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Abstract
Service-oriented architecture (SOA) is an architectural style for software systems’ design, which
merges well-established software engineering practices. There are several approaches to describe
systems and services in SOA, the services’ derivation, mutual cooperation to perform specific
tasks, composition, etc. In this article, we introduce a new approach to describe behaviour of
services in SOA, including behaviour of underlying systems of components, which form the ser-
vices’ implementation. The behavioural description uses the process algebra π-calculus and it is
demonstrated on a case study of a service-oriented architecture for functional testing of complex
safety-critical systems.

1. Introduction

Service-oriented architecture (SOA) is a well-es-
tablished architectural style for aligning busi-
ness and IT architectures. It is a complex solu-
tion for analysis, design, maintaining and inte-
gration of enterprise applications that are based
on services. It represents a model in which
functionality is decomposed into small, dis-
tinct units, “services”, which can be distributed
over a network and can be combined together
and reused to create business applications [10].
A system that applies SOA can be described at
three levels of abstraction: as a system of busi-
ness processes, services, and components.

At the first level, the system is described as a
hierarchically composed business process, where
each decomposable process (at each level of the
composition) represents a sequence of steps in
accordance with some business rules leading to
a business aim.

The business processes or their parts are
implemented by services, which are defined as

autonomous platform-independent entities en-
abling access to their capabilities via their inter-
faces. Business services encapsulate distinct sets
of business logic, utility services provide generic,
non-application specific and reusable functional-
ity, and controller services act as parent services
to service composition members and ensure their
assembly and coordination to the execution of
the overall business task [10].

Every service can be implemented as a com-
ponent-based system (CBS) with well-defined
structure and description of its evolution for
the benefit of the implementation. Then, com-
ponents are self contained entities, parts of
component-based systems accessible through
well-defined interfaces and interconnected and
communicating via bindings of these interfaces.
Primitive components are realised directly, be-
yond the scope of architecture description (they
are “black-boxes”), while composite components
are decomposable on systems of subcomponents
at the lower level of architecture description
(they are “grey-boxes”).
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1.1. Motivation

There are several approaches to describe infor-
mation systems and services in service-oriented
architecture [1, 19]. Those approaches cover the
whole development process from an analysis
where individual services are derived from user
requirements (usually represented by a system of
business processes) to an implementation, which
uses particular technologies implementing the
services (e.g. Web Services). During this process,
developers have to deal with description of a mu-
tual cooperation of services to perform specific
tasks, their composition, deployment, etc.

However, current approaches to service-ori-
ented architecture design usually end up at the
level of individual services. They do not de-
scribe underlying systems of components, which
form design of individual services as compo-
nent-based software systems with well-defined
interfaces and behaviour.

This article introduces a development pro-
cess which includes design of service-oriented
architecture as well as description of underly-
ing component-based systems. Structure of the
service-oriented architecture and the compo-
nent-based systems is depicted by UML-based
models in a logical view, while their behaviour
is formally described by means of process alge-
bra π-calculus in a process view, with a focus
on particular features such as dynamic recon-
figuration and component mobility1 in aspects
of SOA. The proposed development process is
illustrated on a case study of an environment
for functional testing of complex safety-critical
systems.

1.2. Structure of the Article

The remainder of this article is organised as fol-
lows. The case study is introduced in Section 2
and its design is described in more detail in Sec-
tion 2.1 as a service-oriented architecture and in
Section 2.2 as an underlying component-based
system.

In Section 3, we briefly describe the
π-calculus to provide formal basis, which is used
later for behavioural modelling of services in the
service-oriented architecture in Section 4 and
for behavioural modelling of components of the
component-based system in Section 5. In Sec-
tion 6, the formal description of behaviour of
the services and components is utilised for veri-
fication and model checking.

In Section 7, the proposed approach is dis-
cussed and briefly compared with current ap-
proaches relevant to our subject. To conclude,
in Section 8, we summarise the contribution of
this article and outline the future work.

2. Case Study

As a case study, we adopt specification of a SOA
for functional testing of complex safety-critical
systems, more specifically a testing environment
of a railway interlocking control system, which
has been described in [9]. The environment al-
lows to distribute and run specific tests over
a wide range of different testing environments,
varying in their logical position in the system’s
architecture.

The testing environment is described as a
composition of a tester and a set of external
system simulators. The external system simula-
tors totally or partially represent and simulate
a tested environment interacting with system
under testing (SUT), e.g. a behaviour of field
objects (points, track circuits, coloured signals,
etc.). The tester automatically executes specific
tests that are coded in test scripts and coor-
dinates the SUT via a man machine interface
(MMI) and the external system simulators. The
SUT is represented by the computer based con-
trol system (CBCS), running the control soft-
ware, interacting with operators by means of
theMMI and monitoring or controlling external
systems of rail yards by means of sensors or actu-
ators, which are accessible via external systems
interface. Each rail yard has its own instance

1 The dynamic reconfiguration represents creation, destruction and updating of components and their intercon-
nections during the systems’ run-time, while the component mobility allows creation of copies of components and
changes of their context.
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Figure 1. Services of the testing environment and their interfaces (for notation, see [19])
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Figure 2. The choreography of services in the testing environment

of the testing environment with specific sensors
and actuators where assigned tests are automat-
ically executed. For detailed description, see [9].

To implement a system for distribution and
execution of the tests over various instances of
the testing environments, [9] proposes to use
SOA. The system consists of a test manager,
which is able to receive a test script and exe-
cute it in an instance of the testing environment.
Available testing environments are registered by
a broker and provided to the test manager at its
request.

2.1. Service Identification

From the description of the testing environ-
ment and the system’s architecture, the follow-
ing tasks can be identified as invocations of
services: “Submit Test”, “Execute Test”, “Log
Results”, “Read Log”, “Publish Environment”,
and “Find Environment”. The tasks can be im-
plemented by the following business (entity) ser-
vices, as it is described in Figure 1: TestMan-

ager, TestEnvironment, TestEnvironmentBroker,
and TestLogger.

