
A Method for Design of Impulse Bursts Noise

Filters Optimized for FPGA Implementations

Zdenek Vasicek, Lukas Sekanina and Michal Bidlo

Faculty of Information Technology

Brno University of Technology

Brno, Czech Republic

Email: vasicek@fit.vutbr.cz, sekanina@fit.vutbr.cz, bidlom@fit.vutbr.cz

Abstract—This paper deals with the evolutionary design of
area-efficient filters for impulse bursts noise which is often
present in remote sensing images such as satellite images. Evolved
filters require much smaller area in the FPGA than conventional
filters. Simultaneously, they exhibit at least comparable filtering
capabilities with respect to conventional filters. Low-cost embed-
ded systems equipped with low-end FPGAs represent a target
application for presented filters.

I. INTRODUCTION

Image preprocessing in general, and image filtering in

particular, is a task which is performed by many FPGA-

based embedded systems. The quality of image filtering sig-

nificantly influences the quality of subsequent operations –

image recognition, classification, presentation etc. However,

advanced well-performing filters which could be useful in

the embedded systems require significantly more area on the

FPGA than standard filters. For example, the adaptive median

filter with the 5 × 5-pixel filtering window (kernel) requires

5.6 times more slices than a standard median filter with the

3 × 3-pixel filtering window and 1.3 times more slices if the

standard median filter uses the 5 × 5-pixel filtering window

(input FIFOs are not considered in the calculations) [1]. All

these filters are based on exact mathematical algorithms that

have been proven to work sufficiently for a particular noise

removal.

Recent studies on the salt-and-pepper noise filtering have

demonstrated that evolutionary algorithms (EA) can generate

image filters that show the same filtering quality as the

adaptive median filters; however, for half cost in the FPGA [2],

[3], [4]. The basic principle of the evolutionary circuit design

is that electronic circuits that are encoded as bit strings (chro-

mosomes) are constructed and optimized by the evolutionary

algorithm in order to obtain the implementation satisfying the

specification given by designer [5], [6]. In order to evaluate a

candidate circuit, the new configuration of a reconfigurable

device (or a circuit simulator) is created on the basis of

the chromosome content. This configuration is evaluated for

a chosen set of input stimuli. The fitness function, which

reflects the problem specification, can include behavioral as

well as non-behavioral requirements. For example, the correct

functionality is a typical behavioral requirement. As a non-

behavioral requirement, we can mention the requirement for

minimum power consumption or minimum area occupied on

the chip. Once the evaluation of the population of candidate

circuits is complete, a new population can be produced. That

is typically performed by applying the genetic operators (such

as mutation and crossover) on existing circuit configurations.

High-scored candidate circuits have got a higher probability

that their genetic material (parts of configuration bitstreams)

will be selected for next generations. The process of evolution

is terminated when a perfect solution is obtained or when a

certain number of generations is evaluated. As the EA is a

stochastic algorithm, the quality of resultant circuits is not

guaranteed at the end of evolution. However, the method has

two important advantages: (1) The artificial evolution can in

principle produce intrinsic designs for electronic circuits which

lie outside the scope of circuits achievable by conventional

design methods. (2) The challenge of conventional design is

replaced by that of designing an evolutionary algorithm that

automatically performs the design in a target place (e.g., in

space). This may be harder than doing the design directly, but

makes autonomy possible.

This paper deals with the evolutionary design of area-

efficient filters for impulse bursts noise which is often present

in remote sensing images such as satellite images [7]. Low cost

embedded systems equipped with low-end FPGAs represent a

target application for presented filters. The filter structure is

designed using Cartesian Genetic Programming (CGP) work-

ing at the functional level [8]. In contrast to previous work [9],

the main goal of the paper is to demonstrate that evolved filters

require much smaller area in the FPGA than conventional

filters. Simultaneously, it will be demonstrated that evolved

filters exhibit at least comparable filtering capabilities with

respect to conventional filters. In our case, evolved filters are

trained using a training image containing a particular noise and

tested on a database of images corrupted by the same type of

noise.

