
Hardware Accelerated Pattern Matching Based on

Deterministic Finite Automata with Perfect Hashing

Jan Kastil, Jan Korenek

Faculty of Information Technology

Brno University of Technology

Bozetechova 2, Brno, 612 66, Czech Republic

Email: (ikastil, korenek)@fit.vutbr.cz

Keywords: Inrusion Detection, Perfect hashing, hardware acceleration, Deterministic Finite Automata

Abstract— With the increased amount of data transferred by
computer networks, the amount of the malicious traffic also
increases and therefore it is necessary to protect networks
by security systems such as firewalls and Intrusion Detection
Systems (IDS) operating at multigigabit speeds. Pattern matching
is the time critical operation of current IDS. This paper deals
with the analysis of regular expressions used by modern IDS
to describe malicious traffic. According to our analysis, more
than 64 percent of regular expressions create Deterministic Finite
Automaton (DFA) with less than 20 percent of saturation of
the transition table which allows efficient implementation of
pattern matching into FPGA platform. We propose architecture
for fast pattern matching using perfect hashing suitable for
implementation into FPGA platform. The memory requirements
of presented architecture is closed to the theoretical minimum
for sparse transition tables.

I. INTRODUCTION

Modern IDS cannot process each packet independently,

because an attacker can split the string described by the

pattern between multiple packets. To identify such attacks,

IDS must scan each network flow as one stream. For stream

reconstruction, some information is needed to be stored for

every flow. As the number of flows can be high and the

memory size is limited, the stored information needs to take

minimum size. If a DFA is used for pattern matching, the flow

does not need to be reconstructed. It is sufficient to store the

last state of the DFA at packet boundary and continue pattern

matching from the stored state when the next packet of the

flow arrives. In real networks, packets are often delivered out

of the order. This situation is described and solved in [1].

Many papers deal with the problems described above, but

none of them was able to present a method sufficiently fast

for wire-speed processing on multigigabit networks. The main

problem of suggested methods are memory requirements. We

propose to use a perfect hash function to implement the

transition table of the DFA and reduce memory requirements

to the minimum without sacrificing any advantage of DFA-

based methods. Our method can be used with optimization

methods [2],[3] that reduce the number of transitions in a DFA.

The paper is divided into following sections: Section II

briefly mentions related work for pattern matching, while

in Section III we describe the implementation of the finite

automata by the perfect hashing and the basic principle of

selected perfect hashing algorithm. Section IV describes exper-

imental results obtained by analyzing signatures from modern

intrusion detection systems and finally, Section V concludes

our work and suggest next possible ways of our research.

II. RELATED WORK

The problem of fast pattern matching is addressed by many

researchers. Therefore, many methods which are suitable for

fast pattern matching have been introduced but according to

our knowledge there is no algorithm that optimally addresses

all requirements of a modern IDS. First IDS used only string-

based patterns, but Sommer and Paxton demonstrated that pat-

terns based on regular expressions can be more effective than

pattern based only on strings [4]. String matching algorithms

are fast but their extension to regular expressions is not always

possible. TCAM [5] or KMP [6] algorithms could be seen

as examples of such methods. Methods for string matching

that can be extended into matching of patterns described

by regular expressions are often based on Finite Automata.

The drawbacks of methods based on FA is that an FA can

accept only one symbol per transition and parallelization of FA

itself still remains to be solved. It is possible to use alphabet

transformation such that several input characters correspond to

the one symbol of the automaton. These transformations can

increase throughput of the solution but the core of the pattern

matching unit still works sequentially. Even implementations

of the nondeterministic FA can not accept more than one

symbol per one step. Implementations of NFA allow only to

minimize size of the automaton and therefore obtain higher

frequency of the implementation.

There are two major approaches to pattern matching using

FA. The first group of methods uses Nondeterministic Finite

Automaton. Clark et al used NFA and obtained the throughput

of 100 Gb/s [7]. Using this approach, NFA needs to be

synthesized into an FPGA from each set of patters from a

hardware description language, such as VHDL or Verilog.

