Detection Systems (IDS).

Most modern IDS rely on a set of rules that are applied to

each input packet in order to define suspicious activities. The

simplest rules are described by packet header field content and

pattern of data in the packet payload. Detecting such patterns

is the core operation of an IDS.

Modern IDS cannot process each packet independently,

because an attacker can split the string described by the

pattern between multiple packets. To identify such attacks,

IDS must scan each network flow as one stream. For stream

reconstruction, some information is needed to be stored for

every flow. As the number of flows can be high and the

memory size is limited, the stored information needs to take

minimum size. If a DFA is used for pattern matching, the flow

does not need to be reconstructed. It is sufficient to store the

last state of the DFA at packet boundary and continue pattern

matching from the stored state when the next packet of the

flow arrives.

Many papers deal with the problems described above, but

none of them was able to present a method sufficiently fast

for wire-speed processing on multigigabit networks. The main

problem of suggested methods are memory requirements. We

propose to use a perfect hash function to implement the

transition table of the DFA and reduce memory requirements

to the minimum without sacrificing any advantage of DFA-

based methods. Our method can be used with optimization

methods [1],[2] that reduces the number of transitions in a

DFA.

The paper is divided into following sections: Section II

briefly mentions related work for pattern matching, while in

Section III we introduce the concept of alphabet transfor-

mation to accelerate pattern matching. Section IV proposes

perfect hash function to implement DFA transition table. In

Section V we describe synthesis of the regular expression into

hardware matching units. Section VI describes experimental

results obtained by evaluation of our methodology, and finally,

Section VII concludes our work and suggests next possible

ways of our research.

II. RELATED WORK

The problem of fast pattern matching is addressed by many

researchers. Therefore, many methods which are suitable for

fast pattern matching has been introduced, but according to our

knowledge, there is no algorithm that optimally addresses all

requirements of a modern IDS. First IDS used only string-

based patterns, but Sommer and Paxton noted in [3] that

patterns based on regular expressions can be more effective

than pattern based only on strings. String matching algorithms

are fast but their extension to regular expressions is not

always possible. TCAM [4] or KMP [5] algorithms could

be considered examples of such methods. Methods for string

matching that can be extended into matching of patterns

described by regular expressions are often based on Finite

Automata.

The drawbacks of methods based on FA is that a FA can

accept only one character per transition and parallelization

of FA itself still remains to be solved. There are two major

approaches to pattern matching using FA. The first group

of methods use Nondeterministic Finite Automaton. Clark et

al [6] used NFA and obtained the throughput of 100 Gb/s.
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Using this approach, NFA needs to be synthesized into an

FPGA from each set of patters from a hardware description

language, such as VHDL or Verilog. Therefore, fast change

of the matching pattern is not possible, which limits its

deployment into HW acceleration of an IDS, because if a

new type of attack occurs, adequate rule has to be added

immediately into the IDS. The Witty Worm [7], for example,

was able to infect the majority of vulnerable hosts in about

45 minutes. Another approach to NFA implementation uses

backtracking to find a correct transition path through the

automaton. This approach cannot be used in an IDS, because

its time complexity is worse than linear.

Another approach to FA-based methods is the use of Deter-

ministic Finite Automaton. DFA can be implemented to run

with linear time complexity. Due to the fact that DFA can

be in only one active state, its transition table can be stored

in the memory instead of being implemented in the logic.

Implementing the transition table in memory allows to change

the sets of patterns without the need for reconfiguration and

reduces the time of change. The speed of on-chip memory

becomes the limiting factor in these implementations. For

successful deployment of DFA-based methods into an IDS,

it is crucial to minimize the memory requirements for the

DFA. This problem is addressed by many researchers: [8], [9],

[10], [2]. Unfortunately, many of these method were primarily

developed for string matching and their properties on a set of

patterns described by regular expressions has not been fully

examined.

An interesting combination of both approaches is a method

suggested by Gonzalo Navarro and Mathieu Raffinot in [9],

where Glushkov’s algorithm is used for construction of a NFA.