At first, service TestManager receives a test
script from a tester via its interface Sub-
mitTest. Then, it calls FindEnvironment of
service TestEnvironmentBroker to search for
a testing environment that would be suit-
able for the test script. The broker, which
has previously accepted a registration request
from a specific service TestEnvironment via its
interface PublishEnvironment, provides Test-
Manager with a reference to the registered
service as a return value of the call of
FindEnvironment.

After that, service TestManager passes the
test script to the referred service TestEnviron-
ment via its interface ExecuteTest. When the test
script is finished, service TestEnvironment for-
wards its results back to service TestManager,
which logs the results via LogResults of service
TestLogger. Those results can be viewed later
via ReadLog, which is provided by service Test-
Logger to the tester.



74 Marek Rychlý

< < service> >
TestManager

< < service> >
TestEnvironment

< < service> >
TestEnvironmentBroker

< < service> >
TestLogger

< < syncCall> >  + testSubmission(spec : string) : int

< < Interface> >
SubmitTest

< < syncCall> >  + readLog() : string

< < Interface> >
ReadLog

< < syncCall> >  + logResults(results : string, testID : int) : void

< < Interface> >
LogResults

< < asyncCall> >  + executeTest(spec : string) : int

< < Interface> >
ExecuteTest

< < syncCall> >  + searchForService(name : string) : string

< < Interface> >
FindEnvironment

< < syncCall> >  + publishService(uri : string) : void

< < Interface> >
PublishEnvironment

< < syncCall> >  + asyncReply(results : string, requestID : int) : void

< < Interface> >
AsyncReplyET

< < use> >

< < use> >

< < use> >

< < use> > < < use> >

Figure 3. Services of the testing environment as UML classes

Figure 2 shows a choreography of the ser-
vices as an UML sequence diagram. Detailed
description of the services as classes and their
interfaces with relevant stereotypes is described
in the UML class diagram in Figure 3. Service
TestEnvironment is invoked asynchronously via
ExecuteTest, i.e. a reply corresponding to the
request will be returned later via the service’s
interface AsyncReplyET.

2.2. Component-Based System

Railway interlocking control systems are
safety-critical systems and can be described as
component-based systems [3]. A testing environ-
ment of such systems has to interact with the
systems’ components, as it is described in Sec-
tion 2. For that reason, a part of the testing envi-
ronment, which is directly connected to a system
under testing (via the external systems simula-
tors), has character of a component neighbour-
ing to the system and can be described as CBS.

Figure 4 describes composite compo-
nent testEnvironment, which represents service
TestEnvironment from Section 2.1. The used no-
tation is based on our component model [17, 18]
(it is not standard UML), whose detailed de-
scription is out of the scope of this article.
However, in this section, we try to outline the
main ideas and informally describe structure of
the composite component and behaviour of its
subcomponents controller, environment, test and
output.

Component testEnvironment receives a test
script via provided interface executeTest, which
is internally processed by component controller.
The script is represented by a fresh component,
which does required testing after binding of its
interfaces to component environment.

At first, component controller attaches the
new component as a subcomponent test of com-
ponent testEnvironment via its control interface
teAttachP. Then, it binds interfaces tInteract
and tResult of the new component to interface
eInteract of component environment and inter-
face oResult of component output, respectively.
Finally, component test is activated via inter-
face startTestP and executed with a new iden-
tifier via interface executeWithID. The identifier
is also returned by component testEnvironment
as a reply of the test script’s submission.

Component test performs the test script by
interacting with component environment via its
interface eInteract. When the test script is fin-
ished, component test sends the test’s results
and its identifier to component output via its
interface oResult. Then, component output no-
tifies component controller via its interface cDone
and forwards the results and the identifier out of
the component testEnvironment via its external
interface asyncReplyET.

After component controller is notified about
the finished test script, it is able to receive and
execute another test script, i.e. to attach a new
component in the place of component test. Be-
fore that, component test with the old script is
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< < component> >
testEnvironment

< < component> >
controller

< < component> >
test

< < component> >
environment

< < component> >
output

executeWithID
exec : Operat ion

startTestP
: CtrlStart

detachTestP/ R

: CtrlDetach

: CtrlDetach

stopTestP/ R

: CtrlStop

: CtrlStop

provRefOResP/ R

: CtrlRefProvInterface

: CtrlRefProvInterface

teAttachP/ R

: CtrlAttach

: CtrlAttach

done : Operat ion

cDone oDone teReply oReply

rep : Operat ion

res : Operat ion

oResult
bindTResP

: CtrlBindReqInterface

: CtrlRefProvInterface

teExecTestP/ R

tResult

bindTIntP

tInteract

provRefEIntP/ R

eInteract

: CtrlRefProvInterface

int : Operat ion
res : Operat ion

: CtrlBindReqInterface

int : Operat ion

done : Operat ion
: RefToComponent

rep : Operat ion: RefToComponent

asyncReplyETexecuteTest

Figure 4. Composite component TestEnvironment (a specific UML-like notation)

stopped via interface stopTestP and detached
via control interface detachTestP2.