Therefore, fast change of the matching pattern is not possible

which limits its deployment into HW acceleration of an IDS

because if a new type of attack occurs, adequate rule has to

be added immediately into the IDS. The Witty Worm [8], for

978-1-4244-6613-9/10/$26.00 ©2010 IEEE 149

example, was able to infect the majority of vulnerable hosts in

about 45 minutes. Another approach to NFA implementation

uses backtracking to find a correct transition path through the

automaton. This approach cannot be used in an IDS, because

its time complexity is worse than linear.

Another approach to FA-based methods is the use of Deter-

ministic Finite Automaton. DFA can be implemented to run

with linear time complexity. Due to the fact that DFA can

be in only one active state, its transition table can be stored

in the memory instead of being implemented in the logic.

Implementing the transition table in memory allows to change

the sets of patterns without the need for reconfiguration and

reduces the time of change. The speed of on-chip memory

becomes the limiting factor in these implementations. For

successful deployment of DFA-based methods into an IDS,

it is crucial to minimize the memory requirements for the

DFA. This problem is addressed by many researchers: [9],

[10], [11], [3]. Unfortunately, many of these method were

primarily developed for string matching and their properties

on a set of patterns described by regular expressions has not

been fully examined.

III. ARCHITECTURE

A. Perfect Hash Algorithms

There are many algorithms for perfect hashing ([12], [13],

[14], [15], [16], [17]); each one of them requires some time

for finding perfect hash function but when the PHF is found,

its result can be computed in constant time. The biggest

difference between these algorithms are memory requirements

of the created PFH. According to the above mentioned studies,

the algorithms in [14] and [16] have the smallest memory

requirements. Unfortunately, the algorithm in [16] requires

exponential preprocessing time in the worst case, while the

algorithm in [14] completes preprocessing step always in

linear time. Therefore, [14] is used for perfect hashing in the

transition table. The perfect hash function can be found by

this algorithm in a matter of seconds.

The algorithm [14] is based on random hypergraphs. In the

first step, three random hash functions are selected. These hash

functions and the set of keys (N) form random hypergraph.

Each hash function maps every key from N into interval u

< 1, U >, where U ≥ |N |. More specifically, interval

u is divided into subintervals of the same size and every

hash function maps a key into its own subinterval. Every

key is hashed by all three hash functions and their results

represent one edge of the hypergraph. The hypergraph can

be considered random because hash functions are randomly

generated. From random graph theory it is possible to compute

constant probability that a random hypergraph is going to be

acyclic. The actual probability depends on the ratio between

size of N and U . If the ratio is above 1.23 then the probability

of random graph being an acyclic hypergraph approaches 1.

If a hypergraph is acyclic, it is possible to select one vertex

from each edge in such way that this vertex will not be

selected in any other edge. This means that the number of this

vertex is unique for the key and can serve as a value of the

PHF. When the PHF is evaluated, it only identifies the unique

vertex from the edge. To do so, it is required to store two bit

information with every vertex. This information is computed

during creation of the PHF from the hypergraph.

Test of the hypergraph acyclicity always requires linear time

and its time complexity does not depend on the inputs of

the algorithm. The same holds for the transformation of the

hypergraph into the PHF. Therefore, all parts of the algorithm

have exactly linear time complexity. The only tricky part is the

choice of the hash functions which generates acyclic hyper-

graph. The acyclic hypergraph is found with certain probability

which is near 1 but there is still a small possibility of failure. If

failure occurs, new hash functions are generated and therefore

a new hypergraph needs to be tested for acyclicity. This can

be repeated as long as needed or until the specified numbers

of iteration is reached but the chance of more than five failures

in line is virtually impossible. Therefore, the worst case of the

PHF generation is about O(kn + n) where n is the number

of keys and k is the maximal number of the iteration, but in

average case it is only O(n + n). As we see, the algorithm

always works in linear time.

B. Architecture of Finite Automaton

The biggest problem of the DFA based implementations lies

in the communication with the memory. Every accepted char-

acter requires communication with the memory. Moreover, the

memory transition do not have any form of locality. Therefore

it is not possible to use cache to speed-up the communication.