In Glushkov’s automaton, all incoming transitions to one state

are labelled by the same symbol. Therefore, it is possible to

represent such automaton as a pair of bit tables. The first table

maps each symbol onto a bit vector of the length of the state

set size. Each bit of the vector represents one state of the

automaton and the whole vector represents all states which

are accessible by the specified character. The second table has

a row for each possible bit vector from the first table. Each

such line contains a set of states which are accessible from the

given set of states in the form of a bit vector. When a transition

occurs, a logical AND operation is performed on result vectors

from both tables. The resulting vector represents a set of states

in the NFA or one state in the DFA. The drawback of this

method is the size of the state because each state of the DFA

has to be represented by a bit vector of the size equal to the size

of the state set of the corresponding NFA. In the IDS systems,

it is necessary to scan the whole network flow, therefore the

active state of the automaton needs to be stored with each

network flow.

Nathan Tuck et al in [8] implement the transition table as a

tree-like structure. Each state is represented by a bitmap for all

possible input characters and a pointer to the next state. Then

a transition from such state while reading the current symbol

exists only when the bit reserved for the current character is

set to one in the bitmap. If a transition exists, then the sum

of all ones before the current character is added to the pointer

and the result is the address of the next state. It is obvious that

this method is suitable only for string matching and it is not

possible to be used for regular expression matching without

changes [11], because it does not allow to implement a cycle

in the automaton, and therefore Kleene closure and positive

closure cannot occur in the pattern.

A string matching method introduced in [12] comes from

the observation that most of network traffic is not malicious

activity and that the automaton is able to recognize such

traffic in several first steps. Therefore, the authors suggest to

accept more than one character in a transition from the start

state in order to increase the throughput. Although the autors

present the method only for string matching problem, it can

be extended also for regular expressions.

III. FAST REGULAR EXPRESSION MATCHING

Regular expression matching engines have to examine every

character of the input stream. If modern backbone networks

are to be examined, more than one billion characters per

second need to be processed. Because currently available

general purpose processors are limited to GHz frequency and

a small number of instructions processed in one clock cycle,

they cannot achieve requested throughput. Therefore FPGA

implementations, which enable high pipelined parallelism, are

widely used. Unfortunately, the clock frequency of an FPGA

differs with different designs and cannot exceed 250 MHz.

Therefore, a pattern matching unit working at 250 MHz has

to examine at least 4 characters per clock cycle to achieve the

throughput of 10 Gb/s.

Network Decoder DFA

ASCII characters Automaton alphabet

Fig. 1. Two basic steps of our methodology

Fig. 1 shows two basics steps of our methodology. The

first step is alphabet transformation which encodes n-tuples

of ASCII characters into one symbol of the automaton input

alphabet. The results of the transformation enters the DFA

for pattern matching. Both units are pipelined and work

simultaneously.

More formally, let Σi be the alphabet of the input stream and

Σo be the input alphabet of the automaton. Let S = {x |x ∈
(Σ1)n}, where n is the number of characters accepted in one

clock cycle. The transformation T from the alphabet Σi to Σo

is defined as T ⊂ S × Σo.

The size of the memory necessary to represent the DFA

transition table depends on the number of states and the

size of the input alphabet. This means that it is important

to reduce the size of the alphabet. This can be achieve by

introducing character classes [13]. Character class is the set of

all characters which is used to label the transition. A transition

in the DFA is made if and only if the accepted character
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belongs into the character class. An example of the character

classes is shown in Fig. 2.

1

2

a

b

1

2

[a,b]

Fig. 2. Character classes

A DFA can accept only one symbol in a clock cycle and,

therefore, the decoder has to assign exactly one output value to

each possible input string. The alphabet transformation which

meets such demand is called deterministic transformation. An

alphabet which can be obtained by deterministic transforma-

tion is called deterministic alphabet. Every nondeterministic

alphabet can be transformed to its deterministic version at the

cost of increasing the number of symbols in the alphabet. The

detailed description of the construction of alphabet transforma-

tion is beyond the scope of this paper. We refer to [14] for the

algorithm to construct the deterministic alphabet as a proof of

concept. Additional details concerning implementation of the

decoder are given in Section V.

IV. PERFECT HASH LOOK-UP METHODOLOGY

Despite the use of character classes in alphabet transforma-

tion, multicharacter automaton has extremely sparse and large

transition table. Moreover, the automaton often represents

more than one pattern and the transition table is even larger.