3. Formal Basis for Behavioural
Modelling

To describe services in SOA and CBS in for-
mal way, we use the process algebra π-calculus,
known also as a calculus of mobile processes
[16]. It allows modelling of systems with dy-
namic communication structures (i.e. mobile
processes) by means of two concepts: processes
and names. The processes are active com-
municating entities, primitive or expressed in
π-calculus, while the names are anything else,
e.g. communication links (known as “ports”),
variables, constants (data), etc. Processes use
names (as communication links) to interact, and
they pass names (as variables, constants, and
communication links) to another processes by
mentioning them in the interactions. Names re-
ceived by a process can be used and mentioned
by it in further interactions (as communication
links). For description of our approach in this
article, we suppose basic knowledge of the fun-

damentals of the π-calculus, a theory of mobile
processes, according to [20]:
– x〈y〉.P is an output prefix that can send

name y via name x (i.e. via the communi-
cation link x) and continue as process P ;

– x(z).P is an input prefix that can receive any
name via name x and continue as process P
with the received name substituted for every
free occurrence of name z in the process;

– P + P ′ is a sum of capabilities of P together
with capabilities of P ′ processes, it proceeds
as either process P or process P ′, i.e. when
a sum exercises one of its capabilities, the
others are rendered void;

– P | P ′ is a composition of processes P and P ′,
which can proceed independently and can in-
teract via shared names;

–
∏m

i=1 Pi = P1 | P2 | . . . | Pm is a multi-com-
position of processes P1, . . . , Pm, for m ≥ 3,
which can proceed independently interacting
via shared names;

– (z)P is a restriction of the scope3 of name z
in process P ;

– (x̃)P =(x1, x2, . . . , xn)P =(x1)(x2) . . . (xn)P
is a multi-restriction of the scope of names
x1, . . . , xn to process P , for n ≥ 2,

2 In the diagram in Figure 4, only these two interfaces of test are connected with controller, because the rest of the
test’s interfaces are used only during its nesting and their connections do not exist outside of controller component.

3 The scope of a restriction may change as a result of interaction between processes.
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– !P is a replication that means an infinite composition of processes P or, equivalently, a process
satisfying the equation !P = P | !P .
The π-calculus processes can be parametrised. A parametrised process, referred as an abstrac-

tion, is an expression of form (x).P .
When abstraction (x).P is applied to argument y it yields process P {y/x}, i.e. process P with

y substituted for every free occurrence of x. Application is a destructor of the abstraction. We can
define two types of application: pseudo-application and constant application.

Pseudo-application F 〈y〉 of abstraction F
def
= (x).P is an abbreviation of substitution P {y/x}.

On the contrary, the constant application is a real syntactic construct, which allows to reduce a form
of process Kbyc, sometimes referred as an instance of process constant K, according to a recursive
definition of process constant K ∆= (x).P . The result of the reduction yields process P {y/x}.

4. Behavioural Modelling of Services

In this section, we describe behaviour of the services in the testing environment. Behaviour of
services TestManager, TestEnvironmentBroker, TestEnvironment, and TestLogger can be described
by means of π-calculus process abstractions TM , TEB, TE, and TL, respectively. These pro-
cess abstractions use names st, pe, fe, et, ar, lr, and rl as representations of the services’ inter-
faces SubmitTest, PublishEnvironment, FindEnvironment, ExecuteTest, AsyncReplyET, LogResults,
and ReadLog, respectively.

According to the description of TestEnvironment in Section 2.1, process abstraction TM de-
scribing behaviour of service TestManager is defined as follows:

TM
def
= (st, fe, lr).(s)(TMstbst, fe, sc | TMarblr, sc)

TMst
∆= (st, fe, s).st(test, ret).(r, r′)

(fe〈r〉.r(et′, ar′).et′〈test, r′〉.(r′(id).ret〈id〉 | s〈ar′〉 | TMstbst, fe, sc))

TMar
∆= (lr, s).s(ar′)ar′(res, id).lr〈res, id〉 | TMarblr, sc

where st, fe, and lr are names representing the service’s interfaces and subsequently processed by
constant applications of TMst and TMar.

Constant application TMstbst, fe, sc receives a pair of names (test, ret) from a client via name
st. In the pair, name test represents a submitted test script and name ret will be used later to
send a return value to the client. Then, a request for a testing environment is sent via name fe
and the environment as a reply is received via name r. Name et′, which represents an interface
ExecuteTest of the environment, is used to send test. Name id, which is received as a return value,
is forwarded to the client, while name ar′ is sent via shared name s into process constant TMar.
Constant application TMarblr, sc receives name ar′ via shared name s. After the test script is
finished, name ar′ is used to receive the test’s result res and its id. These names, as a pair (res, id),
are immediately sent via name lr.

Process abstraction TEB, which describes behaviour of service TestEnvironmentBroker, is de-
fined as follows:

TEB
def
= (pe, fe).(q)(TEBpubbq, pec | TEBfindbq, fe, pec)

TEBpub
∆= (t, pe).pe(i, d).(t′)(t〈t′, i, d〉 | TEBpubbt′, pec)
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TEBfind
∆= (h, fe, pe).h(h′, i, d).(TEBfindbh′, fe, pec | (fe〈i〉.pe〈i, d〉 + d))

where pe and fe are names representing the service’s interfaces PublishEnvironment and FindEn-
vironment, respectively, and subsequently processed by the constant applications of TEBpub and
TEBfind. By the composition of their constant applications with shared name q, process abstrac-
tion TEB implements basic operations on a simple queue (i.e. a First-In-First-Out (FIFO) data
structure).

The application of process constant TEBpub receives a pair of names (i, d) via name pe and cre-
ates a new name t′. Then, it proceeds as a composition of a constant application of TEBpubbt′, pec,
which handles future requests, and process t〈t′, i, d〉, which enqueues the received pair (i, d) by
sending them via name t, which is the current tail of the queue, together with name t′, a new tail
of the queue used in the future requests.

The application of process constant TEBfind dequeues a front item of the queue as a triple
of names (h′, i, d) via name h, which is the current head of the queue. Then, it proceeds as a
composition of a constant application of TEBfindbh′, fe, pec, which handles future requests, and
a sum of capabilities of process fe〈i〉.pe〈i, d〉, which provides name i as an interface for potential
service requesters and enqueues it back to the queue via name pe, and process d, which, after
receiving a name via name d, allows to remove the interface and does not provide it to potential
service requesters any more.

