
Optimizing Collective Communications on 2D-Mesh and Fat Tree NoC

Vaclav Dvorak and Jiri Jaros
Brno University of Technology

Brno, Czech Republic
{dvorak, jarosjir}@fit.vutbr.cz

Abstract—The paper investigates an impact of direct and

combining collective communications models that may be

critical for performance of parallel applications. Analysis

provided for any given start-up time and message transfer time

reveals the fastest collective communication mode in relation to

the number of processing elements in 2D meshes and fat tree

networks on a chip.

Keywords-collective communications, 2D-Mesh; fat trees;

message combining; graph embeddings

I. INTRODUCTION

With an increasing number of processor cores, memory
modules and other hardware units in the latest chips, the
importance of communication among them and of related
interconnection networks is steadily growing. The memory
of many-core systems is physically distributed among
computing nodes that communicate by sending data through
a Network on Chip (NoC) [1].

Communication operations can be either point-to-point,
with one source and one destination, or collective, with more
than two participating processes. Some embedded parallel
applications, like network or media processors, are
characterized by independent data streams or by a small
amount of inter-process communications [2]. However,
many general-purpose parallel applications display a bulk
synchronous behavior: the processing nodes access the
network according to a global, structured communication
pattern.

The performance of these collective communications
(CC for short) has a dramatic impact on the overall
efficiency of parallel processing. The most efficient way to
switch messages through the network connecting multiple
processing elements (PEs) makes use of wormhole (WH)
switching. Wormhole switching reduces the effect of path
length on communication time, but if multiple messages
exist in the network concurrently (as it happens in CCs),
contention for communication links may be a source of
congestion and waiting times. To avoid congestion delays, it
is necessary to organize CC into separated steps in time and
to put into each step only such pair-wise communications
whose paths do not share any links. The contention-free
scheduling of CCs is therefore important.

The 2D-mesh topology has become the most commonly
used choice in NoCs owing to its regularity which requires
only short local links and allows simple deterministic or
adaptive routing. However, one switch in every network
node increases its cost and power consumption.

Topologies of the indirect networks can be more easily
optimized for some particular application than those of the
direct networks because the number of switches can be
chosen independently of the number of PEs connected to the
network. Therefore, they are more suitable for
multiprocessor Systems on a Chip (SoC) in this respect.

Indirect networks with fat tree topology are constructed
from smaller switches and approximate one centralized
switch with a large number of ports. Switches in high-speed
system area networks are constructed from distinct VLSI
circuits where only the I/O pin count limits their size. In the
NoCs, however, the silicon area is a limiting factor in
addition to power consumption.

There are several classes of fat trees:
• Fat-trees FT(m, h) of height h built with m-port

switches; all internal nodes are of degree m, where m
as well as processor count P is an even integer. Each
node has m/2 children and m/2 parents, see Fig. 1a.

• Generalized fat trees GFT(h, m, w) of height h,
where each node has m children and w parents.
Processor count P is limited to powers of m.
Examples are at Fig. 1b and c.

• Extended generalized fat trees XGFT(h, m1, m2, …,
mh, w1, w2, …, wh) where nodes in level i have mi
children and wi parents. Processor count P is
a product of all mi ´s. One example is in Fig. 1d.

In the sequel, term “fat tree” will denote any of three
classes above.

Figure 1. Fat trees a) 8-way FT(4, 2), b) 9-way GFT(2, 3, 3),

c) 16-way GFT(2, 4, 2), d) 12-way XGFT(2, 3, 4, 1, 2).

CPU switch

a) b)

c)

d)

2010 Ninth International Conference on Networks

978-0-7695-3979-9/10 $26.00 © 2010 IEEE

DOI 10.1109/ICN.2010.12

22

The choice of a particular topology depends not only on
the required speed of CCs, but also on fault tolerance and
related cost of switches; e.g. robust topology in Fig. 1b has
the highest fault tolerance, but the cost of switches is also
very high.