The rest of the paper is organized as follows. Section II sur-

veys the approaches proposed to image filtering in FPGAs. In

Section III, extended Cartesian Genetic Programming (CGP)

is introduced for evolution of impulse bursts noise filters.

Section IV deals with the experimental evaluation of proposed

method: evolved filters are compared with conventional filters

in terms of the quality of filtering and the area occupied in

the FPGA. Finally, conclusions are given in Section V.

978-3-9810801-6-2/DATE10 © 2010 EDAA

II. IMAGE FILTERS IN FPGAS

For purposes of this paper, the impulse bursts noise is

characterized using two parameters: p and q. Let p denote

a probability that a certain pixel belongs to the impulse burst.

In fact, this parameter determines the maximum amount of

pixels that are corrupted in the input image. Let q be a

parameter which determines the maximum length of burst (i.e.

the maximum number of consecutive pixels which are affected

by the impulse). The number of burst fragments in the image

depends on both parameters. In this paper, we will consider

that the images are transferred as one-dimensional arrays in

which the rows of the image pixels are stored in sequence.

Impulse bursts noise is a specific kind of noise which is

difficult to filter even if a nonlinear filter is used. This is

caused as both the central pixel and the neighboring pixels

are corrupted. It has been shown that median filters are

capable of removing impulse bursts but at the same time they

usually destroy the image details too heavily. Other filters (e.g.

weighted median) are not robust enough and tend to leave

a lot of impulse bursts unfiltered in the images [7]. Apart

from the median-based filters, training-based optimized soft

morphological filters were developed to suppress this type of

noise [10], [7].

Impulse bursts noise is typically filtered using larger filtering

windows (k × k pixels, where k = 5 and higher) in order to

repair a corrupted pixel using the pixels from several rows of

the image. The utilization of the filtering window of k × k

pixels implies that a memory structure has to be instantiated

to store k neighboring rows. Hence the area efficient filters

try to minimize k as much as possible. Figure 1 shows a

typical implementation of the FIFO devoted to reading the

pixel values from the image memory. The FIFO is typically

implemented using several BRAMs that serve as row buffers.

Since each BRAM is able to store 2048 bytes, a row buffer

consisting of one BRAM is suitable for images that constain

up to 2048+k pixels per row. Table I gives the implementation

cost of typical FIFOs; the circuits were synthesized using

Precision Synthesis to Xilinx Virtex II Pro XC2VP50. The

implementation cost includes the cost of the circuit which

generates necessary control signals (e.g. DONE signal).

OUTFilter

INPUT

FIFO

FIFO

W-3 items

W-3 items

D D D

D D D

D D D

Fig. 1. The row buffers for the 3 × 3-pixel filter window (W is the image
width)

Table III summarizes the implementation cost of selected

filters. The median filter is the most popular nonlinear filter for

removing the impulse noise [11]. Among more sophisticated

approaches we can find switching median filters [12], weighted

median filters [13], weighted order statistic filters [14] and

adaptive median filters [15]. The adaptive median filters pro-

duce significantly better resulting images than conventional

medians [16]; however, their implementation cost is relatively

high in FPGA [1].

TABLE I
THE IMPLEMENTATION COSTS OF ROW BUFFERS FOR VARIOUS SIZES OF

THE FILTER WINDOW

window size # CLBs # BRAMs max. frequency

3 × 3 106 3 264 MHz
5 × 5 252 5 264 MHz
7 × 7 462 7 264 MHz

For comparison, Table III also shows the implementation

cost of two filters evolved using CGP to suppress the salt

and pepper noise (‘evolved s&p filter‘ and ‘bank s&p filter‘)

[2], [3]. The evolved filters exhibit better filtering quality and

lower implementation cost in comparison to existing solutions

(in particular, median and adaptive median filters).

III. PROPOSED DESIGN METHOD

Every image filter is considered as a digital circuit of

several 8-bit inputs and a single 8-bit output, which processes

grayscale (8-bit/pixel) images. As Fig. 2 shows, every pixel

value of the filtered image is calculated using a corresponding

pixel and some of its neighbors in the processed image.