Behaviour of service TestEnvironment is described as process abstraction TE and defined as
follows:

TE
def
= (et, ar, pe).TEinit〈et, ar, pe〉.TEimpl〈et, ar〉

TEinit
def
= (et, ar, pe).pe〈et, ar〉

TEimpl
def
= (et, ar).(s0, s1, ar

s, etg)
(ars〈ar〉 | (d, t)(etg〈t〉.t(p).Wirebet, p, dc) | TEcomp〈s0, s1, et

g, ars〉)
where et, ar, and pe are names representing the service’s interfaces ExecuteTest, AsyncReplyET, and
PublishEnvironment, respectively. Initialisation of the service is described as process abstraction
TEinit, which sends the service’s interfaces represented by names et and ar via name pe (i.e.
publishes the corresponding interfaces via interface PublishEnvironment). After the initialisation,
names et and ar are processed by pseudo-application TEimpl〈et, ar〉, which describes behaviour of
a component-based system implementing the service (service TestEnvironment is implemented as
the component-based system, see Section 2.2). Process abstraction TEcomp will be described later,
in Section 5.

Finally, process abstraction TL, which describes behaviour of service TestLogger, is defined as
follows:

TL
def
= (lr, rl).(s)(TLlrblr, sc | TLrlbrl, sc)

TLlr
∆= (lr, t).lr(res, id).(t′)(t〈t′, res, id〉 | TLlrblr, t′c)

TLrl
∆= (rl, h).h(h′, res, id).rl(ret).ret〈res, id〉.TLrlbrl, h′c

where lr and rl are names representing the service’s interfaces LogResults and ReadLog, respectively,
and subsequently processed by the applications of process constants TLlr and TLrl. The process
abstraction TL uses an internal queue to store log results. The queue is accessed in process constants
TLlr and TLrl via name h for a head of the queue and name t for a tail of the queue, respectively.
At the beginning, h and t are identical to name s in process abstraction TL.
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Constant application TLlrblr, tc receives a pair of names (res, id) via name lr, which will be
added into the internal queue. It creates name t′ (as a new tail of the queue) and sends via t′

the pair of names (res, id) and name t (an original tail of the queue). Concurrently, the process
proceeds as the application of process constant TLlr with name t′ (the new tail of the queue).

Constant application TLrlbrl, hc receives a first queued item via name h (from a head of the
queue). This item contains a pair of names (res, id) and name h′ (a new head of the queue). After
the pair of names (res, id) is requested via name rl, it is sent via name ret as a reply and the
process proceeds as the application of process constant TLrl with name h′ (the new head of the
queue).

Behaviour of the whole system of the interconnected services can be described as process ab-
straction System, which provides names st and rl representing interfaces SubmitTest and ReadLog,
respectively, and which is defined as follows:

System
def
= (st, rl).(et, ar, lr, pe, fe)

(TM〈st, fe, lr〉 | TE〈et, ar, pe〉 | TL〈lr, rl〉 | TEB〈pe, fe〉)

5. Behavioural Modelling of the Component-Based System

All processes, which represent behavioural descriptions of individual services, have been described
completely, except for process abstraction TE of service TestEnvironment implemented as a compo-
nent-based system with behaviour described by pseudo-application TEcomp〈s0, s1, ar

s, etg〉. In this
section, we describe behaviour of primitive components controller, environment, test, and output, as
process abstractions Ctr, Env, Test, and Out, respectively, and their parent composite component
testEnvironment, as process abstraction TEcomp.

5.1. Core Behaviour of Primitive Components

Core behaviour of primitive components output and controller can be defined as process abstractions
Outcore and Ctrcore, respectively, as follows:

Outcore
def
= (poResult, roDone, roReply).Out′corebpoResult, roDone, roReplyc

Out′core
∆= (poResult, roDone, roReply).poResult(res, id).roDone〈id〉.

(roReply〈res, id〉 | Out′corebpoResult, roDone, roReplyc)

Ctrcore
def
= (pcDone, pteExecTest, rteAttach, rdetachTest, rstopTest, rprovRefEInt,

rprovRefORes).Ctr′corebpcDone, pteExecTest,

rteAttach, rdetachTest, rstopTest, rprovRefEInt, rprovRefOResc

Ctr′core
∆= (pcDone, pteExecTest, rteAttach, rdetachTest, rstopTest, rprovRefEInt,

rprovRefORes).pteExecTest(ts, ret).ts(r′stopTest, r
′
startTest, r

′, p′).
rstopTest.rdetachTest.rteAttach〈r′stopTest, r

′
startTest, rdetachTest〉.

r′(p′bindTInt, p
′
bindTRes).p

′(p′provRefExecuteWithID).(ret′)(

rprovRefEInt〈ret′〉.ret′(eInteract).p′bindTInt〈eInteract〉.
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rprovRefORes〈ret′〉.ret′(oResult).p′bindTRes〈oResult〉.

p′provRefExecuteWithID〈ret
′〉.ret′(p′executeWithID).r′startTest.

((id)ret〈id〉.p′executeWithID〈id〉.id | pcDone(id′).id′.
Ctr′corebpcDone, pteExecTest, rteAttach, rdetachTest,

r′stopTest, rprovRefEInt, rprovRefOResc))
where the components’ provided or required interfaces are represented by names p... or r..., respec-
tively, without the last character (. . . P/R, see Figure 4).

Process abstraction Outcore is defined as the constant application of Out′core. It receives a pair
of names (res, id) via name poResult representing interface oResultP. Then, id is sent via name
roDone (interface oDoneR) and (res, id) is forwarded via name roReply (interface oReplyR) out of the
composite component.

