
Evolutionary-Based Conflict-Free Scheduling of Collective 

Communications on Spidergon NoCs 
Jiri Jaros 

Brno University of Technology 
Bozetechova 2 

612 66 Brno, Czech Republic 
+420 54114-1207 

jarosjir@fit.vutbr.cz 

 

Vaclav Dvorak 
Brno University of Technology 

Bozetechova 2 
612 66 Brno, Czech Republic 

+420 54114-1149 

dvorak@fit.vutbr.cz 

ABSTRACT 

The Spidergon interconnection network has become popular 
recently in multiprocessor systems on chips. To the best of our 

knowledge, algorithms for collective communications (CC) have 

not been discussed in the literature as yet, contrary to pair-wise 
routing algorithms. The paper investigates complexity of CCs in 

terms of lower bounds on the number of communication steps at 

conflict-free scheduling. The considered networks on chip make 
use of wormhole switching, full duplex links and all-port non-

combining nodes. A search for conflict-free scheduling of CCs 

has been done by means of evolutionary algorithms and the 
resulting numbers of communication steps have been summarized 

and compared to lower bounds. Time performance of CCs can be 

evaluated from the obtained number of steps, the given start-up 
time and link bandwidth. Performance prediction of applications 

with CCs among computing nodes of the Spidergon network is 

thus possible. 

Categories and Subject Descriptors 

I.2.8 [Artificial intelligence]: Problem Solving, Control Methods 

and Search – heuristic methods, scheduling. 

General Terms 

Algorithms, Performance, Design. 

Keywords 

Collective communications, communication scheduling, evolutio-
nary design, Spidergon, fat topologies, wormhole switching. 

1. INTRODUCTION 
Networks on Chip (NoCs) ever more replace traditional on-chip 

communication architectures based on shared communication 

medium - a bus. A number of CPU cores, memory modules and 
other hardware units in Systems on a Chip (SoCs) or cores in 

many-core systems with memory physically distributed among 

computing nodes communicate by sending data through a NoC[1] 

Classical logarithmic diameter networks, e.g. hypercubes, 

butterflies and fat trees, provide enough bandwidth for all-to-all 
communications, but do not map well into the two dimensions 

provided by a silicon chip: the length of some interconnection 

wires increases proportionally to the number of processors. This 
will decrease the clock frequency dramatically and degrade the 

performance. In this work we therefore restrict our attention to the 

Spidergon NoC topology with mostly local interconnection 
among processors. 

The Spidergon depicted in Fig. 1 is the novel interconnection 
network architecture suitable for the on-chip communication 

demands of SoCs in several application domains [2]. The 
Spidergon NoC first reported in [10], and later in [3], [4], has 

been recently adopted by STMicroelectronics [5] with the 

objective to realize low cost multiprocessor SoC implementation 
with topology opened for application-specific optimization. 

Spidergon is somewhere between the ring and mesh topologies: 

an even number of nodes is connected into a bidirectional ring 
and pairs of nodes are connected by a cross connection. Each edge 

in Fig. 1 represents two unidirectional physical links, one for each 

direction. In order to avoid deadlock, two virtual channels are 
multiplexed on each physical link. Fig. 1 depicts the 16-node 

Spidergon topology and its layout on a chip resembling a sparse 

mesh. Each node represents a router/switch (Fig. 2) and a CPU 
core. 
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          (c) a ladder-like Spidergon topology 

Figure 1. Isomorphic graphs of the 16-node Spidergon 

topology. 
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This topology is regular (constant node degree d = 3), node-

symmetrical and edge-asymmetrical. Node symmetry implies 
identical routers within the entire network and simple routing 

algorithms. Moreover, the Spidergon scheme employs packet-

based wormhole switching which can provide low message 
latency at a low cost. The network graph in the form of Möbius 

strip (Fig. 1c) demonstrates that bisection width BC as defined in 

[6] is constant, BC = 8, which becomes a bottleneck with a larger 
number of processors. The actual on-chip layout requires only 

a single crossing of metal layers, Fig. 1b, c. If the router at each 

node of the Spidergon NoC is a typical one-port router, the   
communication performance suffers. Enhancing the one-port 

router architecture to the all-port router architecture increases the 

cost but improves performance a great deal [7]. 