Image
filter

Filtered image

I0

I1

I2

I3

I5

I4

I6

I7

I8

Pixel
selector

Input image

Fig. 2. The concept of filtering using a 5 × 5 filter kernel followed by a
selector

In order to evolve the image filter capable of removing a

given type of noise, we need (a) a set of suitable elementary

functions (building blocks of the filter circuit), (b) rules for

interconnecting those functions and (c) the original (training)

image to measure the fitness values of the candidate filters

(i.e., to evaluate the quality of a candidate filter). The goal

of the evolutionary algorithm is to minimize the difference

between the original image and filtered image. The generality

of evolved filters (i.e., the ability to operate sufficiently also

for other images containing the same type of noise) is tested

by means of a test set.

A. Original CGP for filter evolution

The evolutionary design of filter circuits is based on Carte-

sian Genetic Programming [17]. In the original usage of

CGP for filter design (according to [18]), a candidate filter is

represented using a graph which contains nc (columns) × nr

(rows) nodes. The role of the EA is to find the interconnection

TABLE II
THE LIST OF FUNCTIONS THAT CAN BE IMPLEMENTED IN EACH

PROGRAMMABLE NODE

code function description

0 255 constant
1 x identity
2 255 − x inversion
3 max(x, y) maximum
4 min(x, y) minimum
5 x ≫ 1 right shift by 1
6 x ≫ 2 right shift by 2
7 x + y + (addition)

8 x +S y + with saturation
9 (x + y) ≫ 1 average

10 y if (x > 127) else x condition
11 |x − y| absolute difference
12 x ∨ y bitwise OR
13 x ∧ y bitwise AND
14 x ⊕ y bitwise XOR

15 x ∧ y bitwise NAND

of the programmable nodes and the functions performed by the

nodes. Each node represents a two-input function that receives

two 8-bit values and produces an 8-bit output. Examples of

functions are given in Table II. A node input may be connected

either to the output of another node, which is placed anywhere

in the preceding columns or to a primary input of the filter.

The filter circuits are encoded as strings of integers of the

size 3×nr ×nr +1. For each node, three integers are utilized

which encode the connection of the node inputs and operation.

The last integer of the array encodes the primary output of the

candidate filter.

CGP was originally used to design filters with 9 inputs,

i.e. with the 3 × 3-pixel filter window. Unfortunately, the

evolutionary search method is not scalable if larger filtering

windows are considered (e.g. the number of inputs is increased

to 25).

B. Extended CGP for filter evolution

In order to simultaneously support larger filtering windows

and leave the problem reasonably difficult for evolution, CGP

was extended by a selector that determines the pixels of

filtering window which will be used in evolved 9-input filters

[9]. The selector is encoded as a string consisting of S bits that

are joined to the chromosome (see Fig. 3). If the bit of the

selector string corresponding to the given pixel of the filter

window possesses logic 1, then the pixel will be selected;

otherwise, the pixel will not be considered as the input to the

filtering logic.

0 1 01 ... 0

Selector
configuration

Elements
configuration

A B F A B F ...
1 1 1 2 2 2

A B F
N N N

O

Output
connection

Fig. 3. Proposed encoding of candidate filters

The CGP utilizes a single genetic operation – the mutation

– which may modify up to 5% of genes (integers) of the

chromosome. If the selector is going to be mutated, a special

procedure is utilized for its effective modification. This pro-

cedure takes two different indexes from the range 0 to S − 1
according to which the appropriate bits of the selector string

are swapped. If a bit possessing logic 0 is swapped with a

bit possessing logic 1, then the selector is altered and a new

combination of pixels will be selected from the filter window

on the basis of the 1’s arrangement in the selector string.

C. Fitness function

The design objective is to minimize the difference between

the filtered image and the original image. Usually, the mean

difference per pixel also known as the mean absolute error

(MAE) is minimized. Let u denote a corrupted image, v is

the filtered image and w is the original (uncorrupted) version

of u. The image size is K × K (K=256) pixels but only the

area of (256 − k + 1) × (256 − k + 1) pixels is considered

because the pixel values at the borders are ignored and thus

remain unfiltered. The fitness value of a candidate filter is

obtained by calculating the error function:

f =
1

(K − 2)2

K−2∑

i=1

K−2∑

j=1

|v(i, j) − w(i, j)|.