Process constant Ctr′core, which is applied by process abstraction Ctrcore, receives a pair of
names (ts, ret) via name pteExecTest. Moreover, via name ts, the constant receives also names
r′stopTest, r

′
startTest, c, and indirectly also names p′bindTInt, p

′
bindTRes, and p′provRefExecuteWithID,

which represent interfaces of a new component compatible with component test and implementing
a test script. Name ret will be used later to send an identifier of the test’s results as a return value.
Then, a process of an old component test is deactivated and detached by means of names rstopTest

and rdetachTest. A process, which describes behaviour of the new component (i.e. the actual test
script), is attached via name rteAttach as a subcomponent, bound via names p′bindTInt and p′bindTRes,
activated via name r′startTest, and finally, it is executed via name p′executeWithID with a new name
id (the identifier). Processing of Ctr′core continues after the identical id is received via name pcDone,
i.e. the test script is finished and its results forwarded outside.

Core behaviour of components environment and test depends on a specific implementation of the
testing environment and on a specific test script. However, for demonstrating purposes, we define
process abstractions Envcore and Testcore:

Envcore
def
= (peInteract).Env′corebpeInteractc

Env′core
∆= (peInteract).peInteract(ret).((val)ret〈val〉 | Env′corebpeInteractc)

Testcore
def
= (pexecuteWithID, rtInteract, rtResult).pexecuteWithID(id).

(ret)(rtInteract〈ret〉.ret(val).rtResult〈val, id〉)
Process constant Env′core receives a request from a test script via name peInteract and returns a

new name val as a reply. Process abstraction Testcore receives identifier id via name pexecuteWithID,
sends a request to a process representing behaviour of a test environment via name rtInteract,
receives a reply and forwards it as the test’s results together with id via name rtResult.

5.2. Behaviour of a Composite Component

To assemble (sub)components into a composite component, we need to implement control actions.
Components, primitive or composite, provide control interfaces for referencing their provided func-
tional interfaces, binding their required functional interfaces (to the referred provided interfaces),
and controlling their life-cycle (to start and stop the components). Moreover, each composite com-
ponent provides its subcomponents with (internal) control interfaces for attaching and detaching
other subcomponents, exporting their functional interfaces as the composite component’s (external)
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functional interfaces, and importing the composite component’s (external) functional interfaces to
its subcomponents.

Behaviour associated with those control actions can be described in π-calculus. At first, let us
define an auxiliary constant application Wirebx, y, dc, which can receive a message via name x (an
input) and send it via name y (an output) repeatedly till it receives a message via name d (i.e.
disable processing). Then, let us assume that CtrlIfs〈r1, . . . , rn, p

s
1, . . . , p

s
n, p1, . . . , pm, p

g
1, . . . , p

g
m〉

represents behaviour, which is associated with binding of interfaces represented by names r1, . . . , rn
via control interfaces represented by names ps

1, . . . , p
s
n and referencing of interfaces represented by

p1, . . . , pm via control interfaces represented by pg
1, . . . , p

g
m.

Wire
∆= (x, y, d).(x(m).y〈m〉.Wirebx, y, dc + d)

SetIf
∆= (r, s, d).s(p).(d.Wirebr, p, dc | SetIfbr, s, dc)

GetIf
def
= (p, g).g(r).r〈p〉

Plug
def
= (d).d

CtrlIfs
def
= (r1, . . . , rn, p

s
1, . . . , p

s
n, p1, . . . , pm, p

g
1, . . . , p

g
m).

(
n∏

i=1

(rd
i )(Plug〈rd

i 〉 | SetIfbri, ps
i , r

d
i c) |

m∏
j=1

!GetIf〈pj , p
g
j 〉)

Moreover, let us assume that CtrlEI〈r1, . . . , rn, p1, . . . , pm, r
′
1, . . . , r

′
m, p

′
1, . . . , p

′
n〉 represents be-

haviour of interconnections between external required and provided interfaces represented by names
r1, . . . , rn and p1, . . . , pm and internal provided and required interfaces represented by names
p′1, . . . , p

′
n and r′1, . . . , r

′
m, respectively.

CtrlEI
def
= (r1, . . . , rn, p1, . . . , pm, r

′
1, . . . , r

′
m, p

′
1, . . . , p

′
n).

n∏
i=1

(d)Wirebri, p′i, dc |
m∏

j=1

(d)Wirebr′j , pj , dc

Finally, let us assume that CtrlSS〈s0, s1, a〉 represents behaviour, which is associated with a
component’s life-cycle (s0 for stopping and s1 for starting the component) and attaching new
subcomponents (via a).

Dist
∆= (p,m, r).(p〈m〉.Distbp,m, rc + r)

Life
∆= (sx, sy, px, py).sx(m).(r)(Distbpx,m, rc | r.Lifebsy, sx, py, pxc)

Attach
def
= (a, p0, p1).a(c0, c1, cd)(d)

(cd(m).d〈m〉.d〈m〉 | Wirebp0, c0, dc | Wirebp1, c1, dc)

CtrlSS
def
= (s0, s1, a).(p0, p1)(Lifebs1, s0, p1, p0c | !Attach〈a, p0, p1〉)

With the above mentioned process abstractions and constants, behaviour of components output,
environment, and test including their control parts can be defined as process abstractions Out, Env,
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and Test, respectively:

Out
def
= (s0, s1, p

g
oResult, p

s
oDone, p

s
oReply).(poResult, roDone, roReply)

(CtrlIfs〈poResult, p
g
oResult〉 | CtrlIfs〈roDone, p

s
oDone〉

| CtrlIfs〈roReply, p
s
oReply〉 | Outcore〈poResult, roDone, roReply〉)

Env
def
= (s0, s1, p

g
eInteract).(peInteract)

(CtrlIfs〈peInteract, p
g
eInteract〉 | Envcore〈peInteract〉)

Test
def
= (s0, s1, p

g
executeWithID, p

s
tInteract, p

s
tResult).

