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Abstract. This paper deals with the mapping of the parallel island-
based genetic algorithm with unidirectional ring migrations to nVidia
CUDA software model. The proposed mapping is tested using Rosen-
brock’s, Griewank’s and Michalewicz’s benchmark functions. The ob-
tained results indicate that our approach leads to speedups up to seven
thousand times higher compared to one CPU thread while maintaining a
reasonable results quality. This clearly shows that GPUs have a potential
for acceleration of GAs and allow to solve much complex tasks.

1 Introduction

Genetic Algorithms (GA) [3] are powerful, domain-independent search tech-
niques inspired by Darwinian theory. In general, GAs employ selection, mutation,
and crossover to generate new search points in a state space. A genetic algorithm
starts with a set of individuals that forms a population of the algorithm. Usually,
the initial population is generated randomly using a uniform distribution. On
every iteration of the algorithm, each individual is evaluated using the fitness
function and the termination function is invoked to determine whether the ter-
mination criteria have been satisfied. The algorithm ends if acceptable solutions
have been found or the computational resources have been spent. Otherwise, the
individuals in the population are manipulated by applying different evolutionary
operators such as mutation and crossover. Individuals from the previous popula-
tion are called parents while those created by applying evolutionary operators to
the parents are called offsprings. The consecutive process of replacement forms
a new population for the next generation.

Although GAs are very effective in solving many practical problems, their ex-
ecution time can become a limiting factor for some huge problems, because a lot
of candidate solutions must be evaluated. Fortunately, the most time-consuming
fitness evaluations can be performed independently for each individual in the
population using various types of parallelization.

There are different ways of exploiting parallelism in GAs: master-slave models,
fine-grained models, island models, and hybrid models [6].

One of the most promising variant is an island model. Island models can fully
explore the computing power of course grain parallel computers. The population
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is divided into a few subpopulations, and each of them evolves separately on
different processor. Island populations are free to converge toward different sub-
optima. The migration operator is supposed to mix good features that emerge
locally in the different subpopulations.

Nowadays modern Graphic Processing Units (GPU), although originally de-
signed for real-time 3D rendering can be seen as very fast highly parallel general-
purpose systems [4,5] and hence, employed with advantage to accelerate GAs.
The second section introduces the main features of nVidia GPU platform. Sec-
tion 3 describes the mapping of parallel GA onto nVidia CUDA architecture
taking into account restrictions of data-parallel processing. Experimental results
are presented and discussed in section 4. Section 5 concludes the paper.

2 General Purpose Computation on GPU

Driven by ever increasing requirements from the video game industry, GPUs have
evolved into very powerful and flexible processors, while their price remained in
the range of consumer market. They now offer floating-point calculation much
faster than today’s CPU and, beyond graphics applications; they are very well
suited to address general problems that can be expressed as data-parallel com-
putations (i.e. the same code is executed on many different data elements).

Moreover, several general purpose high-level languages for GPUs have become
available such as CUDA [7] and OpenCL [8] and thus developers do not need
any more to master the extra complexity of graphics programming APIs when
they design non graphics applications [9].

Modern graphics cards are in fact very powerful massively parallel computers
that have (among others) one main drawback: all the elementary processors
on the card are organised into larger multi-processors. They have to execute the
same instruction at the same time but on different data (SIMD model, for Single
Instruction Multiple Data).

GAs need to run an identical evaluation function on different individuals (that
can be considered as different data), meaning that this is exactly what GPUs
have been designed to deal with. The most basic idea that comes to mind when
one wants to parallelize an evolutionary algorithm is to run the evolution engine
in a sequential way on some kind of master CPU (potentially the host computer
CPU), and when a new generation of offsprings have been created, get them
all to evaluate rapidly on a massively parallel computer. This approach has
been examined in [12]. The proposed evolutionary algorithm reaches the speedup
about 100. But, the bottleneck can be seen in slow data transfers from host
memory to GPU and back, especially for small transactions [7].

Another way, how to parallelize GA is to move the whole algorithm on GPU.
However, very few researchers so far have gone this way. They usually used Cg
language [10,11] which does not allow access to some GPU features (i.e. man-
ual thread and block control). A parallel genetic algorithm targeted to numeri-
cal optimization has been published in [13]. Unfortunately, this implementation
reached only small speedups between 1.16 and 5.30 depending on population
size. Several interesting publication can be also found in [9].
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We would like to show, that the movement of entire genetic algorithm can
be accomplished in a straightforward way. Moreover, excluding the system bus
from the execution, much higher speedups could be achieved.