Routing algorithms for fat trees and complexity of CC
algorithms for some classes of fat trees have been analyzed
in the literature [3], as well as the lower bounds and the
achieved number of communication steps in direct
implementation [4]. Combining messages in CCs on fat trees
presented in [5] targeted only one particular system
(Lemieux) interconnected by QsNet from Quadrics. Here we
want

• to present improved upper bounds for 2D-meshes
and fat trees up to 32 PEs obtained by evolutionary
algorithms,

• to find the performance breakpoint between
combining and direct communication model and

• to compare CC performance of 2D-meshes and fat
trees.

The paper is structured as follows. In the following
Section 2, we explain the communication model used in the
paper. Section 3 summarizes the time complexity of CCs in
WH networks: lower bounds on a number of communication
steps for general networks and upper bounds obtained by
authors for 2D-meshes and fat trees in case of uniform
messages, without their combining (direct strategy). In
Section 4, we first investigate combining CC algorithms on
2D-meshes and then transfer of known message combining
CC algorithms of hypercube and 2D-mesh to fat trees.
A performance boundary between direct and combining
mode is the original contribution of authors. Analytical
results are interpreted and commented on in Conclusions.

II. COMMUNICATION MODEL

A collective operation is usually defined in terms of
a group of processes. The operation is executed when all
processes in the group call the communication routine with
matching parameters. From now on, when we refer to
„collective communications”, then we will assume only CCs
involving the group of all processing elements (PEs).

In a single node broadcasting (One-to-All Broadcast,
OAB) one PE sends the same message to all other PEs.
Gossiping (All-to-All Broadcast, AAB) means that each PE
sends the same message to all other PEs. In single node
scattering, (One-to-All Scatter, OAS) one PE sends
a personalized message to each other PE. The total exchange
(All-to-All Scatter, AAS) is a parallel scattering of all PEs at
a time. Since complexities of other collective operations and
communications (such as gather or reduction) are similar to
some of the above four types, we will not consider them
explicitly.

Performance of CCs is closely related to their time
complexity. The simplest time model of point-to-point
communication in WH networks takes the communication
time composed of a fixed start-up time ts at the beginning
(SW and HW overhead and synchronization), a serialization
delay transfer time of m message units (words or bytes), and

of a component that is a function of distance h (the number
of channels on the route or hops a message has to do):

 tWH = ts + m t1 + h tr (1)

where t1 is per unit-message transfer time and tr includes
a routing decision delay, switching and inter-router latency.
The dependence on h is rather small (since h tr << ts + m t1),
so that WH switching is considered distance-insensitive.

In the rest of the paper we assume that the CC in WH
networks proceeds in synchronized steps. In each step of CC,
a set of simultaneous packet transfers takes place along
complete paths between source-destination node pairs that
can be modeled by (1). We assume that paths travelled in
every step are edge-disjoint, so that there is no contention for
links and thus we do not consider contention delay in (1). If
the source and destination nodes are not adjacent, the
messages go via some intermediate nodes, but processors in
these nodes are not aware of it; the messages are routed
automatically by the routers attached to processors.

Complexity of collective communication in a network
represented by graph G will be determined in terms of the
number of communication steps (“start-ups”), namely by
R(G), the upper bound on this number. Neglecting the
hardware overhead in routers along the traversed path (term
htr) and excluding contention for channels, CC times can be
obtained approximately as the number of start-up delays Rts
plus the sum of associated serialization delays mi t1,

 TCC = ∑∑
==

+=+
R

i

iS

R

i

iS kmtRttmt
1

11
1

)(= R ts + mt1 TCO (2)

where we do summation over all communication steps. Term
TCO is the Total Channel Occupancy time normalized by
a transfer time mt1 of an elementary message of size m bytes,
mi = m ki.