Communication operations can be either point-to-point, with one 

source and one destination, or collective, with more than two 
participating processes. Collective operations are invoked by 

nodes to distribute, gather, and exchange data; to perform global 

computation operations on distributed data; and to synchronize 
with one another at specific points in a program flow. Some 

embedded parallel applications, like network or media processors, 

are characterized by independent data streams or by a small 
amount of inter-process communications [2]. However, many 

general-purpose parallel applications display a bulk synchronous 

processing (BSP) behavior: the processing nodes access the 
network according to a global, structured communication pattern. 

The performance of the collective communications (CCs for 

short) has a dramatic impact on the overall efficiency of parallel 

processing. The most efficient way to switch messages through 
the network connecting multiple cores makes use of wormhole 

(WH) switching, in which each message is divided into small 

pieces (flow control digits, flits) that are pipelined through the 
network. Wormhole switching reduces the effect of path length on 

communication time, but if multiple messages exist in the network 

concurrently (as is happens in CCs), contention for busy links 
may be a source of congestion and waiting times. To avoid 

congestion delays, it is necessary to organize CC into separate 

steps in time and to put into each step only non-conflicting pair-
wise communications whose paths are disjoint. The conflict-free 

scheduling of CCs is therefore important, because it leads to 

congestion-free CCs.  

The deterministic shortest path routing algorithms proposed for 

the Spidergon architecture are so called Across First (aFirst) and 
Across Last (aLast) [4], [9]. Both algorithms are minimal source 

routing. An analytical performance model has been analyzed in 

[8] and the average message latency evaluated. Regarding CCs, 
only the broadcast and multicast CCs on Spidergon were studied 

in the past [7]. Other CCs, especially all-to-all communications 

have not been analyzed in the literature as yet. 

In this work, we want to improve the performance of Spidergon 
NoC by designing such communication schedules that prevent any 

possible link contention. Optimized communication schedules can 

be uploaded into switch routing tables and boost the performance 
of many parallel algorithms. For this reason, four common CC 

patterns based on broadcast and scatter services will be analyzed.  

The optimization of CC scheduling is based on evolutionary 

techniques. These techniques applied already to CC scheduling 

problem on hypercubes of medium size (tens of nodes) [11] were 

able to find the already known optimum solutions obtained 

analytically. However, for some CCs studied in this work   
analytic methods to find optimum schedules do not exist, so that 

the results can be compared only to theoretical lower bounds.  

The paper is structured as follows. In the following Section 2 we 

analyze time complexity of CCs in WH networks, namely the 

lower bounds on the number of start-ups for general networks 
under the assumption of uniform non-combined messages. In 

Section 3 we present an evolutionary search for optimum CC 

schedules on simple Spidergons as well as on Spidergons with fat 
nodes. The time complexity of the evolutionary search is also 

discussed. Results and possible extensions are commented on in 

Conclusions. 

2. TIME COMPLEXITY OF COLLECTIVE 

COMMUNICATIONS  
A collective operation is usually defined in terms of a group of 

processes. The operation is executed when all processes in the 

group call the communication routine with matching parameters. 
We classify collective operations into three types according to 

their purpose: 

 - CCs (OA - One-to-All, AO - All-to-One, AA - All-to-All), 
 - global computation (reduction AOR or AAR and scan) and  

 - synchronization (barrier). 

The CCs are most important, as other collective operations are 

closely related to them. In a broadcast (OAB), one process sends 

the same message to every group member, whereas in a scatter 
(OAS), one process sends a different message to each member. 