The objective is to minimze f , i.e. the lower value of f the

better filter.

It is evident that the robustness of evolved filter depends on

the selection of the training data. In the previous research, it

has been determined that the image containing 128×128 pixels

provides a sufficient amount of training data for evolution of

robust 3 × 3 filters [19]. Because we utilize a larger filter

window in this work, we will choose the training image

consisting of 256 × 256 pixels.

Fig. 4. The training image consisting of 256 × 256 pixels

IV. RESULTS

An extended version of CGP was utilized for evolution

of impulse bursts noise filters with the 5 × 5-pixel filtering

window. In fact, CGP has evolved 9-input filters whose inputs

were identified using the selector. In order to compare the

results with the standard CGP approach, the impulse bursts

noise filters with the 3 × 3-pixel filtering window were also

evolved.

A. CGP parameters

The CGP parameters were initialized as follows: nc ×nr =

6×6; population size = 8; mutation rate = 5%; the number of

generations = 50,000; the number of independent runs = 150;

the function set of CGP was taken according to Table II. Figure

0 5 10 15 20 25 30 35 40 45 50 55 60
noise intensity [%]

5

10

15

20

25

30

35

40

45

50

P
S
N

R
 [

d
B

]

original error

adaptive median 5×5
weighted median 5×5
median-column 5×1
proposed 3×3
proposed 5×5
median 5×5
bank s&p

Fig. 5. The average PSNR calculated using 15 images for different levels of noise intensity

4 shows the training image used in the fitness function. The

initial population was generated randomly. Previous studies

showed for filter design problem that the setting of CGP does

not influence the results significantly.

9

4

2

4

1

1

10

4

8

4

1

1

8

11

1

1

11

4

2

1

4 o

Fig. 6. The structure of the best evolved filter for the impulse burst noise
(the functions are numbered as in Table 2)

B. Implementation cost

Figure 6 shows one of filters evolved with the 5 × 5
filtering window. All components of the filter are equipped

with registers in order to support pipeline filtering. The fil-

ter’s chromosome was converted to VHDL description and

synthesized using Precision Synthesis to Xilinx Virtex II Pro

XC2VP50. Table III compares the implementation cost of

evolved filters with various existing approaches. The filter

denoted as ‘proposed‘ with the 5 × 5 filter window occupies

108 slices and can operate at 242 MHz. We can observe that

evolved filters are relatively small.

C. Quality of filtering

The filtering quality of evolved (proposed) filters 3× 3 and

5 × 5 is evaluated using 15 test images (256 × 256 pixels,

randomly selected from [20]) that have been corrupted by

aforementioned impulse bursts noise with the intensity of 5-

55%. This corresponds to the following parameters of the noise

model: p = 0.05 ÷ 0.55; q = 128.

In order to evaluate the quality of filtering of selected

approaches, the average values of the peak signal to noise

TABLE III
RESULTS OF SYNTHESIS FOR VARIOUS FILTERS

filter window size # CLB max. freq. latency

median filter 3 × 3 268 305 MHz 9
median filter 5 × 5 1 506 305 MHz 24
median-column 5 × 1 69 310 MHz 5
adaptive median 5 × 5 2 024 303 MHz 15
adaptive median 7 × 7 6 567 298 MHz 21
proposed 3 × 3 72 281 MHz 5
proposed 5 × 5 108 242 MHz 6
evolved s&p 3 × 3 199 318 MHz 8
bank s&p 3 × 3 843 305 MHz 13

ratio (PSNR) and MAE were calculated over all test images

for selected noise levels (Figures 5 and 7). We included

evolved filters (‘proposed 3 × 3‘ and ‘proposed 5 × 5‘),

standard filters (‘median 5 × 5‘, ‘weighted median 5 × 5‘,

‘adaptive median 5 × 5‘) and a bank of filters trained for

salt and pepper noise (‘bank s&p 3 × 3‘ – according to

[2]). Moreover, an experimental median filter utilizing five

pixels of the central column as its inputs (inspired by the

evolved 5× 5-pixel window filter from Fig. 6) is included for

the comparison purposes; this filter is denoted as ‘median–

column’ in Figures 5 and 7. Since the conventional methods

provide low-quality of filtering if the 3 × 3 filter window

is used, only the conventional filters that utilize the 5 × 5
filter window are considered for comparison with evolved

(proposed) filters. It can be seen that both measures (MAE

and PSNR) provide very similar results.

