
Implementing the Local Binary Patterns with SIMD
Instructions of CPU

Roman Juránek, Pavel Zemčík, Adam Herout
{ijuranek,zemcik,herout}@fit.vutbr.cz

Graph@FIT
Department of Computer Graphics and Multimedia

Faculty of Information Technology
Brno University of Technology, Brno, Czech Republic

ABSTRACT

Usage of statistical classifiers, namely AdaBoost and its modifications, is very common in object detection and pattern recog-
nition. Performance of such classifiers strongly depends on low level features they use. This paper presents an experimental
implementation of the Local Binary Patterns (LBP) that uses SIMD instructions for acceleration. The experiments shows that
the proposed implementation is about six times faster than the plain C implementation (i.e. with no special optimizations) and
superior to optimized implementations of features with similar descriptive power.

Keywords: LBP, AdaBoost, Object Detection, Feature Extraction, SIMD, SSE, CUDA

1 INTRODUCTION
Object detection in images and video sequences has
wide range of applications. Several object detection
methods exist; however, one of the best available meth-
ods today is exploitation of statistical classifiers. The
statistical classifiers are able to distinguish an object
from non-object in a small window. To detect the object
in image data or video, it is necessary to scan the image
or video frame and apply the classifier to each possible
window location within the scanned image. The clas-
sifier works with low-level features extracted from the
classified image window. The features are usually sim-
ple functions of selected pixels from the window. The
design of the features significantly affects the perfor-
mance of the classifier and its speed and thus the speed
of detection.

The Local Binary Patterns (LBP) [7] discussed in this
paper are widely known to be good features to describe
local areas. They are frequently used in texture analysis
and segmentation. The recent studies show that they are
usable as features for classification as well.

In this paper, the high performance implementation
of LBP feature extraction is introduced. The imple-
mentation exploits the SIMD instructions (namely SSE)
available on contemporary CPUs. The implementation
is comparable with similar implementations of other
feature types – Local Rank Differences (LRD) [13] and
Local Rank Patterns (LRP) [6]. For the experiments

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice
and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

WaldBoost (a modification of AdaBoost [11]) training
algorithm [9] has been used.

2 RELATED WORK
The interest in fast feature extraction has been ear-
lier pursued by other researchers because the extraction
speed influences the overall performance of the object
detection. Efficient implementation is thus necessary
for practical applications of object detection.

Innovative approach that constituted a breakthrough
in real-time object detection was taken by Viola and
Jones [11]. They converted the input image into an inte-
gral representation which allows for calculation of Haar
features in constant time.

There has also been much effort to implement the Ad-
aBoost based object detection on hardware platforms
like FPGA or ASIC chips [12, 10, 5]. Typically they
use traditional Haar features. Recently there were pro-
posed implementations of object detection with Local
Rank Differences image features (LRD) on GPU [8]
and CUDA [2] which employs resources of modern
graphics cards to accelerate feature extraction. The dis-
advantage of this approaches is that they still need spe-
cial hardware.

In our previous work, we introduced high perfor-
mance implementation of the Local Rank Differences
[1] and Local Rank Patterns [4] image features. These
implementations exploited the SIMD instructions of In-
tel CPU. This work shares same framework with the
mentioned implementations of LRD and LRP.

3 LOCAL BINARY PATTERNS
Local Binary Patterns [7, 14], in their basic form, cap-
ture information about local textural structures through
thresholding samples from local neighborhood by its
central value. From the thresholded values a pattern



code is formed such that each sample is represented by
a single bit (Figure 1). The image pixels or response of
some sampling function can be used as the samples. In
many applications, circular neighborhood with 8 sam-
ples is used (8 bit pattern).

sampling samples threshold weights

7 4 2

10 8 5

13 12 10

0 0 0

1 1 1

1 0

LBP = 11110000b = 240

1 2 4

64 32 16

128 8

Figure 1: Evaluation of the LBP feature. First the sam-
ples are taken from the image. The values are then
thresholded by the central value.

In this form, the feature response is dependent on the
feature orientation. In some applications, such as tex-
ture classification or image segmentation, the rotational
invariance is needed. In this case, the feature response
is normalized (e.g. by bit shifting).

In our approach, the feature consists from 3× 3 reg-
ularly spaced rectangular samples. The classifier can
hold feature instances of different sizes. However, for
practical reasons the size of a sample is constrained to
maximum of 2× 2 pixels. And therefore four possible
samplings exist as shown in the Figure 2. This con-
straint, as we show in [4], does not introduce any re-
duction of classifier precision.