The port model of the system defines the number k of
CPU ports that can be engaged in communication
simultaneously. This means that there are 2k internal
unidirectional (DMA) channels, k input and k output
channels, connecting each local processor to its router that
can transfer data simultaneously. Always k ≤ d, where d is
a node degree; a one-port model (k = 1) and an all-port router
model (k = d) are most frequently used. In the one-port
model, a node must transmit (and/or receive) messages
sequentially. Architectures with multiple ports alleviate this
bottleneck. In an all-port router every external channel has
a corresponding port. The port model is important in
designing CCs as it determines the number of required start-
ups and thus the CC performance.

Moreover, the CC performance is influenced by the fact
whether or not the nodes can combine/extract partial
messages with negligible overhead (combining model) or
can only re-transmit/consume original messages (non-
combining model, direct strategy). Message combining
reduces the total number of messages, making each node
send fewer messages of larger size. Reducing the number of
start-ups can improve communication performance in case of

23

short messages when the start-up delays dominate in CC
times. In non-combining model we have messages of the
same size in all communication steps so that TCO = R in (2).

Finally, the lower bound on number of steps R(G)
depends on a link type; we have to distinguish between
unidirectional (simplex) links and bi-directional (half-duplex
HD, full-duplex FD) links. Typically R will be twice larger
for HD links than for the FD ones. Further on we will
consider FD links and the most frequent one-port/all-port
router models.

III. LOWER BOUNDS ON R(G) FOR NON-COMBINING,
CONGESTION-FREE CCS

One of the key design factors of an interconnection
network is its topology. The lower bounds R(G) for the
network graph G depend on number of nodes P, port model
(k), and channel bisection width BC [6], Table I. Which one
of three AAS lower bounds will dominate depends G on the
topology.

The upper/lower bounds of selected CCs for the mesh
and fat tree network topologies potentially useful in a NoCs
are given in Table II. Wormhole switching and full duplex
links have been assumed everywhere. Since meshes, unlike
tori, are not node-symmetric, there are no elegant algorithms
for them. Evolutionary algorithms can discover CC
schedules that either match the already known lowest
number of steps or provide new schedules close to lower
bounds [7]. All the results in Table II have been obtained by
evolutionary optimization tool [8]. The obtained upper
bounds that match lower bounds are in bold, otherwise the
lower bounds are given in brackets (in bold).

IV. MESSAGE COMBINING – STRATEGY FOR SHORT

MESSAGES.

As Table II shows, the number of communication steps
without message combining can be quite high, especially
when the number of PEs is large. It is then inefficient to store
related data structures in routers and CC performance suffers
as well. Message combining can improve that and we want
to derive exactly when. In our analysis we will ignore the
message-combining overhead which also slightly degrades
the performance. Two cases are of interest:

• direct vs. combining strategy on a 2D-mesh and
• direct strategy on a fat tree vs. combining strategy on

a hypercube or a 2D-mesh embedded into a fat tree.
Combining CC algorithms given below inherently

assume 1-port 2D-meshes or hypercubes. All-port
assumption would not decrease their running time.

A. CC Algorithms on Combining 2D-meshes

The combining model has no effect on OAB communication
pattern because there are no distinct messages to be
combined. The logarithmic lower bound on the number of
start-ups in Table I is pretty tight and not always reachable.
Since meshes are not node-symmetric, OAB and OAS
communication times depend on the source node type
(corner, edge, inner), unlike the torus networks.

TABLE I. LOWER BOUNDS ON COMPLEXITY OF CCS ON
NON-COMBINING NETWORKS

CC
WH, k-port, FD Links,

R = TCO [steps]

OAB log k+1 P 

AAB (P – 1) / k

OAS (P – 1) / k

AAS max (P2 / (2BC) , Σ /(Pk) , (P – 1) / k)

TABLE II. UPPER BOUNDS ON R FROM TABLE I FOR SELECTED
ALL PORT NETWORKS

WH, FD, all-port,

direct
OAB AAB OAS AAS

FT-8 3 7 7 7

GFT-9 2 3 3 3

XGFT-12 4 12 (11) 11 15 (11)