Gather (AOG) is the dual operation to scatter, in that one process 

receives a message from each group member. These basic 
operations can be combined to form more complex operations. In 

all-to-all broadcast (AAB), every process sends a message to 
every other group member. In complete exchange, also referred to 

as all-to-all scatter-gather (AAS), every group member sends 

a different message to every other group member. Permutation 
operations, such as shift and transpose, are also CCs. Since 

complexities of some communications are similar (AOG ~ OAS, 

AOR ~ OAB, AAR ~ AAB), we will focus only on four basic 
types (OAB, OAS, AAB, AAS). Also, from now on, when we 

refer to „collective communications”, then we will assume only 

CCs involving the group of all processes. 

The simplest time model of point-to-point communication in 

direct WH networks takes the communication time composed of 
a fixed start-up time ts at the beginning (SW and HW overhead of 

a sender and a receiver), a serialization delay, i.e. the transfer time 

of m message units (words or bytes), and of a component that is 
a function of distance h (the number of channels on the route or 

hops a message has to do): 

rsWH htmttt ++= 1
,         (1) 

where t1 is per unit-message transfer time and tr includes a routing 
decision delay, switching and inter-router latency. A relatively 

small dependence on h may be taken into account by including 

hmaxtr into ts, so that only two parameters ts and mt1 are sufficient.   

In the rest of the paper we assume that the CC in WH networks 

proceeds in synchronized steps. In one step of CC, a set of 
simultaneous packet transfers takes place along complete disjoint 



 

paths between source-destination node pairs. If the source and 

destination nodes are not adjacent, the messages go via some 
intermediate nodes, but processors in these nodes are not aware of 

it; the messages are routed automatically by the routers attached to 

processors. 

Complexity of collective communication will be determined in 

terms of the number of communication steps or equivalently by 
the number of “start-ups” τCC (upper bound). Provided that the 

term hmaxtr is included in ts and excluding contention for channels, 

CC times can be obtained approximately as the sum of start-up 
delays plus associated serialization delays mit1 in individual 

communication steps    
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The above expression assumes that the nodes can only re-

transmit/consume original messages, so that the length of 

messages mi = m remains constant in all communication steps. 
This is true in the so called non-combining model of 

communication; on the contrary, in the combining model the 

nodes can combine/extract partial messages with negligible 
overhead. The combining/non-combining model influences CC 

performance and either one can outperform the other in some 

cases. Further on we will consider the non-combining model only. 

Possible synchronization overhead involved in communication 

steps, be it hardware or software-based, should be included in the 
start-up time ts. Let us note that with uniform messages and 

a single clock signal domain, one barrier synchronization before 

CC might be sufficient to synchronize the whole CC. 
Communication steps would then follow in the lockstep. 

According to frequency of CCs and an amount of interleaved 

computation (BSP model) in a certain application, efficiency of 
parallel processing can be estimated. 

The port model of the system defines the number k of CPU ports 

that can be engaged in communication simultaneously. This 

means that beside 2d network channels, there are 2k internal 
unidirectional (DMA) channels, k input and k output channels, 

connecting each local processor to its router that can transfer data 

simultaneously. Always k ≤ d, where d is a node degree; a one-
port model (k=1) and an all-port router model (k=d) are most 

frequently used. Fig. 2 shows a one-port and an all-port router for 

the Spidergon network. In the one-port system, a node must 
transmit (and/or receive) messages sequentially. The messages 

may block on occupied injection channel, even when their 

required network channels are free. Architectures with multiple 
ports alleviate this bottleneck. In the all-port router architecture, 

there are as many local CPU channels as there are network 

channels that reduce the message blocking latency during CC 
operations. The port model determines the number of required 

communication steps and thus the CC performance. 

Finally, the lower bound on the number of steps τCC depends on 

a channel type; we have to distinguish between unidirectional 

(simplex) channels and bi-directional (half-duplex HD, full-
duplex FD) channels. Typically τCC will be twice as large for HD 

channels than for the FD ones. Further on we will consider FD 

channels and the all-port router model only. 