Figure 2: Possible configurations of LBP features.

4 LBP EVALUATION
The traditional way of the feature evaluation is to gather
samples from the input image and sequentially con-
struct the LBP code bit by bit. The evaluation in the
proposed implementation is optimal in two ways. First,
it minimizes number of memory accesses by using pre-
calculated image representation – interleaved convolu-
tion image [1, 4], which allows for fast retrieval of nec-
essary data. Second, the evaluation takes advantage of
the SIMD instructions by processing all values of the
feature in parallel manner.

4.1 The SSE Instruction Set
Before the actual implementation of the LBP feature
evaluation is described, let us briefly characterize the
SSE instruction set on Intel CPUs. Unlike classic x86
instructions where an operation is executed on one
piece of data at the time, the SSE set provides means to
execute one operation over multiple data (as shown in
the Figure 3). Therefore the main attribute of the SSE
instruction set is parallel processing of data.

A a1 a2 a3 a4

B b1 b2 b3 b4

A+B a1+b1 a2+b2 a3+b3 a4+b4

ADDPS

Figure 3: Operation of SSE instruction ADDPS. The A
and B are considered to be vectors of four float val-
ues.

The SSE set was introduced in 1999 as an exten-
sion to x86 and MMX instruction set. The instructions
works with 128 bit wide registers which can hold a vec-
tor of values (e.g. 4× 32 bit float, 16× 8 bit integer,
etc.).

4.2 Image Preprocessing
As was previously stated, in our approach we use rect-
angular samples as an input for feature evaluation. In
the preprocessing stage, images convolved with all pos-
sible shapes of samples are created. This images are
later used as source of samples. Four images are cre-
ated in our case as the size of the samples is restricted
to maximum of 2×2 pixels.

Every convolved image is arranged in a manner that
four consequent pixels in the memory (i.e. 32 bit word
as we use 8 bit images) correspond to 2× 2 adjacent
convolution responses. This memory layout requires
that each convolved image is logically divided into
blocks where each block contains sub-sampled image
convolved with same modulo position of convolution
kernel. Number of blocks is determined by w×h where
w and h is width and height of the convolution kernel.
This is schematically shown in Figure 4 where prepro-
cessing of image with 2× 1 pixel kernel is displayed
and two memory blocks are formed. Images prepro-
cessed with other kernels are created analogically. This
layout ensures that data for each feature are placed in
same block and can be obtained by two memory ac-
cesses.

0 1

2 3

0 1

2 3

Image Convolution Memory

0 1 2 301

2 3

32 bit

ro
w

b
lo

c
k

1 2 30

1 2 30

1 2 30

0 1

2 3

block 0

block 1

Figure 4: Preprocessing of image with 2×1 pixel ker-
nel.

Note that the feature evaluation itself is independent
on the choice of the convolution kernels. The rectan-
gular shape was selected because the implementation



of convolution and memory rearrangement can be very
highly optimized.

4.3 The Evaluation
The framework of evaluation of the features is dis-
played in the Figure 5. The input image is first pre-
processed – the convolution images are created. Each
feature is parametrized by a position in the image and
size of samples. The convolution image is selected ac-
cording to the size of samples and the block and ad-
dress within the block is determined from the feature
position.

Pre−calculated sampling function

P
k

P
k+1

P
k+2

P
k,0

P
k,1

P
k,2

Feature

32 bit word

convolve

evaluation
LBP

Input image

load data

Figure 5: Schematic view of the image preprocessing
and LBP evaluation. In this case a feature with 2× 2
pixel samples is used.

By loading eight 32 bit aligned pixels from two sub-
sequent rows of a convolution image (i.e. two 64 bit
reads), the 4×4 responses of the sampling function are
effectively loaded. The feature data is then located in a
3×3 sub-window of this data (feature shift). Note that
the feature evaluation code is independent on the size
of the feature as the data are loaded from precalculated
representations.

01

expand

comparison

data

mask

LBP=240

masking

sum

00 00 00

FF

00

FF

00

FF

00

FFFFFF

FF

00

FF

FF

and

>

02 04 00

80 00 08 00

40 20 10 00

00 00 00 00

00

00 00

00

00 00 00 00

00

center_value

00 00 00

06 01

0F0F0D

0A

0F0F0F

0C

00

0A

0F

0A 0A 0A 0A

0A 0A 0A 0A

0A 0A 0A 0A

0A 0A 0A 0A

00 00

0080

40 20 10

Figure 6: Block diagram of LBP evaluation.