GFT-16 3 8 8 8

FT -32 6 (5) 33 (31) 31 33 (31)

2D mesh 2 x 4 3 (2) 4 4 (3), 4 8

2D mesh 3 x 3 2, 2, 2 4 2, 3, 4 6

2D mesh 3 x 4 2, 2, 3 6 3, 4, 6 12

2D mesh 4 x 4 2, 2, 3 8 4, 6 (5), 8 17 (16)

2D mesh 4 x 8 3, 3, 4 16 8, 11, 16 64

AAB algorithm in meshes rotates messages first in rows

and then in columns (with WH switching and FD links we
can rotate messages even if there is no wrap-around link).
Each node accumulates first B–1 messages of size m from
partners in its row and then A–1 messages of size Bm from
partners in its columns, so that

 TCO = (B–1) + (A–1)B =AB–1 (3)

The total number of startups is a plain sum of their count
in two phases, i.e. A + B – 2.

In 2D-meshes we perform OAS first within the row of
the source node by means of binary jumping with messages
of size decreasing as follows:

 mABmABmA ...,,4/ˆ,2/ˆ (4)

where X̂ is the nearest power of 2 greater or equal to X,
 X

X
log2ˆ = . At the end, all nodes in this row have the total

data for all nodes in their columns and then they do in
parallel vertical OAS within their columns. In this second
phase the message size decreases as follows:

 mAmAm ...,,4/ˆ,2/ˆ (5)

so that in total

24

 TCO = 1ˆ)1ˆ(−+− ABA (6)

The combining AAS pattern is the same as for AAB, but
the contents and size of messages are different. Processors
first form messages for one column each, combine them
together into messages of size A(B–1)m and pipeline them
within all rows in parallel. Each receiver extracts A packets
destined for its column, stores them and forwards the rest.
After the row AAS is finished, each processor has messages
from all B–1 colleagues within its row (on top of its own
ones) destined for A–1 colleagues within its column. The
message size decreases linearly from A(B–1)m to Am in the
first phase and from B(A–1)m to Bm in the second phase.
Therefore

2

)2(

2

)1(

2

)1(−+
=

−
+

−
=

BAABAA
B

BB
ATCO (7)

All the results are summarized in Table III.
Conditions for superior performance of non-combining

CCs over combining ones on all-port 2D meshes are derived
from Table I and Table III:

 
 

     
 

 
 )4/(2/)2(

2)4/(
:AAS

4,3,2

,
/)1(1ˆ)1ˆ(

loglog/)1(
:OAS

2,
/)1(1

2/)1(
:AAB

2

2
1

1

1

APBAP

BAAP

t

mt

k

kPABA

BAkP

t

mt

k
kPP

BAkP

t

mt

s

s

s

−−+
+−−

≤

=

−−−+−

−−−
≤

=
−−−

+−−−
≤

 (8)

Here we have used lower bounds of non-combining
communication because upper bounds either match them or
are reasonable close. The strongest lower bound for AAS on
2D-meshes is P2/(4A). All three functions mt1/ts = f(P) are
depicted in Fig. 2, where meshes up to size 4×8 from Table
II are displayed as discrete points, among others.

It turns out, that depending on number of PEs, message
combining makes sense if the message length m is in the
range (0.1 to 0.9) (ts / t1). For example, if time per byte t1 =
1ns and start-up time ts = 10 ns (typical NoC parameters
from [9]), we get m < (1 to 9) bytes.

B. Hypercube Strategy for CCs on Fat Trees

Design of combining CC algorithms for fat trees is based
on graph embedding, simulating of one network by another.
We can embed the n-cube (a guest graph G) into a fat tree
with 2n leaves (a host graph H) by mapping guest nodes into
host nodes and guest edges into paths in the host. Combining
CCs on the hypercube exchange data in a single dimension at
a time in log P steps. To avoid contention, it is therefore
important that paths connecting neighboring nodes in one
dimension are edge disjoint, see Fig. 3 (connecting
0-subcubes is trivial).