Figure 8 shows filtering capabilities of various filters for

the image corrupted by the 5% noise and Figure 9 shows

the results for the image corrupted by 40% noise. The results

demonstrate that the evolved (proposed) filter with 5×5-pixel

window provides the best results in most cases, especially for

higher noise intensity. It is evident that the filtering quality

of the experimental ‘median–column’ filter is very low in

comparison with evolved 5×5-pixel window filter (see Figures

8d,h and Figures 9c,f).

D. Computational requirements

The experiments were conducted on a cluster consisting of

100 PCs (Pentium IV, 2.4GHz, 1GB RAM) using the Sun

0 5 10 15 20 25 30 35 40 45 50 55
noise intensity [%]

10-2

10-1

100

101

102

M
A

E

original error

adaptive median 5×5
weighted median 5×5
median-column 5×1
proposed 3×3
proposed 5×5
median 5×5
bank s&p

Fig. 7. The average Mean Absolute Error calculated using 15 images for different levels of noise intensity

Grid Engine (SGE) that enables to run up to 100 independent

experiments in parallel. The evolution time of a single run is

approximately 6 hours until the CGP algorithm reaches 50,000

generations.

V. CONCLUSIONS

The ‘average’ results from Figures 5 and 7 show that

evolved filters exhibit a very good quality of filtering in com-

parison with other filters. Simultaneously, the implementation

cost given in Table III is quite favorable. It is interesting that

the best filter discovered by CGP (see Figure 6) utilizes only

the pixels of the central column of the filter window. These

pixels are clearly the most important ones to suppress this type

of noise.

Similarly to the results presented for the salt and pepper

noise [2], [3], [4], we can claim that CGP is able to provide

very good implementations of impulse bursts noise filters. In

our future work, we aim to apply the CGP for evolution of

area-efficient filters for other noise types.

ACKNOWLEDGMENTS

This work was partially supported by the Grant Agency

of the Czech Republic under contract No. P103/10/1517

Natural Computing on Unconventional Platforms, No.

GD102/09/H042 Mathematical and Engineering Approaches

to Developing Reliable and Secure Concurrent and Dis-

tributed Computer Systems and the Research Plan No. MSM

0021630528 Security-Oriented Research in Information Tech-

nology.

REFERENCES

[1] Z. Vasicek and L. Sekanina, “Novel hardware implementation of adap-
tive median filters,” in Proc. of 2008 IEEE Design and Diagnostics of

Electronic Circuits and Systems Workshop. IEEE Computer Society,
2008, pp. 110–115.

[2] ——, “An area-efficient alternative to adaptive median filtering in
FPGAs,” in Proc. of the 17th Conf. on Field Programmable Logic and

Applications. IEEE Computer Society, 2007, pp. 1–6.
[3] ——, “An evolvable hardware system in Xilinx Virtex II Pro FPGA,”

International Journal of Innovative Computing and Applications, vol. 1,
no. 1, pp. 63–73, 2007.

[4] ——, “Reducing the area on a chip using a bank of evolved filters,” in
Evolvable Systems: From Biology to Hardware, ser. LNCS, vol. 4684.
Springer Verlag, 2007, pp. 222–232.

[5] T. Higuchi, M. Iwata, D. Keymeulen, H. Sakanashi, M. Murakawa,
I. Kajitani, E. Takahashi, K. Toda, M. Salami, N. Kajihara, and N. Otsu.,
“Real-World Applications of Analog and Digital Evolvable Hardware,”
IEEE Transactions on Evolutionary Computation, vol. 3, no. 3, pp. 220–
235, 1999.