3 GPU-Based Genetic Algorithm

We have chosen CUDA (Compute Unified Device Architecture) [7] framework
to implement our GA on GPU. This toolkit promises best achieved speedups on
GPU so far and vast community of developers. CUDA can be performed on any
nVidia graphics card from GeForce 8 generation on both Linux and Windows
platform. Natural parallelism of computation on GPU is expressed by a few
compiler directives added to the well known C programming language.

As mentioned earlier, nVidia GPUs consist of multiprocessors capable to per-
form tasks in parallel. Threads running in these units are very lightweight and
can be synchronized using barriers so that data consistency is maintained. This
can be done with very low impact on the performance in a multiprocessor, but
not between multiprocessors. This limitation forces us to evolve islands either
completely independent or perform migrations between them asynchronously.

The memory attached to graphics cards is divided into two levels — main
memory and on-chip memory. Main memory has a big capacity (hundreds of
MB) and holds a complete set of data as well as user programs. It also acts
as an entry/output point during communication with CPU. Unfortunately, big
capacity is outweighed with high latency. On the other hand, on-chip memory
is very fast, but has very limited size. Apart from per-thread local registers, on-
chip memory contains particularly useful per-multiprocessor shared segments.
This 16KB array acts as a user managed L1 cache. The size of on-chip mem-
ory is a strongly limiting factor for designing efficient GA, but existing CUDA
applications greatly benefit there.

In order to summarize earlier paragraphs, our primary concern during design-
ing GA accelerated by GPU is to create its efficient mapping to CUDA software
model with a special focus on massive parallelism, usage of shared memory within
multiprocessors and avoiding the system bus bottleneck.

Fig. 1 shows the GA mapping to CUDA software model. We assume an island
based GA with the migration along an unidirectional ring. Every individual
is controlled by a single CUDA thread. The local populations are stored in
shared on-chip memory on particular GPU multiprocessors (CUDA blocks). This
ensures both computationally intensive execution and massive parallelism needed
for GPU to reach its full potential. Our implementation also utilizes a uniform
and Gaussian fast random number generators described in [2].

The proposed algorithm begins with the input population initialization on
the CPU side. Then, chromosomes and GA parameters are transferred to the
GPU main memory using the system bus. Next, the CUDA kernel performing
genetic algorithm on GPU is launched. Depending on kernel parameters, the in-
put population is distributed to several blocks (islands) of threads (individuals).
All threads on each island read their chromosomes from the main memory to the
fast shared (on-chip) memory within a multiprocessor. From this point, shared
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Fig. 1. Mapping of the genetic algorithm to CUDA software model

memories maintain local island populations. The process of evolution then pro-
ceeds for a certain number of generations in isolation, whereas, the islands as
well as individuals are evolved on the graphics card in parallel. Each generation
consists of fitness function evaluation and application of the selection, crossover
and mutation (see section 3.1). The operators are separated by CUDA block
barriers with zero overhead [7] so that data consistency is ensured.

In order to mix up suitable genetic material from isolated islands, the mi-
gration (see section 3.2) is employed. Because migration requires an inter-island
communication, slower main memory has to be used for this process. Moreover,
since CUDA blocks (islands) cannot be synchronized easily without a significant
performance loss, the migration is done asynchronously (it does not wait for the
neighbours to complete the predefined number of generations). This is unaccept-
able for common applications, where data consistency is required, but it works
well for stochastic method like GA.

The algorithm iterates until a terminating condition is met (currently the
maximum number of generations is set). Finally, every thread writes its evolved
chromosome back to the main memory from where it will be read by CPU
through the bus.

3.1 Implementation of Genetic Operators

Tournament selection and arithmetic crossover are tightly connected, as it is
evident from Fig. 2. Limited shared memory is thereby used efficiently.
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Fig. 2. Scheme of tournament selection with crossover

Threads (individuals) are grouped into pairs using shared variables and barri-
ers so that crossover can be performed in parallel for the whole island population.
First, each thread from a pair randomly selects one parent to crossover and it
compares the fitness of its own individual using. Then, the index of the better
one is written to the shared memory (shared array 1) to notify the other thread
in the pair of a more suitable partner to crossover. Next, the parallel uniform
random numbers generation is performed in the whole island and the results
are written to the shared array 2. Pairs of threads then look up their common
random number in this array and compare it with the crossover probability to
decide whether perform the crossover or not. This task consumes the first half of
the shared array 2. The second half is exploited during the arithmetic crossover
as aggregation weights:

O1 = a · P1 + (1 − a) · P2 (1)
O2 = (1 − a) · P1 + a · P2 (2)

where O1 and O2 represent offsprings, P1 and P2 represent parents and a denotes
the aggregation weight. This approach wastes the selection of individuals in
the case that the crossover is not finally made, but it is from 0.1 to 2% faster
(depending on island population size) due to SIMD GPU optimization.