Figure 6 shows the feature evaluation step by step.
The corresponding code is displayed in the Figure 7.
Every grid represents a 128 bit SIMD register holding
sixteen 8 bit values loaded from the pre-calculated sam-
pling function. First, the central value (defined by fea-
ture shift) is expanded to the full register width and

compared with all other values. The comparison re-
sult then serves as a mask for vector of weights (again
selected according to the feature shift). The masked
weights (i.e. weights for which the comparison resulted
in true) are then summed up producing the LBP value.
Note that, although the comparison can result in true on
positions that do not belong to the feature, this will not
influence the result as the weights are always zero for
them.

union {
__m128i q;
signed short ss[8];

} result = {
_mm_sad_epu8(
_mm_and_si128(
lbpWeights[shift].q,
_mm_cmpgt_epi8(
data,
_mm_set1_epi8(*center))),

zero)
};
int lbp = result.ss[4] + result.ss[0];

Figure 7: The actual evaluation code (with Intel intrin-
sic functions). The lbpWeight[shift] selects one
of four possible weight vectors, data is vector of the
data and center is the pointer to feature central value.

5 RESULTS
The experiments were conducted on a PC with Intel
Core i7 CPU (eight core), 4 GB DDR3 and CUDA ca-
pable ASUS NVidia ENGTX 280 graphics card.

The proposed implementation was compared to ex-
perimental implementation of LBP on CUDA architec-
ture [3] and to the implementation with no special op-
timizations (which we refer to as Plain C). And also
compared to implementations of the LRD and LRP ex-
tractors which shares same evaluation framework.

The implementations were tested on the task of mul-
tiscale face detection. In the first test, we compare
the real detection performance in terms of processed
frames per second on a long video (taken from public
TV broadcasting).

α = 0.1 560×240px 720×576px 1280×720px
SIMD 61/58/57 22/20/20 10/10/10
CUDA 88/73/69 68/56/54 27/24/23
Plain C 8/6.4/5.6 3.4/3.5/2.8 1.4/1.3/1.1

α = 0.2 560×240px 720×576px 1280×720px
SIMD 87/82/81 28/24/24 13/11/11
CUDA 115/91/89 82/63/61 31/27/26
Plain C 12/10.4/9.6 4.5/4/3.7 1.9/1.6/1.5

Table 1: Object detection performance in frames per
second on different architectures with usage of different
feature extractors. The values in the table are ordered
in following way: LBP/LRP/LRD.

Results in Table 1 display performance of process-
ing of three videos with different resolutions ranging



from low resolution to 720p HD video. Two classifiers
with different target error rate (α) were used. The ex-
periment shown that the SIMD implementation outper-
forms the Plain C. On the low resolutions the SIMD
almost reaches the performance of the multiprocessor
CUDA implementation athought on the high resolu-
tions the CUDA is almost three times faster.

560×240px 720×576px 1280×720px
SIMD 0.32 0.98 2.1
CUDA 0.29 0.43 0.82
Plain C 2.5 7.8 17.5

Table 2: Preprocessing performance [ms/frame]

The Table 2 shows comparison of preprocessing on
the three architectures. The preprocessing includes im-
age scaling to build image pyramid. Additionally, in the
SIMD implementation, each pyramid level is convolved
according to description in the Section 4.

6 CONCLUSION AND FUTURE
WORK

The goal of the work presented in this paper was to ef-
ficiently implement the Local Binary Patterns feature
extractor in the contemporary CPUs using the advanced
SIMD instructions. The goal was fulfilled and high per-
formance feature extractor was implemented and exper-
imentally evaluated.

The extractor needs preprocessing stage which pre-
pares convolution images with precalculated sampling
functions. In the evaluation stage, each feature needs
only two memory accesses to load necesarry data and
the data are then processed by SIMD instructions to cal-
culate the LBP feature response.

The results show that the SIMD extractor is faster
than the Plain C extractor by factor of 6.5 and almost
reaches to performance of implementation on CUDA
architecture. And the speed of LBP evaluation is com-
parable or better than evaluation of feature types as
LRD and LRP. Although the CUDA implementation
is faster, it needs special hardware which supports the
CUDA architecture. On the other hand, the SIMD
instructions are common in all contemporary CPUs
which makes the SIMD implementation suitable for
larger range of applications. Espetially for embeded
systems.