 

Figure 2. Port models for 3-regular Spidergon network. 

The number of communication steps is in the first place 

influenced by the topology of an interconnection network. 
Generally the lower bounds τCC(G) for the network graph G 

depend on node degree d, number of nodes P, and bisection width 
BC, Table 1.  

Table 1. Lower bounds on the number of communication steps 

τCC (WH, k-port, non-combining networks) 

 

CC τCC [steps] 

OAB log k+1 P  
AAB (P – 1) / k 
OAS (P – 1) / k 
AAS max ( P2 / (2BC) , Σ /(Pk) , (P – 1) / k)  

 

As far as the broadcast communication (OAB) is concerned, the 

lower bound on the number of steps τOAB(G) = s = logk+1 P is 

given by the number of nodes informed in each step, that is 

initially 1, 1 + 1 × k after the first step, (k + 1) + ( k + 1) × k = 

= (k + 1)2 after the second step, etc.,…, and (k + 1)s ≥ P nodes 

after step s. Since the broadcast message is the same for all the 
nodes, each node once informed can help with distributing of the 

message in following steps.  

In case of AAB communication, since each node has to accept 

P − 1 distinct messages, the lower bound is (P − 1) / k steps. 
A similar bound applies to OAS communication, because each 

node cannot inject into the network more than k messages in one 

step. 

The lower bound for AAS can be obtained considering that half 

the messages from each processor cross the bisection, whereas the 

other half do not. There will be altogether 2(P / 2)(P / 2)/BC of 

such messages in both ways, where BC is the channel bisection 
width [4]. Sometimes a stronger lower bound may be obtained 

considering the count of channels from all sources to all 

destinations (Σ) and the limited count Σ1 of channels available for 
one step. In regular networks with constant node degree Σ1 = Pk. 

As each node has to accept P − 1 distinct messages, (P − 1) / k 
bound has to be also obeyed. 

Specialized AAS lower bounds for the Spidergon network with 

P = 4n nodes are easily derived from the following parameters:   

BC = 8, Σ1 = 3P and Σ = (P2 / 2)(P / 4 + 1);   

τCC = max (P2 / (2BC), Σ / (Pk), (P − 1) / k =  

         max (P2 / 16, (P / 2k) (P/4 + 1) , (P − 1) / k).      (3) 

Which lower bound takes effect depends on a particular network 

topology and the port model. For the network topologies 

local CPU ports local CPU ports 

(a) one-port model (b) all-port model 



 

potentially useful in NoCs are the lower bounds of selected CCs, 

computed from the formulas in Table 1 and from (3), given in 
Table 2. Wormhole switching and full duplex links have been 

assumed everywhere; port model k = 1 and k = 3 (all-port).  

Table 2. Lower bounds τCC obtained from Table 1 for the 

Spidergon network (1-port/all-port) 

Topology OAB AAB OAS AAS 

6-gon 3/2 5/2 5/2 7/3 

8-gon 3/2 7/3 7/3 12/4 

12-gon 4/2 11/4 11/4 24/9 

16-gon 4/2 15/5 15/5 40/16 

20-gon 5/3 19/7 19/7 60/25 

24-gon 5/3 23/8 23/8 84/36 

28-gon 5/3 27/9 27/9 112/49 

32-gon 5/3 31/11 31/11 144/64 

36-gon 6/3 35/12 35/12 180/81 

 

The Spidergon, as well as the bidirectional ring topology, though 

very simple, is not free from routing deadlock, because the 
channel dependency graph is not acyclic [4], [6]. This can be seen 

on a common permutation called the cyclic shift. The problem can 

be solved by the introduction of virtual channels [4] and by 
implementing rules on channel usage. However, in conflict-free 

CCs all source to destination paths are disjoint and therefore there 

is no competition for shared resources, no danger of deadlock and 
no need for escape virtual channels. When implementing CCs, we 

therefore use either one of two virtual channels. 