DFA representation also consumes much more memory than

its nondeterministic counter part. Many researchers focused on

the minimization of the communication between memory and

the DFA logic. While in [18] authors introduce small and fast

memory that is only partially updated from external memory

with whole transition table, [3] introduces Delayed DFA which

is able to reduce size of the transition table for big automata

at the cost of increasing number of transition needed to detect

signature.

Actual State

Possition in
Transition Table

Transitional table

 Validate Rule
Number

Input
Symbol

Fig. 1. Representing DFA

Fig. 1 shows the basic idea of the FA implementation. The

position in the transition table block computes pointer into

the transition table where the actual transition is stored. The

result of this look-up enters the validate block which decides

whether the found transition belongs into the automaton.

Position in transition table is computed as a perfect hash

function (PHF). Perfect hash returns unique address into the

transition memory for every existing transition. Therefore it

is possible to store only next states in the transition table

150

and achieve nearly 100 % utilization of the memory. Perfect

hash function is computed from the input symbol and actual

state of the automaton. Therefore it is possible to compute

PHF from prohibited combination representing nonexistent

transition. In such case, PHF will return undefined result.

This result will be corrected by validate block. Validate block

confirms if the key of PHF represents existing transition in the

automaton. From the algorithmic point of view validate block

solves membership problem if the transition belongs into the

transition set. It is possible to parallelize computation of the

perfect hash and validation process. It is required to validate

transition in constant time. According to [19] the information-

theoretic minimum number of bits required to store the set in

the structure supporting membership queries in constant time

can be computed by

B = lg

(

M

N

)

(1)

where N is the number of elements or transitions and M

represents the universe or all possible transitions. By using

Stirling’s approximation, this formula can be replaced by

B = N lg
M

N
(2)

Authors of [19] also state that Perfect Hash Table is ideal

representation for very sparse sets. With these arguments in

mind, we propose to store the key of PHF in transition table

together with next state in order to achieve high utilization

of the memory and to allow storing of the whole transition

table in the on-chip memory which allows random access to

be performed in one clock. However, the size of the memory

representation for this structure is bigger than the theoretical

minimum. The real size can be computed by the formula

B = 1.23 ∗ N ∗ (2 + ⌈lg |S|⌉ + ⌈lg |Σ|⌉) (3)

where N is the number of transitions in the automaton and

constant 1.23 is the minimal memory overhead for the perfect

hash function [14]. Σ is the alphabet of the selected automata

and lg |Σ| si the number of bits required to store one symbol,

while S is the set of all states of the automata and lg |S| is

the number of bits required to store one state of the automata.

The constant of 2 bits is the memory required for PHF. In the

implementation, next state is stored in the same memory line

as the validation information, therefore the computation of the

PHF, validation of the key and next state lookup can be done

with one memory access during one clock step.

IV. EXPERIMENTAL RESULTS

We evaluated our approach with the ruleset of Bro [20]

and Snort [21]. Our idea assumes that transition table of

the signatures is very sparse. Therefore the first experiment

we conducted was to confirm this assumption. Fig.2 shows

saturation histogram of the transition table of the DFAs for

every signature in the Bro ruleset. The number of DFA is

shown in logaritmic rate. The figure proves that most of the

signatures have very sparse transition table and therefore are

good candidates for our method. Fig.3 demonstrates saturation

histogram of transition table of Delayed DFA presented in the

[22]. It can be seen that transition table is less sparse than in

previous figure. It shows that the Delayed DFA is suitable for

much bigger automata than those in Bro ruleset.

 1

 10

 100

 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

N
u

m
b

e
r

o
f

D
F

A
s

Saturation of the transition table in %

Saturation of the Transition Table

Saturation of the DFA

Fig. 2. Saturation of Transition Table of DFA

 1

 10

 100

 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

N
u

m
b

e
r

o
f

D
D

F
A

s

Saturation of the transition table in %

Saturation of the Transition Table

Saturation of the DDFA

Fig. 3. Saturation of Transition Table of Delayed DFA

According to the presented histograms, more than 64% of

the rules lesser saturation of transition table than 20%. In

the successive experiments, we considered only the signatures

with transition table saturation less than 20 percent. Remaining

signatures should be implemented by another technique.