TABLE III. PARAMETERS OF KNOWN CC ALGORITHMS ON
A COMBINING 2D-MESH

WH, 1-port, FD, message combining CC on

A××××B mesh # of start-ups R TCO

OAB log A+log B log A+log B

AAB A+B–2 AB – 1

OAS log A+log B 1ˆ)1ˆ(−+− ABA

AAS A+B–2 AB(A+B–2)/2

AAB communication is performed using channels of

dimension 1, than channels of dimension 2, and so on. The
size of messages will double each step. Hence

 TCO = 1 + 2 + … + P/2 = P –1 (9)

TCO in OAS communication is the same, because the size of
the messages follows the same pattern, but in the opposite
way. AAS is done again one dimension after another, but
here the message size does not change. In each step, every
processor exchanges P/2 messages destined for the PEs in
the other half of the hypercube: its own messages + some
already received in previous steps, starting with P/2+0,
P/4+P/4, P/8+(P/4+P/8)…, and ending up with 1+(P/2–1)
messages.

0

0.2

0.4

0.6

0.8

1

0 32 64 96 128 160 192 224 256
P

m
t 1
/t
s

OAS, k=2

OAS, k=3

OAS, k=4

a)

0

0.2

0.4

0.6

0.8

0 32 64 96 128 160 192 224 256
P

m
t
1
/t
s

AAS

AAB

b)

Figure 2. Performance breaking points between combining and non-
combining CCs on 2D-meshes.

Figure 3. Connecting 1-subcubes (a) and 2- subcubes (b)

by edge-disjoint paths in FT-8.

a) b)

25

TABLE IV. PARAMETERS OF KNOWN CC ALGORITHMS ON
A COMBINING A P-NODE HYPERCUBE

WH, 1-port, FD, message combining CC on a

hypercube # of start-ups R TCO

OAB log P log P

AAB log P P – 1

OAS log P P – 1

AAS log P (P/2) log P

Parameters of combining CC on hypercubes are listed in

Table IV. Under the assumption of edge disjoint paths in
each dimension we can combine Table I and Table IV and
get conditions for faster non-combining mode in a form:

 

 
 

 1

11

1

11

/)1()(log2/(

log/)1(
:AAS

/)1(1

log/)1(
:OASAAB,

wPPP

PwP

t

mt

wPP

PwP

t

mt

s

s

−−
−−

≤

−−−
−−

≤
 (10)

We have used the strongest AAS lower bound for fat
trees which is (P–1)/w1 Combining AAB and OAS on
embedded hypercube are always faster than non-combining
modes on fat trees with w1=1, whereas for w1=2 it is not so.
This case and two variants of AAS for w1 = 1 and w1 = 2 are
depicted in Fig. 4.

C. Mesh Strategy for CCs on Fat Trees

In case of AAB and AAS we do rotation in one
dimension and then in the other. It is therefore important if
we are able to map paths connecting nodes in one mesh
dimension to edge-disjoint path in the fat tree. Edge
congestion ε in a certain dimension may be more than 1 and
then we need ε-times more steps in that dimension. For
example, embedding 3 x 3 mesh into 9-tree: ε1 = 1, ε2 = 1.
Contrary, embedding 4 x 4 mesh into 16-tree: ε1 = 1, ε2 = 2.

Typically a group of adjacent PEs in a fat tree represents
the nodes in one mesh dimension (B) with edge disjoint local
neighbor-to-neighbor paths (ε1 = 1). If the other dimension
(A) has ε2 = 2, the number of steps in Table III R = A+B–2 is
to be replaced by

 R = ε1 (B–1) + ε2 (A–1) (11)

This is the only correction that must be considered in
Table III. In order to ensure the minimum value of R, we
always try to assign ε1 = 1 to the higher number of steps. The
value of TCO remains the same, because some steps are
repeated with shorter messages.

Binary jumping in OAS makes use only one non-local
pair-wise communication in each mesh row or column.
Provided that this binary jumping is congestion free, each
topology will be characterized by the pair (ε1, ε2) and by the
value of w1. Conditions under which message combining on
embedded meshes can outperform direct strategy on fat trees
are obtained from Table I and Table III as follows:

 
 

     
 

 
 121

2111

112

11

1

2111

/)1())1()1()(2/(

))1()1(/)1(
:AAS

/)1()1ˆ()1ˆ(

loglog/)1(
:OAS

/)1(1

)1()1(/)1(
:AAB

wPBAP

BAwP

t

mt

wPABA

BAwP

t

mt

wPP

BAwP

t

mt

s

s

s

−−−+−

−−−−−
≤

−−−+−

−−−
≤

−−−

−−−−−
≤

εε
εε

εε

εε

(12)

Fig. 5a and 5b show these conditions in a graphical form.
As combining AAB and OAS on embedded meshes are for
w1=1 always faster than direct strategies, only the case
(w1=2, ε1 =1, ε2=1) is shown for illustration. The source of
OAS is a corner node (k=2); the AAS condition displayed in
Fig. 4b has been evaluated only for square meshes n × n to
show the general trend. Moreover, embeddings of
rectangular meshes into fat trees are topology-specific and
their existence cannot be predicted easily. As it is seen from
Fig. 3b, application of message combining is limited to very
short messages and scarcely useful.

0

0.2

0.4

0.6

0.8

1

0 32 64 96 128 160 192 224 256
P

m
t
1
/t
s

AAB, OAS w1 = 2

AAS, w1 = 1

AAS, w1 = 2

Figure 4. Performance breaking points for combining CCs on hypercubes

embedded in fat trees.

0

0.2

0.4

0.6

0.8

1

0 32 64 96 128 160 192 224 256
P

m
t
1
/t
s

AAB, OAS w1 = 2

AAS, w1 = 1

AAS, w1 = 2

a)

0

0.02

0.04

0.06

0.08

0.1

0.12

0 32 64 96 128 160 192 224 256
P

m
t
1
/t
s

AAS (eps. 1,2; w1=1)

AAS (eps 1,1; w1=2)

b)

Figure 5. Performance breaking points for combining CCs on meshes
embedded in fat trees.

26

V. CONCLUSIONS

We addressed the problem “combine or not to combine
messages?” with respect to performance of collective
communications on selected NoCs. The results are
summarized as follows:

1) CCs on 2D-meshes may profit from message
combining only when message transfer time mt1 is a fraction
of start-up delay ts. The fraction gets larger for more
processors in the mesh.

2) Combining AAB and OAS on hypercubes embedded
in fat trees with w1=1 is always faster than related direct CCs
on the fat tree. For short enough messages fat trees with
w1=2 can also benefit from message combining. However,
combining AAS on embedded hypercube makes sense only
for very small fraction mt1/ts < 0.1.

3) Combining CCs on meshes embedded in fat trees
depend on edge congestion ε1, ε2 in two mesh dimensions.
Combining AAB and OAS are always faster than native
direct strategies on the fat tree with w1=1, and with w1=2
only if message length m is a fraction of ts/t1. Combining
AAS will be rarely useful because this fraction must be less
than 0.1.

In order to compare the performance of all-port 2D-
meshes and all-port fat trees, we have used time per byte
t1=1ns, start-up time ts=10 ns (typical NoC parameters from
[9]) and two values of m; always the shortest time of the two
modes (direct vs. combining mode) has been entered. Table
V and VI give the best communication times, for combining
mode in bold; embedded hypercubes and meshes are marked
by symbols * and #, respectively.