3. EVOLUTIONARY SEARCH FOR THE 

OPTIMAL CONFLICT-FREE SCHEDULES  
The selection of Evolutionary Algorithms (EA) for the scheduling 
problem has been justified already in [11]. Although the proposed 

methodology of designing near-optimal CC schedules is 

independent of the particular evolutionary algorithm, we restricted 
ourselves in this work only to a simple EDA evolutionary 

algorithm without gene dependencies (UMDA). 

Univariate Marginal Distribution Algorithm (UMDA) [12] is 

a very simple EDA [13] (Estimation of Distribution Algorithm) 
which does not reflect any interaction between genes 

(variables/solution parameters). The main advantages of this 

algorithm are better mixing of genetic material than it is possible 
in standard GA [14], very simple implementation and much faster 

execution than more complex EDAs like BOA (Bayesian 

Optimization Algorithm [13]) algorithm. Of course, any other EA 
can be employed. Basic comparison of a success rate and 

execution time of other types of EA applied to CC scheduling 

problem can be found in [15] and [16]. 

The following subsections detail the evolutionary approach. 

Section 3.1 shows the global data structure and a preprocessing 
phase. Sections 3.2 and 3.3 describe how the dataset is encoded, 

Section 3.4 presents the evaluation function used in EA, and 

Section 3.5 briefly describes acceleration and restoration 
heuristics used to increase a success rate and to reduce the 

execution time required to reach a satisfactory result. Parameters 

of used EA (UMDA) are outlined in Section 3.6. 

3.1 Preprocessing Phase  
An input data structure maintains a description of a Spidergon 

topology, a definition of CC and sets of senders, receivers and 
intermediate routers. The topology description is saved in the 

form of node/router neighbor lists, where the nodes/routers are 

considered to be neighbors only if they are connected by a simple 
direct link.  

After the input file is loaded, the data have to be preprocessed. In 
the first phase, the preprocessor divides the set of all nodes V* 

into a set of transmitters T and a set of receivers R. Then, a set of 

terminal nodes *VV ⊆  is determined as the union T∪R. The 

terminal nodes can inject/consume messages to/from the network, 
while the non-terminal nodes (routers) can only retransmit the 

messages. Finally, all the sets are ordered based on the node 

index. 

The preprocessor generates all the shortest paths (the set Rxy) 

between all transmitter-receiver pairs x-y and saves them into 
a specific data structure in the operating memory for the second 

phase. This task is performed by a modified version of the well 

known Dijkstra’s algorithm [17]. 

3.2 Scatter Encoding 
As broadcast and scatter are completely different communication 

services, candidate solutions are also encoded differently. The 

definition of scatter encoding will be introduced first. 

Let’s consider a scatter based CC communication between M 

transmitters from set T and N receivers from set R.  

1) The CC can be defined as a set COMM of pair-wise 

transfers commsrc,dst originating in src ∈ T and terminating in 

dst ∈ R, where src ≠ dst: 

{ }dstsrcRdstTsrccommCOMM dstsrc ≠∈∈= ,,:,
.  (4) 

2) A direct encoding can be designed for the scatter-based 
communication schedules (i.e. an exact description of the 

schedule is stored in a chromosome). A chromosome can be 

formalized as n-tuple of genes: 

















=

−−−

−

1,10,1

1,00,0

...

...

NMM

N

genegene

genegene

chromosome MOM
,      (5) 

where M is the number of transmitters and N is the number of 

receivers while n is the total number of genes. Notice that 

M, N ≤ P and n = M·N.         (6) 

3) A gene genei,j represents a single message transfer from the 

transmitter (source) xi ∈ T to the receiver (destination) xj ∈ R, 

where xi ≠ xj. The source and the destination are identified by the 

genes’ indexes i and j. A gene is the ordered couple: 

( )

Stepss

Rl

jiNjMislgene

ji

jiji

jijiji

<≤

∈

≠<≤<≤=

,

,,

,,,

0

,0 ,0 ,,
       (7) 

The first component li,j represents a chosen path from transmitter 
xi to receiver xj stored in set Ri,j. The second component si,j 



 

determines a selected communication step of the transfer between 

xi and xj. The total number of communication steps is given by the 
predefined parameter Steps. 