The future work includes optimization of feature
evaluation on bulk data, for example evaluation of
several independent features in parallel or simultaneous
evaluation of consequent features. The future work
also includes further dataflow optimizations.

ACKNOWLEDGEMENTS
This work was supported by Czech Ministry of Educa-
tion, Youth and Sports research project Center of Com-
puter Graphics (LC06008).

REFERENCES
[1] Adam Herout, Michal Hradiš, Roman Juránek, and Pavel

Zemčík. Implementation of the "local rank differences" image
feature using simd instructions of cpu. In Proceedings of Sixth
Indian Conference on Computer Vision, Graphics and Image
Processing, page 9, 2008.

[2] Adam Herout, Radovan Jošth, Pavel Zemčík, and Michal
Hradiš. Gp-gpu implementation of the "local rank differences"
image feature. In Proceedings of International Conference on
Computer Vision and Graphics 2008, Lecture Notes in Com-
puter Science, pages 1–11. Springer Verlag, 2008.

[3] Adam Herout, Radovan Jošth, Pavel Zemčík, and Michal
Hradiš. Gp-gpu implementation of the "local rank differences"
image feature. In Proceedings of International Conference on
Computer Vision and Graphics 2008, Lecture Notes in Com-
puter Science, pages 380–390. Springer Verlag, 2008.

[4] Adam Herout, Pavel Zemčík, Michal Hradiš, Roman Juránek,
Jiří Havel, Radovan Jošth, and Martin Žádník. Low-Level Image
Features for Real-Time Object Detection, page 25. IN-TECH
Education and Publishing, 2009.

[5] M. Hiromoto, K. Nakahara, H. Sugano, Y. Nakamura, and
R. Miyamoto. A specialized processor suitable for adaboost-
based detection with haar-like features. In Computer Vision
and Pattern Recognition, 2007. CVPR ’07. IEEE Conference
on, pages 1–8, June 2007.

[6] Michal Hradiš, Adam Herout, and Pavel Zemčík. Local rank
patterns - novel features for rapid object detection. In Pro-
ceedings of International Conference on Computer Vision and
Graphics 2008, Lecture Notes in Computer Science, pages 1–2,
2008.

[7] Timo Ojala, Matti Pietikäinen, and Topi Mäenpää. Multiresolu-
tion gray-scale and rotation invariant texture classification with
local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell.,
24(7):971–987, 2002.

[8] Lukáš Polok, Adam Herout, Pavel Zemčík, Michal Hradiš, Ro-
man Juránek, and Radovan Jošth. "local rank differences" im-
age feature implemented on gpu. In Proceedings of the 10th
International Conference on Advanced Concepts for Intelligent
Vision Systems, Lecture Notes In Computer Science; Vol. 5259,
pages 170–181. Springer Verlag, 2008.

[9] Jan Sochman and Jiri Matas. Waldboost – learning for time
constrained sequential detection. In CVPR ’05: Proceedings
of the 2005 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR’05) - Volume 2, pages
150–156, Washington, DC, USA, 2005. IEEE Computer Soci-
ety.

[10] T. Theocharides, N. Vijaykrishnan, and M.J. Irwin. A paral-
lel architecture for hardware face detection. In Emerging VLSI
Technologies and Architectures, 2006. IEEE Computer Society
Annual Symposium on, volume 00, pages 2 pp.–, March 2006.

[11] Paul Viola and Michael Jones. Rapid object detection using
a boosted cascade of simple features. Computer Vision and
Pattern Recognition, IEEE Computer Society Conference on,
1:511–I–518 vol.1, 2001.

[12] Yu Wei, Xiong Bing, and C. Chareonsak. Fpga implemen-
tation of adaboost algorithm for detection of face biometrics.
In Biomedical Circuits and Systems, 2004 IEEE International
Workshop on, pages S1/6–17–20, Dec. 2004.

[13] Pavel Zemčík, Michal Hradiš, and Adam Herout. Local rank
differences - novel features for image. In Proceedings of SCCG
2007, pages 1–12, 2007.

[14] Lun Zhang, Rufeng Chu, Shiming Xiang, ShengCai Liao, and
Stan Z. Li. Face detection based on multi-block lbp representa-
tion. In ICB, pages 11–18, 2007.