In the second experiment we focused on the memory

consumptions of the validation block in the DFAs for different

modules of modern intrusion detection systems. DFA was

built for every rule in the module and DFA with saturation

of transition table higher than 20 percent were removed.

Information-theoretic size of the validation structure was com-

puted according to the formula 1 and real memory required

for proposed structure was computed according to the for-

mula 3. Computation of combination number in formula 1

was problematic for some DFAs. In these problematic cases,

approximation according to formula 2 was used. The last step

consisted of the summarization of the results of all rules in

module. Results of this experiment for every module with

more than 30 signatures are presented in table I. The only

exception is Snort module web-active, which does not contain

any signature with saturation of transition table less than

20 percent. The Selected column informs how many percent

151

Module Selected States Transitions Theoretical
bound

Real
memory

Bro
ex.webrules

94% 2898 8055 62 kb 96 kb

Bro
Snort.default

68% 7232 19116 141 kb 233 kb

Snort back-
door

64% 3150 15415 90 kb 217 kb

Snort spy-
ware

18% 2637 12721 70 kb 168 kb

Snort
web.client

40% 199 898 6 kb 10 kb

Snort
web.misc

30% 212 1652 7 kb 20 kb

TABLE I

MEMORY REQUIREMENTS OF THE DFAS

regular expression of the module meet the saturation criteria.

Other columns contain number of states and transitions in all

automata in the module together with the sum of memory

requirements of all dfas.

V. CONCLUSIONS AND FUTURE RESEARCH

The analysis of DFA transition tables for signatures used

in intrusion detection systems is the main contribution of

this paper. We used ruleset of programs Snort and Bro. The

analysis shows that saturation of the transition tables changes

from very sparse tables to high dense tables but 64% of all

regular expression have DFA with saturation of the transition

table less than 20%. According to presented experiments,

multiple different algorithms have to be used to achieve

optimal memory requirements. Therefore we focused on reg-

ular expressions with sparse transition table and designed a

new architecture which is based on the perfect hashing. The

proposed architecture was able to represent sparse tables in

memory with capacity close to the theoretical minimal and

can be easily mapped into FPGA.

In future work, we will continue in analysis of regular

expressions. We want to analyse an influence of merging

regular expressions to transition table size and density. We

will also focus on multi-char automata in order to achieve

higher throughput. We have the intention to identify effective

implementation of multi-char automata with using alphabet

transformation.

Acknowledgements

This research was supported by the Research Plan No.

MSM, 0021630528 —Security-Oriented Research in Informa-

tion Technology, Research Plan No.MSM, 6383917201 and

the grant BUT FIT-S-10-1.

Authors wishes to thank Michela Becchi for the regular

expression parser used in this work.

REFERENCES

[1] T. Johnson, S. Muthukrishnan, and I. Rozenbaum, “Monitoring regular
expressions on out-of-order streams,” in Data Engineering, 2007. ICDE

2007. IEEE 23rd International Conference on, April 2007, pp. 1315–
1319.

[2] S. Kumar, B. Chandrasekaran, J. Turner, and G. Varghese, “Curing
Regular Expressions Matching Algorithms from Insomnia, Amnesia, and
Acalculia,” in ANCS ’07: Proceedings of the 3rd ACM/IEEE Symposium

on Architecture for networking and communications systems. New York,
NY, USA: ACM, 2007, pp. 155–164.

[3] S. Kumar, S. Dharmapurikar, F. Yu, P. Crowley, and J. Turner, “Al-
gorithms to Accelerate Multiple Regular Expressions Matching for
Deep Packet Inspection,” in SIGCOMM ’06: Proceedings of the 2006

conference on Applications, technologies, architectures, and protocols

for computer communications. New York, NY, USA: ACM, 2006, pp.
339–350.

[4] R. Sommer and V. Paxson, “Enhancing Byte-level Network Intrusion
Detection Signatures with Context,” in CCS ’03: Proceedings of the

10th ACM conference on Computer and communications security. New
York, NY, USA: ACM, 2003, pp. 262–271.

[5] F. Yu, R. H. Katz, and T. V. Lakshman, “Gigabit Rate Packet Pattern-
Matching Using TCAM,” in ICNP ’04: Proceedings of the 12th IEEE

International Conference on Network Protocols. Washington, DC,
USA: IEEE Computer Society, 2004, pp. 174–183.