4) The (shortest) path is defined as an ordered set of 
unidirectional channels. The length of the path is equal to h (hop 

count): 

li,j = {c1, c2, c3,…,ch}, |li,j| = h,        (8) 

where src(c1) = xi and dst(ch) = xj. 

5) Next consider a set Genome containing all the genes 

included in a chromosome:  

{ }jiNjMigeneGenome ji ≠<≤<≤= ,0 and 0:,
.      (9) 

6) Finally, we can define a bijective mapping f from set 

Genome into set COMM meaning that each gene corresponds to 

a unique pair-wise transfer and also vice versa: 

COMMcommGenomegenef dstsrcji ∈∈ ,,: a     (10) 

iff xi = src, xj=dst. 

3.3 Broadcast encoding 
Consider a broadcast based CC communication between M 

transmitters from set T and N receivers from set R. Unfortunately, 

the set COMM cannot be constructed for broadcast based CCs, 

since each node already informed could also become a distributor 

of the broadcast message.  

1) Therefore, the definition of CC is based on a set of 

messages MSG that have to be delivered during a given CC to 

each destination. 

Let 

{ }dstsrcRdstTsrcmsgMSG dstsrc ≠∈∈= ,,:,
     (11) 

be a set of messages originating in transmitters src, transported 

through the network via an intermediate distributor, and 

consumed by receivers dst. Notice that the message distributors 

are not known in advance. 

2) A direct encoding has been designed to store broadcast-

based communication schedules. A broadcast CC schedule is 

represented by the chromosome in the form of n-tuple of genes 

















=

−−−

−

1,10,1

1,00,0

...

...

NMM

N

genegene

genegene

chromosome MOM
    (12) 

where M is the number of transmitters and N is the number of 

receivers while n is the total number of genes. Again, notice that 

M, N ≤ P and n = M·N.       (13) 

3) A gene genei,j determines the way in which a receiver 

x j∈ R obtains the broadcast message msgi,j from the transmitter 

xi ∈ T via a distributor di,j ∈ V. The producer and consumer of the 

message are identified by the genes’ indexes i and j. Individual 

genes are represented by the ordered triplet: 

( )

jdij

jsji

ji

jijijiji

ji

ji

Rl

VDd

Stepss

jiNjMisldgene

,,

,,

,

,,,,

,

,

0

,0 ,0 ,,,

∈
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<≤

≠<≤<≤=

    (14) 

The first component of the gene selects a distributor di,j of the 

message msgi,j. Besides the transmitter, the distributor can be any 

node from set 
jisD

,

 that includes all nodes informed during all   

si,j − 1 steps; see the extended domination set theory [18]. The 

second component li,j represents a chosen path between the 

distributor di,j and the receiver xj from the set 
jd ji

R ,,

. 

Analogously, the last component si,j determines a selected 

communication step of the transfer between di,j and xj. The total 

number of steps is given by the predefined parameter Steps. 

4) The (shortest) path was defined in the same way as in (8) as 

an ordered set of unidirectional channels. 

5) Next, consider a set Genome containing all genes included 

in a chromosome  

{ }jiNjMigeneGenome ji ≠<≤<≤= ,0 and 0:,
.    (15) 

6) Finally, we can define a bijective mapping f from set 

Genome into set MSG; each gene thus corresponds to a unique 

src-dst transfer of the message and also vice versa. 

MSGmsgGenomegenef dstsrcji ∈∈ ,,: a  

iff xi = src, x j = dst        (16) 

3.4 The Conflict Counting Fitness Function 
This section proposes a formal description of the fitness function. 

The definition is the same for scatter and broadcast CC.  

1) