
Efficient Hardware Accelerator for Symbolic
Regression Problems

Zdenek Vasicek and Lukas Sekanina

Brno University of Technology, Božetěchova 2
61266 Brno, Czech Republic

{vasicek,sekanina}@fit.vutbr.cz

Abstract. In this paper, a new hardware architecture for the accelera-
tion of symbolic regression problems using Cartesian Genetic Program-
ming (CGP) is presented. In order to minimize the number of expensive
memory accesses, a new algorithm is proposed. The search algorithm is
implemented using PowerPC processor which is available in Xilinx FP-
GAs of Virtex family. A significant speedup of evolution is obtained in
comparison with a highly optimized software implementation of CGP.

1 Introduction

Although the evolutionary algorithms were invented many years ago, they have
become popular in the recent two decades when the performance of personal com-
puters increased sufficiently. The most used evolutionary algorithm in the area of
evolutionary design, Genetic Programming (GP), and its variants have been suc-
cessfully applied to solve many difficult problems. However, the computational
power which GP needs for obtaining innovative results is enormous for most
applications. GP usually spends most of time by running domain-specific sim-
ulators which evaluate candidate individuals using large training sets. In order
to reduce the computational time, various methods have been proposed. In gen-
eral, they can be divided into four classes: (1) algorithm optimization for a given
problem, (2) source code optimization for a given platform, (3) parallelization on
clusters of workstations or GPUs and (4) hardware accelerators. Domain-specific
hardware accelerators represent the most promising method due to the high per-
formance, low implementation cost and low power consumption. The hardware
accelerators can be divided into two groups: (1) application-specific (ASIC) chips
developed for a given problem [1] and (2) accelerators based on reconfigurable
Field Programmable Gate Arrays (FPGA) [2–6]. In fact, the ASIC-based hard-
ware accelerators are used only in rare cases due to the high implementation cost
and low flexibility. In contrast with ASICs, modern FPGAs provide a cheap, flex-
ible and powerful platform able to compete even with common workstations. For
example, it has been demonstrated that a single-chip FPGA-based accelerator
running at 100 MHz can provide approx. 44 times higher performance in com-
parison with a common PC running at 2.4 GHz [7]. This performance has been
achieved by introducing a kind of systolic array which significantly accelerates
the evaluation of a candidate solution.

In this paper, an extension of the FPGA-based accelerator published in [7]
is proposed. The goal of this work is to provide a high-performance as well as
low-power evolutionary platform that accelerates the solving of the symbolic re-
gression problems. In order to provide a high-throughput solution, the proposed
accelerator utilizes multiple instances of a pipelined version of virtual reconfig-
urable circuit (VRC) for parallel evaluation of candidate solutions. Note that a
single VRC is used in [7]. Since modern Xilinx FPGAs contain integrated Pow-
erPC cores, the search engine can be implemented by using them. The main
benefit of this architecture is that it allows the user to easily tune the search
algorithm for a given problem while keeping the process of evolution on a single
chip.

This paper is organized as follows. Section 2 describes Cartesian Genetic Pro-
gramming; mainly the encoding is discussed here. In Section 3 the architecture
of the proposed accelerator is introduced. Section 4 includes the experimental
evaluation. Finally, conclusions are given in the last section.

2 Cartesian Genetic Programming

CGP is a kind of genetic programming which represents candidate programs as
graphs consisting of an array of programmable nodes. The array-based repre-
sentation is suitable for hardware implementation. More precisely, a candidate
program is modeled as an array of u (columns) × v (rows) of programmable
elements (nodes). The number of inputs, ni, and outputs, no, is fixed. Feedback
is not allowed. In order to define the level of connectivity, so-called L-back pa-
rameter is used. Each node input can be connected either to the output of a node
placed in the previous L columns or to some of primary inputs. For example,
if L=1 only neighboring columns may be connected; if L = u, the full connec-
tivity is enabled. Each node is programmed to perform one of functions defined
in the set Γ . Every individual is encoded using u × v × 3 + no integers. The
first u × v triplets encode the configuration of the CGP nodes (i.e. connection
of their inputs and their functions), the last no-tuple encodes the connection of
the primary outputs. While the size of chromosome is fixed, the size of pheno-
type is variable since some nodes need not to be used. This represents the main
advantage of the CGP (compared to the GP) and allows to make an effective
hardware accelerator.

CGP operates with the population of λ individuals (typically, λ = 5). The
initial population is randomly generated. Every new population consists of the
best individual and its mutants. In case when two or more individuals have
received the same fitness score in the previous population, the individual which
did not serve as a parent in the previous population will be selected as a new
parent. This strategy is used to ensure the diversity of population.

The fitness function usually takes one of two forms. (i) For the symbolic re-
gression problems, a training set is used. The goal is to minimize the difference
between the output of a candidate program and required output. (ii) For evolu-
tion of logic circuits, all possible input combinations are applied at the candidate

circuit inputs, the outputs are collected and the goal is to minimize the difference
between obtained truth table and required truth table. The evolution is stopped
when the best fitness value stagnates or the maximum number of generations is
exhausted.

Software implementations of CGP, which are intended for evolution of logic
circuits, strongly benefit from the so-called parallel simulation. The idea of paral-
lel simulation is to utilize bitwise operators operating on multiple bits to perform
more than one evaluation of a gate in a single step. Practically, current proces-
sors allow us to operate with 64 bit operands, thus it is possible to evaluate
the truth table of a six-input circuit by applying a single 64-bit test vector at
each input. However, this approach can not be applied for the symbolic regres-
sion problems since the function-level evolution uses usually complex operations
(such as addition, minimum, maximum, difference etc.). Thus the parallelization
of a candidate circuit evaluation using a cluster of workstations represents the
only way how to significantly accelerate this task in software.

3 Proposed CGP Accelerator

The basic idea of the CGP accelerator is that a given instance (i.e. a reconfig-
urable array consisting of u × v programmable nodes) is implemented as a re-
configurable circuit on the FPGA. Its configuration is defined using a bitstream
which is stored in a configuration register implemented also in the FPGA. This
concept is called the virtual reconfigurable circuit [8].

3.1 Proposed Architecture

The proposed CGP accelerator is completely implemented in a single FPGA
and consists of Genetic unit (GU), Fitness Unit (FU) and Control Unit (CU)
(see Fig. 1). Training data are stored in external SRAM memories. The GU as
well as FU are connected to the internal FPGA bus which provides an effective
communication interface between FPGA and PCI bus. The host PC is used to
load training data and define the parameters of CGP.

In order to maximize the overall performance, the CU plays the role of mas-
ter, controls the entire system and provides an interface to the host PC. The
PowerPC generates a new candidate individual when a request is issued. The
instruction memory of the PowerPC is implemented using BRAMs, however, our
search algorithm is completely executed from an instruction cache.

The population of candidate configurations is also stored in on-chip BRAM
memories. The population memory is divided into Nb banks; each of them con-
tains Nc configuration bitstreams. Each bitstream consists of the configuration
data that are necessary to configure one VRC. All the bitstreams stored within
a bank are evaluated in parallel. An additional bit (associated with every bank)
determines the data validity; only valid configurations can be evaluated. In or-
der to overlap the evaluation of a candidate configuration with generating a
new candidate configuration, at least two memory banks have to be utilized.

Fig. 1. Architecture of the proposed CGP accelerator

While the candidate solutions are evaluated, Nc new candidate configurations
are generated. The population memory provides two independent ports (a) 32-bit
read/write port A connected to the PowerPC processor and (b) m-bit read-only
port B connected to the fitness unit used for the reconfiguration of VRCs. Since
corresponding columns of each VRC are reconfigured at the same time (i.e. in
parallel), the part of bitstream which encodes one column of VRC can contain
up-to m/Nc bits. Note that the width of B port must be chosen with respect to
(a) the implementation limits (m must be an integer divisible by 128), (b) the
number of bits of a part of bitstream used to configure one column of VRC and
(c) the number of VRC instances Nc. In our case m = 256 and Nc = 4.

The CU consists of two subcomponents working concurrently. The first sub-
component reconfigures the VRCs according to the configuration stored in the
population memory. The second subcomponent is responsible for sending the
fitness value to the PowerPC processor. As soon as the fitness value is valid, an
interrupt request (IRQ) is generated to activate a service routine of the PowerPC.
In this routine, PowerPC reads the fitness value together with some additional
data and new candidate configurations are generated for the given bank. The
PowerPC processor acknowledges the interrupt and sets up the validity bit.

3.2 Fitness Unit

The fitness unit consists of Nc instances of VRC and two subcomponents: (a) the
input generation part and (b) the fitness computation part. The training data
are stored in external SRAM memories. The fitness unit loads training data from
external SRAM1 memory and forwards them to the inputs of VRCs. In case of
the evolutionary design of image filters, it is necessary to implement a local
neighborhood function (also referred to as a sliding window function) producing
wk2 bits per one clock cycle that have to be forwarded to the inputs of VRCs,
where k is the size of the filter window and w is the data width (in our case k = 3
and w = 8). The local neighborhood function can be efficiently implemented

using k row buffers as shown in Figure 2. While the architecture places the lowest
demand on the external memory bandwidth, the highest demand is placed on
the internal memory bandwidth. Since each row buffer can be implemented using
embedded BRAM memories, this approach does not cause problems.

Fig. 2. Fitness Unit

The fitness computation part consists of Nc instances of a circuit that com-
putes the fitness value; each VRC utilizes its own instance. In this paper, four
VRCs with k2 inputs and one output are considered. For each VRC i, the abso-
lute difference between output value yi and required output value y loaded from
external memory SRAM2 is calculated. Then, a temporary fitness value stored
in accumulator (ACC) is updated by the difference |yi− y|. As soon as FU eval-
uates the last training vector, the best fitness value together with the index of
corresponding VRC is transmitted to the PowerPC and VRCs are reconfigured
using new bitstreams.

The VRC consists of Configurable Logic Blocks (CFBs) placed in a grid of
8 columns and 4 rows (see Fig. 3). Any CFB can be programmed to implement
one of 16 function from Γ , where Γ includes addition, subtraction, shift, min-
imum, maximum etc. All these functions operate with two 8-bit operands and
produce a single 8-bit result. The operands are selected using two multiplexers.
Each multiplexer connects the CFB either with a primary circuit input or the
output of a CFB, which is placed in the preceding column. The reconfiguration
is performed column by column, one column is configured in a single clock cy-
cle. The computation is pipelined; a column of CFBs represents a stage of the
pipeline. Registers (denoted D) are inserted between the columns in order to
synchronize the input pixels with CFB outputs. The configuration bitstream of
VRC, which is stored in a register array conf reg, consists of 384 bits; i.e. 48 bits
per a column are used. A single CFB is configured by 12 bits, 4 bits are used
to select the connection of a single input, 4 bits are used to select one of the 16
functions. Evolutionary algorithm directly operates with configurations of the
VRC; simply, a configuration is considered as a chromosome.

conf_reg 0

E0

col 0

conf_reg 1 conf_reg 2 conf_reg 7

conf

PEIN

CONF

OUT

MUXA

MUXB

A

B

Y

.

..

.

..

D

E1

E2

E3

D

E0

col 1

E1

E2

E3

D

E0

col 7

E1

E2

E3

E0

col 6

E1

E2

E3

D

.

..

F0

F1

Fk

.

..

A

B

Y

MUXY

conf

Fig. 3. VRC for symbolic regression problems

3.3 Genetic unit

In order to exploit the performance of the proposed highly-parallel architecture,
GU has to generate Nc new candidate configurations while another Nc candi-
date configurations are evaluated. As the throughput of the population memory
connected to the PowerPC can introduce a bottleneck, the number of memory
accesses has to be minimized.

If the following assumptions are satisfied, the number of memory accesses can
be minimized by storing the differences between the configuration bitstream of a
parent and its mutated versions: (a) The search algorithm utilizes a population
of candidate solutions, (b) a single genetic operator (mutation) which inverts k
bits of the configuration is used and (c) no crossover operator is applied

As mentioned before, each bank of the population memory is divided into Nc

sections that are evaluated in parallel. The first section contains the configuration
bitstream which belongs to the first mutant while the other Nc − 1 sections
contain only the differences between the configuration bitstream of the first
mutant and the configuration bitstream of the i-th mutant. The PowerPC keeps
only the information about mutations (i.e. indices of inverted bits) and best
fitness value. FU contains a circuit generating complete configuration bitstream
for each VRC according to the partial information stored in the sections. As
soon as the evaluation is finished, the best fitness value fbest together with the
index of the corresponding VRC i is sent to the PowerPC. The three situations
can occur (i) if fbest < fparent then the bitstream of the first mutant is reverted
to the parent bitstream by applying the mutations leading to this configuration,
however in reverse order, (ii) if i > 1 then differences between the first mutant
and i-th mutant stored in i-th section have to be reflected to the first bitstream,
(iii) if i = 1 then nothing has to be done; the configuration bitstream corresponds
with the new parent bitstream. By applying the previous steps, the first section

contains the parental bitstream and a new generation can be created. Note that
the inverted bits stored in sections have to be cleared before a new generation
is created. The same principle is applied for remaining banks.