The Gaussian mutation and fitness evaluation are performed in parallel for
each thread (see Fig. 1). Finally, the newly generated offsprings replace the
parents and the evolutionary cycle is repeated. The elitism is not ensured as
crossover may destroy the best chromosome in the island population.
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3.2 Migration between Islands

Migration is illustrated in Fig. 3. The islands are interconnected by an unidirec-
tional ring thus an island can only accept individuals from one neighbour. The
exchange is done asynchronously using the GPU main memory. The number of
migrated individuals is determined by the parameter M . First, the local island
population is sorted according to its fitness using Bitonic-Merge sort [1]. Next,
M best individuals are written to a part of the main memory belonging to the
left neighbour while M worst individuals are overwritten by migrants from a
part of the main memory belonging to the right neighbour. Both sorting and
migrations are done in parallel for all individuals.

The experimental results show that the migration can significantly improve
the convergence to the best solutions in the search space, see table 2.

Fig. 3. Scheme of migrations between islands

4 Results

Achievable speedups and solution quality of the proposed GA were examined
using Griewank’s, Michalewicz’s and Rosenbrock’s artificial benchmark functions
that are often used for GA analysis [15]. CPU version of GA is a single-thread
program implemented using well known GAlib library [14].

4.1 Achieved Performance

The speedup of our implementation was investigated using intel Core i7 920
processor and several nVidia consumer-level graphics cards: 8800 GTX (16 mul-
tiprocessors / 128 cores), GTX 285 (30 multiprocessors / 240 cores) and GTX
260-SP216 (27 multiprocessors / 216 cores).

The speedup of GPU against CPU were investigated on two dimensional in-
stances of the benchmark functions with mutation probability 5%, crossover rate
70%, no migration and terminating condition of 100 generations. Built-in CUDA
timer functions were used to measure GPU kernel execution time [7].



448 P. Pospichal, J. Jaros, and J. Schwarz

We measured the performance using island population sizes from 2 to 256 in-
dividuals, and islands quantity from 1 to 1024. The performance unit was chosen
to be population-size independent as IIGG=

∏
(Island population size, number of

Islands, Genotype length, number of Generations) per second. As we expected,
CPU performance is almost constant while GPU performance highly varies ac-
cording to the degree of parallelism (global population size). The performance of
graphics cards is also greatly affected by compiler parameter -use_fast_math
which causes usage of faster, but less precise mathematical functions. This pa-
rameter turned out to be profitable for GA because quality of results remains
unaffected.

Table 1. Comparsion of CPU and GPU execution performance depending on is-
land population size varying from 2 to 256 individuals. FastMath marks usage of -
use fast math CUDA compiler parameter.

arch. fitness function (min – max) IIGG·106 per second

CPU
Rosenbrock 2.6 – 2.8
Michalewicz 1.8 – 2.5
Griewank 2.5 – 2.8

GPU

8800GTX GTX260 GTX285
Rosenbrock 14.2 – 8877 12.0 – 13094 14.3 – 18669
Rosenbrock-FastMath 18.5 – 11914 15.5 – 17318 18.5 – 24288
Michalewicz 6.9 – 5893 5.8 – 8850 7.0 – 12937
Michalewicz-FastMath 11.7 – 9894 9.8 – 13692 11.6 – 19400
Griewank 9.6 – 7108 8.0 – 10515 9.9 – 14496
Griewank-FastMath 15.9 – 10507 13.3 – 15360 15.8 – 20920

Table 1 shows measured mean values of IIGG from 5 independent runs to
reduce an influence of underlying operating system. GPUs always outperform
CPU and truly excel at maximum speeds where measured performance is several
thousand times better. Such a huge speedup promises solving problems that took
hours to be completed in second-order time.

The results also show that two different generations of GPU, 8800 GTX and
GTX285 offer the same performance for the low level of parallelism and dif-
fer significantly only at maximum speed. This clearly points out that the new
technology is heading for massively-parallel computing rather than improving
performance for single threaded applications (see Fig. 4).