(pexecuteWithID, rtInteract, rtResult)(CtrlIfs〈rtInteract, p
s
tInteract〉

| CtrlIfs〈pexecuteWithID, p
g
executeWithID〉 | CtrlIfs〈rtResult, p

s
tResult〉

| Testcore〈pexecuteWithID, rtInteract, rtResult〉)
Behaviour of component controller is defined as process abstraction Ctr with free names rteAttach,

rdetachTest, rstopTest, rprovRefEInt and rprovRefORes representing required control interfaces of other
components:

Ctr
def
= (s0, s1, p

g
cDone, p

g
teExecTest,

rteAttach, rdetachTest, rstopTest, rprovRefEInt, rprovRefORes).
(pcDone, pteExecTest)(CtrlIfs〈pcDone, p

g
cDone〉

| CtrlIfs〈pteExecTest, p
g
teExecTest〉 | Ctrcore〈pcDone, pteExecTest,

rteAttach, rdetachTest, rstopTest, rprovRefEInt, rprovRefORes〉)
Behaviour of composite component testEnvironemt, i.e. the implementation of the core of service

TestEnvironment, is described as process abstraction TEcomp:

TEcomp
def
= (s0, s1, p

g
executeTest, p

s
asyncRepltET ).(pexecuteTest, rteExecTest,

ps
teExecTest, rasyncRepltET , pteReply, p

g
teReply, pteAttach)

(CtrlIfs〈pexecuteTest, p
g
executeTest〉 | CtrlIfs〈rteExecTest, p

s
teExecTest〉

| CtrlIfs〈rasyncRepltET , p
s
asyncRepltET 〉 | CtrlIfs〈pteReply, p

g
teReply〉

| CtrlEI〈pexecuteTest, rteExecTest〉 | CtrlEI〈pteReply, rasyncRepltET 〉
| CtrlSS〈s0, s1, pteAttach〉 | TE′comp〈pteAttach, p

s
teExecTest, p

g
teReply〉)

TE′comp
def
= (pteAttach, p

s
teExecTest, p

g
teReply).(s

ctr
0 , sctr

1 , sout
0 , sout

1 , senv
0 , senv

1 ,

pg
cDone, p

g
eInteract, p

g
oResult, p

g
teExecTest, p

s
oDone, p

s
oReply,

rdetachTest, rprovRefEInt, rprovRefORes, rstopTest, rteAttach)
(Ctr〈sctr

0 , sctr
1 , pg

cDone, p
g
teExecTest, rteAttach, rdetachTest, rstopTest,

rprovRefEInt, rprovRefORes〉 | Env〈senv
0 , senv

1 , pg
eInteract〉

| Out〈sout
0 , sout

1 , pg
oResult, p

s
oDone, p

s
oReply〉 | (d)pteAttach〈sctr

0 , sctr
1 , d〉

| (d)pteAttach〈sout
0 , sout

1 , d〉 | (d)pteAttach〈senv
0 , senv

1 , d〉
| Testplug〈rdetachTest, rstopTest〉 | (d)WirebrprovRefEInt, p

g
eInteract, dc
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| (d)WirebrprovRefORes, p
g
oResult, dc | (d)WirebrteAttach, pteAttach, dc

| (ret)(pg
teExecTest〈ret〉.ret(pteExecTest).ps

teExecTest〈pteExecTest〉)

| (ret)(pg
teReply〈ret〉.ret(pteReply).ps

oReply〈pteReply〉)

| (ret)(pg
cDone〈ret〉.ret(pcDone).ps

oDone〈pcDone〉) )

Testplug
def
= (rdetachTest, rstopTest).(rdetachTest | rstopTest)

Process abstraction TE′comp, which is applied
in process abstraction TEcomp, creates concur-
rent processes given by pseudo-applications of
Ctr, Out, and Env and sends their names s...

0

and s...
1 via name pteAttach, i.e. attaches compo-

nents controller, output, and environment, respec-
tively, as subcomponents of component testEn-
vironment. It also interconnects names repre-
senting required and provided control interfaces
of the components by means of three constant
applications of Wire. Concurrently with the
previous step, TE′comp applies process abstrac-
tion Testplug and binds name pteExecTest of the
pseudo-application of Ctr to name rteExecTest

of the pseudo-application of TEcomp, name
pcDone of Ctr to name rcDone of Out, and
name pteReply of TEcomp to name rteReply of
Out. The pseudo-application of process ab-
straction Testplug handles requests initiated by
the pseudo-application of Ctr and received by
names rstopTest and rdetachTest to stop and to de-
tach a process representing behaviour of a pre-
vious but non-existent component with a test
script (e.g. a non-existent predecessor of com-
ponent test).

6. System Properties and Their
Verification

Formally described behaviour of services and
components allow us to make simulations of the
behaviour, to detect deadlocks, and to check
strong and weak open bisimulation equivalences
between behaviours of different services and
components. This can be useful, especially to
check the test scripts, which are processed by the
tester, and to control the tester’s behaviour and

communication with other parts of the environ-
ment and with SUT (see Section 2). The wrong
behaviour or the erroneous communication can
cause the tests to fail and, moreover, may block
future requests to the testing environment.

The behaviour formally described in the pre-
vious sections can be used for verification and
model checking by means of external verifi-
cation tools such as The Mobility Workbench
(MWB, [21]) and Another/Advanced Bisimu-
lation Checker (ABC, [4]). The utilisation is
demonstrated by examples of interactive simu-
lation in Section 6.1, finding deadlocks in Sec-
tion 6.2, bisimulation checking in Section 6.3,
and model checking in Section 6.4.

6.1. Simulation

To simulate behaviour of the system from the
case study, which has been described by means
of process abstraction System from Section 4,
we need to submit a sample test to the system,
wait for its processing and finally, receive its re-
sults. Therefore, agent Tester is defined as fol-
lows:

agent Tester = (^s0,s1,pgexecuteWithID,pstInteract,
pstResult,rl,st) (

Test(s0,s1,pgexecuteWithID,pstInteract,pstResult)
| System(st,rl) | (^ts,ret,r,p) ’st<ts,ret>

. ’ts<s0,s1,r,p> . ’r<pstInteract,pstResult>

. ’p<pgexecuteWithID> . ret(id1)

. (^r2) ’rl<r2> . r2(res,id2) . 0 )

Agent Tester is a composition of the appli-
cations of agents Test and System, and an aux-
iliary π-calculus process (after the last compo-
sition operator). Agents Test and System repre-
sent process abstraction System from Section 4
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and process abstraction Test from Section 5.2,
respectively, with their notations adapted to
MWB and ABC.