4 Evaluation

Due to the pipelined reconfiguration as well as execution of VRC, the evaluation
of Nc candidate programs requires (M − 2)(N − 2) clock cycles, where M ×N
is the number of pixels of training images. The time teval needed to evaluate Nc

candidate solutions can be expressed as

teval = (M − 2)(N − 2)
1
f

= (M − 2)(N − 2)
1

100
µs,

where f is the operation frequency. Since the generation of new candidate con-
figurations is overlapped with the evaluation of candidate solutions, the total
time ttotal can be expressed as

ttotal = tinit +Ng
p

Nc
teval,

where Ng is the number of generations, p is the population size and Nc is the
number of VRC instances (This is valid for Nc ≤ p).

In order to implement the proposed system, a COMBO6X card equipped
with Virtex II Pro 2VP50ff1517 FPGA has been used. The evolvable system was
described in VHDL, simulated using ModelSim and synthesized using Mentor
Graphics Precision RTL 2006a and Xilinx ISE 10.1 tools. Results of synthesis
for the accelerator containing up to four VRC instances (4 × 8 CFBs each)
are summarized in Table 1. While the PowerPC works at 300 MHz, the logic
supporting the PowerPC works at 150 MHz. The remaining FPGA logic works
at 100 MHz.

Table 1. Results of synthesis for the various number of VRC instances

resource avail. Nc = 1 Nc = 2 Nc = 4

IO blocks 852 602 70% 602 70% 602 70%
BRAM 232 16 7% 16 7% 16 7%
SLICES 23 616 4 614 20% 7 925 34% 14 549 61%
DFF 49 788 3 638 7% 4 793 10% 7 103 14%

Experimental results show that approximately 24,000 candidate filters can
be evaluated per second when the training set consists of 15876 8-bit vectors
(i.e. a training image containing 128× 128 pixels is used) and four instances of
VRC are employed. The proposed solution works approximately 170 times faster
than the highly optimized software version of the same algorithm written in C
running at the Celeron 2.4 GHz processor (see [7]). In comparison with a similar
architecture published in [6], our architecture runs approximately 13 times faster
for the same experimental setup.

5 Conclusion

In this paper, a new parallel as well as pipelined hardware architecture was
presented for the acceleration of symbolic regression problems. The proposed
system consists of two main units: (a) genetic unit and (b) fitness unit. The
fitness unit contains multiple instances of virtual reconfigurable circuit to eval-
uate several candidate solutions in parallel. The genetic unit consists of embed-
ded PowerPC processor. The search engine is implemented using the embedded
processor. Proposed platform provides a significant speedup of digital circuit
evolution in comparison with a highly optimized software implementation.

Acknowledgments

This work was partially supported by the Grant Agency of the Czech Republic
under contract No. GA102/07/0850 Design and hardware implementation of a
patent-invention machine, No. GD102/09/H042 Mathematical and Engineering
Approaches to Developing Reliable and Secure Concurrent and Distributed Com-
puter Systems and the Research Plan No. MSM 0021630528 Security-Oriented
Research in Information Technology.

References

1. Sakanashi, H., Iwata, M., Higuchi, T.: EHW Applied to Image Data Compression.
In Higuchi, T., Liu, Y., Yao, X., eds.: Evolvable Hardware, Springer (2006) 19–40

2. Shackleford, B.: A high-performance, pipelined, FPGA-based genetic algorithm
machine. Genetic Programming and Evolvable Machines 2(1) (2001) 33–60

3. Tufte, G., Haddow, P.: Prototyping a GA Pipeline for Complete Hardware Evo-
lution. In Stoica, A., Keymeulen, D., Lohn, J., eds.: Proc. of the 1st NASA/DoD
Workshop on Evolvable Hardware, Pasadena, CA, USA, IEEE Computer Society
(1999) 143–150

4. Vasicek, Z., Sekanina, L.: An evolvable hardware system in Xilinx Virtex II Pro
FPGA. International Journal of Innovative Computing and Applications 1(1) (2007)
63–73

5. Glette, K., Torresen, J., Yasunaga, M., Yamaguchi, Y.: On-Chip Evolution Using
a Soft Processor Core Applied to Image Recognition. In: The 1st NASA/ESA
Conference on Adaptive Hardware and Systems, Los Alamitos, CA, USA, IEEE
Computer Society (2006) 373–380

6. Wang J., Chen Q.S., L.C.: Design and implementation of a virtual reconfigurable
architecture for different applications of intrinsic evolvable hardware. IET computers
and digital techniques 2(5) (2008) 386–400

7. Vasicek, Z., Sekanina, L.: Evaluation of a new platform for image filter evolution.
In: Proc. of the 2007 NASA/ESA Conference on Adaptive Hardware and Systems,
IEEE Computer Society (2007) 577–584

8. Sekanina, L.: Evolvable components: From Theory to Hardware Implementations.
Natural Computing. Springer-Verlag Berlin (2004)