[6] D. E. Knuth, J. James H. Morris, and V. R. Pratt, “Fast Pattern Matching
in Strings,” SIAM Journal on Computing, vol. 6, no. 2, pp. 323–350,
1977. [Online]. Available: http://link.aip.org/link/?SMJ/6/323/1

[7] C. R. Clark and D. E. Schimmel, “Scalable Pattern Matching for
High Speed Networks,” in FCCM ’04: Proceedings of the 12th Annual

IEEE Symposium on Field-Programmable Custom Computing Machines.
Washington, DC, USA: IEEE Computer Society, 2004, pp. 249–257.

[8] C. Shannon and D. Moore, “The Spread of the Witty Worm ,” IEEE

SECURITY and PRIVACY, vol. 2, no. 4, pp. 46–50, 2004.
[9] N. Tuck, T. Sherwood, B. Calder, and G. Varghese, “Deterministic

Memory-efficient String Matching Algorithms for Intrusion Detection,”
in In IEEE Infocom, Hong Kong, 2004, pp. 333–340.

[10] G. Navarro and M. Raffinot, “New Techniques for Regular Expression
Searching,” Algorithmica, vol. 41, no. 2, pp. 89–116, Nov. 2004.

[11] L. Tan, B. Brotherton, and T. Sherwood, “Bit-split String-matching
Engines for Intrusion Detection and Prevention,” ACM Trans. Archit.

Code Optim., vol. 3, no. 1, pp. 3–34, 2006.
[12] Z. J. Czech, G. Havas, and B. S. Majewski, “An Optimal Algorithm for

Generating Minimal Perfect Hash Functions,” Information Processing

Letters, vol. 43, pp. 257–264, 1992.
[13] F. C. Botelho, Y. Kohayakawa, and N. Ziviani, “A Practical Minimal

Perfect Hashing Method,” in In Proc. of the 4th International Workshop

on Efficient and Experimental Algorithms (WEA 05). Springer, 2005,
pp. 488–500.

[14] F. C. Botelho, R. Pagh, and N. Ziviani, “Simple and Space-efficient
Minimal Perfect Hash Functions,” in In Proc. of the 10th Intl. Workshop

on Data Structures and Algorithms. Springer LNCS, 2007, pp. 139–
150.

[15] S. Lefebvre and H. Hoppe, “Perfect Spatial Hashing,” in SIGGRAPH

’06: ACM SIGGRAPH 2006 Papers. New York, NY, USA: ACM,
2006, pp. 579–588.

[16] E. A. Fox, Q. F. Chen, and L. S. Heath, “A Faster Algorithm for Con-
structing Minimal Perfect Hash Functions,” in SIGIR ’92: Proceedings

of the 15th annual international ACM SIGIR conference on Research

and development in information retrieval. New York, NY, USA: ACM,
1992, pp. 266–273.

[17] Y. Lu, B. Prabhakar, and F. Bonomi, “Perfect Hashing for Network
Applications,” in in IEEE Symposium on Information Theory. IEEE
Press, 2006, pp. 2774–2778.

[18] D. Ficara, S. Giordano, G. Procissi, F. Vitucci, G. Antichi, and
A. Di Pietro, “An improved dfa for fast regular expression matching,”
SIGCOMM Comput. Commun. Rev., vol. 38, no. 5, pp. 29–40, 2008.

[19] A. Brodnik and J. I. Munro, “Membership in constant time and almost-
minimum space,” SIAM J. Comput., vol. 28, no. 5, pp. 1627–1640, 1999.

[20] V. Paxson, “Bro: a system for detecting network intruders in real time,”
in In Computer Networks, 1999.

[21] “Snort homepage.” [Online]. Available: www.snort.org
[22] M. Becchi and P. Crowley, “An improved algorithm to accelerate regular

expression evaluation,” in ANCS ’07: Proceedings of the 3rd ACM/IEEE

Symposium on Architecture for networking and communications systems.
New York, NY, USA: ACM, 2007, pp. 145–154.

152