It is seen, that for the selected parameters will message
combining hardly improve performance of AAS on fat trees
and of all CCs on 2D-meshes. It will be most useful for AAB
and OAS on hypercubes or meshes embedded into fat trees
with w1=1 when the performance can improve even by more
than 50%. In any case, for accurate evaluation one needs to
know network topology, message length, time parameters ts
and t1, the port model, and edge congestion for embedded
networks. The obtained CC times can then be used to decide
on message combining and to predict an overall performance
of complete parallel applications with CC patterns.

In our performance optimization and comparison we did
not take into account power consumption and cost of the
NoCs, including their manufacturability. These are important
attributes that could be considered in future research.

ACKNOWLEDGMENT

This research has been carried out under the financial
support of the research grant “Safety and security of
networked embedded system applications”, GA102/08/1429
(2008-10) of the Grant Agency of Czech Republic and
“Security-Oriented Research in Information Technology”,
MSM 0021630528 (2007-13).

TABLE V. THE BEST CC TIMES [NS] REACHED ON ALL-PORT 2D-
MESHES

t1 = 1ns/byte, ts = 10ns,

m=8 bytes

t1 = 1ns/byte, ts = 10ns,

m=64 bytes P-meshes

AAB OAS AAS AAB OAS AAS

8 72 72 144 296 296 592

9 72 36 108 296 148 444

12 108 108 216 444 444 888

16 144 72 306 592 296 1258

36 288 144 1152 1184 592 4736

TABLE VI. THE BEST CC TIMES [NS] REACHED ON FAT TREES

t1 = 1ns/byte, ts = 10ns,

m=8 bytes

t1 = 1ns/byte, ts = 10ns,

m=64 bytes P-fat

trees
AAB OAS AAS AAB OAS AAS

8 (w1=1) 86* 86* 126 478* 478* 518

9 (w1=3) 54 54 54 222 222 222

12 (w1=1) 138# 136# 270 754# 808# 1110

16 (w1=2) 144 144 144 592 592 592

36 (w1=1) 298* 298*# 594 2034* 2034*# 2442

REFERENCES

[1] D. N. Jayasimha, B. Zafar, and Y. Hoskote, “On-Chip
Interconnection Networks: Why They are Different and How to
Compare Them”. Platform Architecture Research, Intel Corporation,
2006. http://blogs.intel.com/research/terascale/ODI_why-different.pdf

[2] A. Jantsch, and H. Tenhunen, “Networks on Chip”, Kluwer Academic
Publ., Boston, 2003.

[3] S. R. İhring, M. Ibel, and S. K. Das, “On Generalized Fat trees”,
Proc. International Parallel Processing Symposium, IPPS 1995, pp.37.

[4] S. K. Das, S. R. İhring, and M. Ibel, “Communication aspects of fat-
tree-based interconnection networks for multicomputers”, Proc
DIMACS Workshop on Robust Communication Networks:
Interconnection and Survivability, DIMACS Center, NJ, 1998, pp.
40-60.

[5] S. Kumar, and L. V. Kalé, “Scaling All-to-All Multicast on Fat-tree
Network”, Proc. 10th International Conference on Parallel and
Distributed Systems, ICPADS 2004, pp. 205- 214.

[6] J. Duato, and S. Yalamanchili, “Interconnection Networks – An
Engineering Approach”, Morgan Kaufman Publishers, Elsevier
Science, 2003.

[7] J. Jaroš, M. Ohlídal, and V. Dvořák, “Complexity of Collective
Communications on NoCs”, Proc. 5th International Symposium on
Parallel Computing in Electrical Engineering, IEEE CS Press, 2006,
Los Alamitos, CA, US, pp. 127-132.

[8] J. Jaroš, M. Ohlídal, V. Dvořák, “An Evolutionary Approach to
Collective Communication Scheduling”, Proc ACM Genetic and
Evolutionary Computational Conference, New York, US, ACM,
2007, pp. 2037-2044.

[9] J. L Hennessy, and D. A. Patterson, “Computer Architecture - A
Quantitative Approach”. 4th Edition, Morgan Kaufman Publishers,
Inc., 2006.

27