The auxiliary process submits all names of
the application of agent Test (i.e. names s0,
s1, pgexecuteWithID, pstInteract and pstRe-
sult) indirectly via name st to the application
of agent System and receives name id1 as a re-
ply via name ret. Then, it waits for results of a
test performed by the application of agent Test,
which can be received via name rl of the appli-
cation of agent System.

Behaviour of agent Tester can be interac-
tively simulated in MWB by means of com-
mand “step Tester”. However, the simulation is
not transparent but demanding because of large
amount of possible internal (silent) actions.

6.2. Deadlocks

A deadlock occurs in a π-calculus process iff the
process can not perform any reduction step, i.e.
the process is not responding to any action on
its free names (see Section 3).

To permit concurrent processing of multi-
ple requests, process abstractions and constants
TMst, TMar, TEBpub, TEBfind, TLlr TLrl,
Out′core, and Env′core, from Sections 4 and 5
use unguarded or weakly guarded recursions (i.e.
guarded by unobservable prefix τ). These pro-
cesses, as separate units, do not come to dead-
locks, because each of them can always perform
at least one reduction step4.

Agents representing the processes from the
case study have been checked for deadlocks,
by means of command “deadlocks” in MWB.
In some cases, the deadlock-checking can not
be finished due to the unguarded or weakly
guarded recursions (only guarded recursions are
handled correctly). However, the deadlocks have
been found in agents TestCore, TestPlug, Wire,
Dist, TE2comp, and TEimpl.

Agents TestCore, TestPlug, Wire, and Dist
have deadlocks in process 0, which is reachable
by 1, 4, 2, and 1 commitments, respectively.

These deadlocks are desired, since the agents
represent process abstractions Testcore (see Sec-
tion 5.1) and process abstractions and constants
testplug, Wire and Dist (see Section 5.2), which
describe finite behaviour and can be reduced to
process 0 by input, output, and τ actions on
their free names.

Process abstraction Testcore describes be-
haviour of a core functionality of component
test, which implements a test script. The be-
haviour is finished after the test script is per-
formed, so Testcore is reduced to process 0.
Analogously, process abstraction testplug, which
describes processing of first requests to stop and
to detach a non-existent component before it can
be replaced by a real component implementing
a specific test script (e.g. component test), is
performed only once and reduced to process
0. Process constants Wire and Dist describe
behaviour of a connector of two interfaces and
distribution of a start/stop request from a com-
posite component among its subcomponents,
respectively. Although they contain recursions
and their behaviour can be infinite, they can
be terminated instantly (e.g. when the connec-
tor is removed or the request has been already
submitted to all of the subcomponents). In such
case, process constants Wire or Dist can be
reduced to process 0 (by means of an input
action on name d or an output action on name
r, respectively).

Agents TE2comp and TEimpl have deadlocks
in processes that are reachable by 22 and 31
commitments, respectively. The deadlocks are
related to the ability of process abstraction
TEcomp, which describes behaviour of composite
component testEnvironment, and of process ab-
straction TE, which describes behaviour of ser-
vice TestEnvironment, to receive and to execute
a test script. During the execution, behaviour of
the component and the service is controlled by
the test script (the component’s subcomponent
controller is waiting for an input on its interface
cDone, see Section 2.2). If the test script is in-
compatible with its environment and can not be

4 Nevertheless, these processes can come to a live-lock in their mutual co-operation. In such a case, the processes
will communicate only between themselves and will periodically change, but as a whole system, they will not be
responding to any external actions on their free names.
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finished, the component and the service come to
a deadlock.

In our approach, the deadlock-checking can
be utilised to detect erroneous behaviour of in-
dividual services and components.

6.3. Bisimulation Checking

In π-calculus, congruences are equivalence re-
lations5 on π-calculus processes, which allows
to formulate structural and behavioural equiv-
alences between the processes. Two π-calculus
processes express the same behaviour if they
are barbed congruent, which means bisimilar in
terms of labelled state transition systems, i.e. if
no difference can be observed when they are put
into an arbitrary π-calculus context and com-
pared using the appropriate bisimulation game
[20].

There are four important relations – namely
an early strong bisimulation, a late strong bisim-
ulation, an early weak bisimulation, and a late
weak bisimulation. Early and late bisimulations
differ in ways to treat input actions. Strong and
weak bisimulations differ in ways to treat inter-
nal actions, the strong bisimulation treats inter-
nal τ -action and visible action equally while the
weak bisimulation makes abstraction from the
number of internal τ -actions (i.e. evolution of
bisimilar systems is independent on their inter-
nal τ -actions).

The ABC allows to check strong and weak
open bisimulation equivalences by means of
commands “eq” and “weq”. Moreover, in a case
of of two agents that have the same free names,
the bisimulation equivalences can be checked
also by means of commands “eqd” and “weqd”,
which suppose the free names of the first agent
are distinct from the free names of the second
agent.

To demonstrate bisimulation checking in our
case study, we check the equivalences of process
Testcore and its possible replacements. The pro-

cess describes core behaviour of component test
representing a test script (see Section 5). The
bisimulation checking of behaviour of the origi-
nal test script, which is supposed to be correct,
and behaviour of its replacements, which may
be wrong, can prevent the deadlock in agents
TE2comp and TEimpl, as it has been described in
Section 6.2.