[6] T. Higuchi, Y. Liu, and X. Yao, Evolvable hardware. Berlin: Springer,
2006.

[7] P. Koivisto, J. Astola, V. Lukin, V. Melnik, and O. Tsymbal, “Removing
Impulse Bursts from Images by Training-Based Filtering,” EURASIP

Journal on Applied Signal Processing, vol. 2003, no. 3, pp. 223–237,
2003.

[8] L. Sekanina, Evolvable components: From Theory to Hardware Imple-

mentations, ser. Natural Computing. Springer-Verlag Berlin, 2004.
[9] Z. Vasicek, M. Bidlo, L. Sekanina, J. Torresen, K. Glette, and M. Fu-

ruholmen, “Evolution of impulse bursts noise filters,” in Proc. of the

2009 NASA/ESA Conference on Adaptive Hardware and Systems. IEEE
Computer Society, 2009, pp. 27–34.

[10] P. Koivisto, H. Huttunen, and P. Kuosmanen, “Training-based optimiza-
tion of soft morphological filters,” Journal of Electronic Imaging, vol. 5,
no. 3, pp. 300–322, 1996.

[11] M. O. Ahmad and D. Sundararajan, “A fast algorithm for two-
dimensional median filtering,” IEEE Transactions on Circuits and Sys-

tems, vol. 34, pp. 1364–1374, 1987.
[12] W. Zhou and Z. David, “Progressive switching median filter for the

removal of impulse noise from highly corrupted images,” IEEE Trans

On Circuits and Systems: Analog and Digital Signal Processing, vol. 46,
no. 1, pp. 78–80, 1999.

[13] D. R. K. Brownrigg, “The weighted median filter,” Commun. ACM,
vol. 27, no. 8, pp. 807–818, 1984.

[14] S. Marshall, “New direct design method for weighted order statistic
filters,” VISP, vol. 151, no. 1, pp. 1–8, February 2004.

[15] H. Hwang and R. Haddad, “Adaptive median filters: new algorithms and
results,” IP, vol. 4, no. 4, pp. 499–502, April 1995.

[16] H. Hwang and R. A. Haddad, “New algorithms for adaptive median
filters,” in Proc. SPIE Vol. 1606, p. 400-407, Visual Communications

and Image Processing ’91: Image Processing, Kou-Hu Tzou; Toshio

Koga; Eds., K.-H. Tzou and T. Koga, Eds., Nov. 1991, pp. 400–407.
[17] J. F. Miller and D. Job, “Principles in the evolutionary design of digital

circuits – part I,” Genetic Programming and Evolvable Machines, vol. 1,
no. 1, pp. 8–35, April 2000.

[18] L. Sekanina, “Image filter design with evolvable hardware,” in Applica-

tions of Evolutionary Computing, vol. 2002, no. 2279. Springer Verlag,
2002, pp. 255–266.

[19] T. Martinek and L. Sekanina, “An evolvable image filter: Experimen-
tal evaluation of a complete hardware implementation in FPGA,” in
Evolvable Systems: From Biology to Hardware, ser. LNCS, vol. 3637.
Springer Verlag, 2005, pp. 76–85.

[20] “Berkeley Segmentation Dataset: Images,” 2003,
http://www.eecs.berkeley.edu/Research/Projects/

CS/vision/grouping/segbench/BSDS300/html/dataset/.

(a) original image (b) corrupted image

(c) proposed filter 3 × 3 (d) proposed filter 5 × 5

(e) adaptive median filter 5 × 5 (f) bank

(g) median filter 5 × 5 (h) median-column filter 5 × 1

Fig. 8. Image (219090) corrupted by 5% impulse bursts noise filtered by
various filters

(a) corrupted image (b) proposed filter 3 × 3

(c) proposed filter 5 × 5 (d) adaptive median filter 5 × 5

(e) bank (f) median-column filter 5 × 1

Fig. 9. Image (219090) corrupted by 40% impulse bursts noise filtered by
various filters

	Main
	DATE'10
	Front Matter
	Table of Contents
	Author Index