As the automaton has to process the input traffic at wire speed,

the transition has to be performed within a few clock cycles,

therefore a look-up operation for the next state has to be

performed in constant time. Fig. 3 shows the basic idea of

the FA implementation. The position in the transition table

block computes pointer into the transition table, where the

actual transition is stored. The result of this look-up enters

the validate block, which decides whether the found transition

belongs into the automaton.

Many methods for size reduction of the transition table have

been studied, e.g. [2] or [1], so that the transition table could be

store in smaller and faster memory. Despite the fact that these

methods yield good results, the transition table still remains

large and sparse.

Look-up in a large and sparse transition table has to be

performed in constant time in order to achieve wire speed

processing of modern network traffic. Moreover, the memory

overhead of the look-up algorithm has to be reasonably small.

Hash tables are good candidates for implementation of tran-

sition tables because of constant time complexity of look-up

operation. However, a drawback is the possibility of collision,

which leads to more than one memory access per transition.

We propose to use perfect hash function to eliminate collisions

in the transition table. A single memory access for look-up is

needed in the worst case. The perfect hash function look-up

will work only for transitions that belong to the automaton.

When other combination appears at the input of the perfect

hash function, the result is undefined. In fact, the result of

the perfect hash function will be the position of some existing

transition. Therefore, the membership of the transition needs

to be tested before changing the state of the automaton.

Actual State 

Possition in 
Transition Table

Transitional table 

 Validate Rule
Number

Input
Symbol

Fig. 3. Representing DFA

A. Use of perfect hashing to find the new active state

A DFA is always in exactly one active state. At the

beginning of the stream, the active state of the automaton is

its start state. Representations of the active state and the input

symbol are put together. The created bit string represents at

most one transition in the DFA and is hashed by perfect hash

function found in the preprocessing step. The result is used

as an index into the transition table. Because perfect hash

function does not have any collisions, only two situations can

occur: (i) the transition exists in the automaton, then the data

stored at the computed position represents the new active state,

(ii) the transition does not exist in the automaton and therefore

the pattern could not be found in the stream. It is obvious that

only one memory access into the transition table is needed to

determine the new active state.

B. Test of transition validity

As it has been mentioned in the previous section, perfect

hash function (PHF) does not have collisions between two

transitions in a FA. However, if the input combination does

not exist in the transition table, PHF will return an invalid

result. Therefore, the next state is obtained in a single memory

access but the validity of the transition needs to be checked.

If the transition is invalid, default transition has to be applied.

It can be a transition to initial, final or any internal node of

FA.

Deciding transition validity requires to store some additional

information and the size of this additional information deter-

mines memory efficiency of this approach. The straightforward

approach would be to store the key of the hash function with

the new state of the automaton. Then the process of validation

is implemented as comparison of the stored value and the key

of the hash function. The disadvantage of this approach is large

size of the key. Early experiments has shown that the size of

the key can be up to 32 bits, while the state can be stored

only in a 10-bit word. Therefore, it is required to introduce

some compression into storage of key values. Example of such

compression by another hash function can be found in [15].

However, with the use of perfect hash function, the problem

becomes more specific. A transition is valid if and only if it
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exists in the automaton and the transition table always returns a

correct next state for a valid transition. Therefore, we propose

to store only the next state in the transition table and to solve

the problem of transition validity independently as a problem

of set membership, which is very well studied ([16], [17]).

V. AUTOMATIC REGULAR EXPRESSION SYNTHESIS

Patterns are described by regular expressions, however,

regular expressions are not suitable for pattern matching unit

configuration. The pattern matching unit requires a pattern in

data structures which allow fast look-up. This section briefly

describes the preprocessing phase of the pattern matching that

transforms a group of regular expressions into a single DFA,

which accepts multiple characters per transition.

Modern IDS contain hundreds or thousands of patterns

which have to be tested. It is not possible to implement so

much hardware units, and therefore some of the patterns need

to be merged together into one matching unit. If all patterns

would be merged into one unit, the resulting pattern would

be extremely complicated and memory requirements for such

pattern would be very high. Dividing the whole set of patterns

into several groups [18] seems to be a feasible option. Methods

that divide rules into several groups are beyond the scope of

this paper and are addressed by many researchers.