The charts shown in Fig. 4 illustrate achieved speedups on two different GPUs
against CPU, based on population sizes and the number of simulated island.
The 8800 GTX graphic card saturates its computational resources from 256 is-
lands and 32 individuals individuals per an island. The maximal speedup of
3735 against CPU is reached with 256 islands and 64 individuals per island.
The GTX285 provides about twice better peak speedup, but it is necessary to
provide much more computational work to it. The computational resources of
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Fig. 4. Speedup on Griewank’s function depending on GA parameters and GPU

this GPU are not saturated even for 1024 islands and 128 individuals per island,
where this GPU has attacked the speedup of 74371.

From the both charts in fig. 4 also flow that the usage of the GPU for a small
number of island and/or a few individuals per island is not advantageous. The
maximum performance is achieved for high number of simulated islands and
increasing population size.

4.2 Solutions Quality

The proposed implementation of the tournament selection slightly differs from
the original GAlib’s one (see section 3.1). In order to ensure the same testing
condition for the both CPU and GPU versions, the GAlib’s selection were reim-
plemented. Arithmetic crossover and mutation were kept untouched as they have
been defined in the same way.

Tests CPU and GPU1 were performed on artificial benchmark functions men-
tioned earlier on a single island (obviously with no migrations) with 32 individ-
uals, 70% crossover probability, 5% mutation probability and elitism turned off.
Each run was terminated after 100 generations of evolution and the best (lowest)
fitness value was taken into consideration.

Test GPU2 was performed with the same GA parameters and benchmarks but
with maximum GPU exploitation resulting from simulating 1024 populations (is-
lands) in parallel. Additionally, migrations were performed every 10 generations
with 3 individuals (approx. 10% of population).

To compare algorithms adaptability to rising problem complexity, varying
number of genes (variables) was tested as well.

Table 2 shows mean value over 100 measured runs. Rosenbrock’s and Grie-
wank’s functions have the value of the global optimum equal to 0. The value
1 As it was mentioned earlier, a single threaded CPU implementation was tested.

Benchmarked CPU Core i7 allows parallelisation to 4 physical cores + 4 virtual
Hyper-Threading ones. Hence, ideally paralleled CPU version with 50% speed benefit
from HT technology would change the maximum speedup from 7437 to approx. 1239
times. GAlib also computes variety of additional statistics.
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Table 2. Comparison of the solutions quality

genes mean best fitness

Rosenbrock Michalewicz Griewank
CPU GPU1 GPU2 CPU GPU1 GPU2 CPU GPU1 GPU2

2 0.086 3.468 7.57·10−7 -1.022 -1.768 -1.801 0.0005 0.0020 3.99·10−12

3 1.897 4.996 0.447 -1.220 -2.336 -2.760 0.0051 0.0048 1.06·10−8

4 8.900 4.997 0.494 -1.459 -2.748 -3.696 0.0156 0.0188 1.22·10−7

5 22.112 17.332 2.042 -1.684 -3.184 -4.628 0.0246 0.0414 0.0001
6 48.450 56.045 4.313 -1.817 -3.654 -5.440 0.0408 0.0570 0.0005
7 83.455 42.509 6.903 -2.035 -3.646 -6.163 0.0479 0.0620 0.0012
8 128.710 155.233 9.257 -2.120 -3.805 -6.659 0.0650 0.1360 0.0027
9 167.329 131.737 12.045 -2.176 -4.830 -7.136 0.0749 0.1444 0.0042
10 233.364 184.370 15.379 -2.391 -5.009 -7.649 0.0805 0.1758 0.0058

of the global optimum of Michalewicz’s function varies based on the number of
genes – it is approximately linear interpolation from -1.8 (2 genes) to -9.66 (10
genes). Lower value means better solution for all tested functions.

Michalewicz’s and Rosenbrock functions are optimised much better on GPU
in most cases. On the contrary, Griwank’s function for a single island (GPU1)
reaches better solutions on CPU. This can be an effect of simplified random num-
ber generator which uses very limited amount of shared GPU memory. However,
any negative effects are greatly outperformed by massive parallelism. Test GPU2
shows that fully utilized GPU can achieve far better results in the same number
of iterations.

Overall, GPU1 results are better than CPU by approx. 20%. This shows that
proposed GPU implementation of GA is able to optimise numerical functions.

5 Conclusions

Speedups up to seven thousand times higher clearly show that GPUs have proven
their abilities for acceleration of genetic algorithms during optimization of simple
numerical functions. The results also show that the proposed GPU implemen-
tation of GA can provide better results in the shorter time or produce better
results in equal time.

The future work will be oriented to introducing more complex numerical op-
timization inspired by real-world problems. Moreover, we would like to compare
parallel island-based GA running on CPU with the proposed GPU version.
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