In addition to agent TestCore, we define
two agents with the same free names. The fol-
lowing definitions include original agent Test-
Core and new agents TestCoreEquiv and Test-
CoreNonequiv:

(∗∗∗ TestCore ∗∗∗)
agent TestCore = (\pexecuteWithID,rtInteract,rtResult)

pexecuteWithID(id) . (^ret) ’rtInteract<ret>
. ret(val) . ’rtResult<val,id> . 0

(∗∗∗ TestCoreEquiv ∗∗∗)
agent TestCoreEquiv = (\pexecuteWithID,rtInteract,rtResult)

pexecuteWithID(id) . (^comm)
( (^ret) ’rtInteract<ret> . ret(val) . ’comm<val>
. 0 | comm(res) . ’rtResult<res,id> . 0 )

(∗∗∗ TestCoreNonequiv ∗∗∗)
agent TestCoreNonequiv = (\pexecuteWithID,rtInteract,

rtResult)
pexecuteWithID(id) . (^ret) ’rtInteract<ret>
. ret(val) . (^resid) ’rtResult<val,resid> . 0

Agents TestCore and TestCoreEquiv are not
strongly open bisimilar, because agent Test-
CoreEquiv can perform an internal communica-
tion via name comm, that can not be performed
by agent TestCore. However, these agents are
weakly open bisimilar and according to ABC, a
core relation6 of their bisimulation contains 12
members.

The agents TestCore and TestCoreNonquiv
are neither strongly open bisimilar nor weakly
open bisimilar. The problem is at the end of
processing, when agent TestCore sends via name
rtResult name id, which has been previously
received via name pexecuteWithID, while agent
TestCoreNonquiv creates and sends a fresh name

5 The equivalences are relations that are reflexive, symmetric, and transitive. The congruences ensure that if
processes P and Q are in a relation of equivalence and process P is a subprocess (a component) of process R, then
process R with substituted P for Q is in the relation of equivalence with the original process R (i.e. a substitution of
equivalent components of processes does not break the equivalence of the processes).

6 The core relation of bisimulation is a ternary relation between an agent, a set of distinctions, and an other
agent, such that an union of its symmetric closure and the identity relation is a bisimulation [4].
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resid, which differs from the original name id.
The replacement of agent TestCore, which de-
scribes behaviour of component test, by agent
TestCoreNonequiv leads to a deadlock (see the
context of component test in Section 2.2).

6.4. Model Checking

Model checking is possible by means of the
MWB, which uses π-µ-calculus [7], an extension
of the µ-calculus7, as a property specification
language.

In MWB, we can check safety and liveness
properties by means of µ and ν operators, re-
spectively, as well as simply check the existence
of specific reduction steps by means of modal
operators ♦ and �. The following command ver-
ifies the ability of agent System to perform input
actions on its free names st and rl:

check System(st,rl)<st>TT & <rl>TT

Agent System describes behaviour of the sys-
tem from our case study (see process abstraction
System in Section 4). The complete description
of syntax and semantics of the π-µ-calculus in
MWB can be found in [21].

7. Related Work and Discussion

Related works relevant to our subject can be di-
vided into two groups, as formal approaches to
describe service-oriented architectures (SOAs)
and as formal approaches to describe compo-
nent-based systems (CBSs). In this section, we
outline current state of the art in both groups
and discuss advantages and drawbacks of our
approach, which intends to bridge the gap and
to provide formal description of service-oriented
architecture from choreography of services to
individual components of underlying compo-
nent-based systems.

In the first group, there are approaches
mostly based on Business Process Execution

Language for Web Services [2], such as [12], [15]
or [22]. Those approaches focus on the web ser-
vices, as a specific implementation of SOA, and
provide formal description of choreography and
orchestration based on business processes. The
description ends up at the level of individual ser-
vices implementing business processes and does
not include underlying CBSs.

The second group consists of several compo-
nent models8 [14], such as Darwin/Tracta [11],
Fractal [5] or SOFA 2.0 [6]. Those models usu-
ally focus only on pure CBSs without consider-
ing SOA at the higher level of abstraction. In
some cases [13], the component models brings
features of SOA into CBD, so that SOA be-
comes a specific case of a CBS. However, this
solution mixes two different levels of abstraction
(see Section 1).

Our approach is similar to the Reo coor-
dination language [8], which is also based on
π-calculus and able to describe both service in
SOA and components in CBSs. In comparison
with Reo and the above mentioned approaches
(especially those in the second group), our ap-
proach describes services and components sepa-
rately and with respect to their differences (i.e.
services are not components and vice versa).
We allow to go smoothly from services level to
components level and describe behaviour of a
whole system, services and components, as one
π-calculus process. Moreover, we use standard
polyadic π-calculus without any special exten-
sions, which allows to utilise a wide range of
existing tools for model-checking of π-calculus
processes and formal verification of their prop-
erties.

However, our approach can have also draw-
backs, e.g. complex description of behaviour
of primitive components’ control actions pro-
cessing or insufficient visibility of a compo-
nent-based system’s structure during its evo-
lution. After several dynamic reconfigurations
and a corresponding sequence of reductions of
the π-calculus process, it may be difficult to de-

7 The (modal) µ-calculus is a temporal logic with a least fix-point operator µ and a greatest fix-point operator ν.
It is used to specify properties of concurrent systems represented as labelled transition systems.

8 I.e. meta-models of architectural entities, their properties, styles of their interconnections, and rules of evolution
of the architecture of component-based systems.
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termine a final configuration from the resulting
π-calculus process, especially without knowledge
of the exact sequence of reductions.

8. Conclusion and Future Work

We have demonstrated an approach to formal
description of behaviour of service-oriented ar-
chitecture on a case study of a testing envi-
ronment of a railway interlocking control sys-
tem. The approach is innovative, it captures be-
haviour of services as well as behaviour of under-
lying systems of components, yet it distinguishes
these two levels. Future work is related to inte-
gration of the approach into modelling tools and
automatic generation of the formal description.
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