Regular
expression set

Grouping

Merging RE

n−char NFA

Minimal DFA Find PHF

Fig. 4. Description of synthesis

Fig. 4 shows a basic diagram of regular expressions syn-

thesis. The process starts with a set of regular expressions.

Before the synthesis, this set is needed to be diveded into

groups which will fit into matching units. Each such group is

than processed by the same algorithm and downloaded into a

separate hardware unit.

The first step is merging all rules in one group into one NFA

without ε transitions. This is done by Thomson’s construction

described in [19]. The result of this algorithm is a simple

transformation into ε-free form. The second step is extension

of the automaton to accept more than one character per

transition, and concurrently the alphabet transformation is also

computed. The resulting NFA-epsilon is then determinized and

minimized. The third step is finding the perfect hash function

that will map transitions into memory. The last step prepares

the automaton for hardware. It consist of two substeps:

• Preparing data structures for alphabet transformation

• Preparing the transition table

A. Data structures for alphabet transformation

Alphabet transformation can be seen as a classification prob-

lem. A hardware unit performing the transformation simply

classifies input n-tuples into one character class. The problem

of classification is very well studied in many research works,

such as [20], [21], or [22]. Each of these algorithms requires

different representation of the alphabet transformation. The

main purpose of this step is to create suitable representation

for hardware classification unit. The tree bitmap structure was

chosen as a suitable representation, because it can be easily

constructed and the classification works in linear time with the

length of the transforming sequence and always returns correct

results. Implementation of the tree bitmap can be pipelined and

therefore an output symbol can be generated every clock cycle.

B. Transition table

The transition table is stored in a hash table using perfect

hash. There are many algorithms for perfect hashing ([23],

[24], [25], [15], [26], [27]); each one of them requires some

time for finding perfect hash function, but when the PHF is

found, its result can be computed in constant time. The biggest

difference between these algorithms are memory requirements

of the created PFH. According to the abovementioned studies,

the algorithms in [25] and [26] have the smallest memory

requirements. Unfortunately, the algorithm in [26] requires

exponential preprocessing time in the worst case, while the

algorithm in [25] completes preprocessing step always in

linear time. Therefore, [25] is used for perfect hashing in

the transition table. The perfect hash function can be found

by this algorithm in a matter of seconds. When the perfect

hash function is found, every transition has its own place in

the transition table, which is filled with keys for the hash

function and new active states of the automaton. This structure

is then uploaded into hardware together with the perfect hash

function.

The algorithm [25] is based on random hypergraphs. In

the first step, three random hash functions are selected. These

hash functions and set of keys (S) form random hypergraph.

Each hash function maps every key from S into interval m
< 1, M >, where M ≥ |S|. More specifically, interval

m is divided into subintervals of the same size and every

hash function maps a key into its own subinterval. Every

key is hashed by all three hash functions and their results

represent one edge of the hypergraph. The hypergraph can

be considered random, because hash functions are randomly

generated. From random graph theory, it is possible to compute

constant probability that a random hypergraph is going to be

acyclic. The actual probability depends on the ration between

size of S and M . If the ratio is above 1.23, then the probability

of random graph being an acyclic hypergraph approaches 1. If

a graph is acyclic, it is possible to select one vertex from each

edge in such way that this vertex will not be selected in any

other edge. This means that the number of this vertex is unique

for the key and can serve as a value of the PHF. When the

PHF is evaluated, it only identifies the unique vertex from the

edge. To do so, it is required to store two bit information with

every vertex. This information is computed during creation of

the PHF from the hypergraph.

Test of the hypergraph acyclicity always requires linear

time and its time complexity does not depend on the inputs
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of the algorithm. The same holds for the transformation of

the hypergraph into the PHF. Therefore, all parts of the

algorithm have exactly linear time complexity. The only tricky

part is the choice of the hash functions which generates

acyclic hypergraph. The acyclic hypergraph is found with

certain probability, which is near 1, but there is still a small

possibility of failure. If failure occurs, new hash functions

are generated and therefore a new hypergraph needs to be

tested for acyclicity. This can be repeated as long as needed

or until the specified numbers of iteration is reached, but the

chance of more than five failures in line is virtually impossible.

Therefore, the worst case of the PHF generation is about

O(kn+n) where n is the number of keys and k is the maximal

number of the iteration, but in average case it is only O(n+n).
As we see, the algorithm always performs in linear time.

VI. EXPERIMENTAL RESULTS

We evaluated our methodology on regular expressions used

in Snort [28] rule set for viruses. The set of virus rules was

divided into several groups of the same size by the algorithm

in [18]. All experiments were done with one of these groups.

The first experiment we conducted was on alphabet trans-

formations. Table I and Fig. 6 show the way the size of a

nondeterministic alphabet depends on the number of characters

accepted in a single transition of the automaton for different

regular expressions. The number of regular expression is the

sequence number of the regular expression in the computed

group. It is clear that the size of the alphabet grows linearly

with the number of characters accepted per transition contrary

to the growth of the transitional table caused by all possible

combinations of characters at the input, which would be

exponential. The results prove that alphabet transformation is

suitable for real world patterns. The slope of the graph depends

on the type of regular expressions.

Table II and Fig. 5 show memory requirements of an

automaton created from selected regular expressions. The

automaton accepts two characters per transition. The number

of the regular expression is the sequence number of the

regular expression in the computed group. The second column

represents the memory needed to store transition table in a

memory array addressable by pair (Symbol, State). Density

of the table then represents the portion of the table filled

with useful data. The fourth column contains the number of

transitions in the automaton. The fifth column is the size of

the transition table without the overhead given by perfect hash

function and information for answering membership queries

for transitions. This column is the lower bound of the size

of memory required for the transition table. The sixth column

represents the size of memory required to store transition table

with additional information for the decision about validity of

the transition and perfect hash function itself.

The experiment results show that our methodology is not

well suitable for small and simple regular expressions, because

a simple regular expression is represented by a small transition

table. A small transition table can be implemented more easily

by other methods. Therefore, we merged all studied regular

rule 1-char 2-char 3-char 4-char 5-char

1 5 10 14 17 20
2 5 10 13 15 17
3 35 171 269 370 486
4 13 20 24 28 32
merged 39 194 304 413 537

TABLE I
THE SIZE OF THE NONDETERMINISTIC ALPHABET DEPENDS ON THE

NUMBER OF ACCEPTED CHARACTERS

RE
Num-
ber

Theoretical
size

Density
of the
table

Transitions Memory
size
without
overhead

Memory
size with
overhead

1 2240 0.0317 71 355 1278
2 576 0,0903 52 208 832
3 313344 0.0027 841 6724 23548
4 2550 0.0227 58 290 1044

TABLE II
DESCRIPTIONS OF THE USED PATTERNS

expressions into one and studied the same characteristics for

the result as in the previous experiment. We extended this

automaton to accept more characters than two in one step to

show how memory requirements of the automaton depend on

the number of accepted characters. The results are summarized

in Table III and Fig. 7. The graph shows that our methodology

scales well with the complexity of the regular expression and

also with the number of accepted characters.

VII. CONCLUSIONS AND FUTURE WORK

The main contribution of this paper is introduction of a new

algorithm to simulate DFA with extremely large alphabets. The

proposed algorithm uses perfect hash function for constant

time look-up in a transition table with minimal memory

overhead. The paper deals with the issue of efficient imple-

mentation of a DFA, which is the core part of many modern

Intrusion Detection Systems or anti-virus systems. The second

contribution of the paper is the overview of methodologis for

extremely fast pattern matching. The proposed methodology

is suitable for frequent and fast changes of patterns. Moreover,

the proposed solution uses fixed hardware resources and only

increases memory requirements. Therefore, it is quite possible

Number
of
characters

Transitions Theoretical
size [kb]

Memory
size without
overhead
[kb]

Memory
size with
overhead
[kb]

1 556 57 4 13
2 1937 540 15 54
3 7749 2590 61 232
4 26014 13332 208 832
5 136202 68675 1089 4767

TABLE III
DESCRIPTIONS OF THE WHOLE GROUP
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to increase both the throughput and the number of patterns

simply by using larger memory.

The immediate future work will concentrate on possible

improvements of our methodology by more efficient alphabet

transformation and introduction of additional compression into
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Fig. 7. Relation between memory size and number of characters accepted
per transition

the transition table. The last but the most promising way

of research seems to be implementing the ability to skip

characters to the automaton. This would increase the average

throughput but could decrease the worst case throughput.
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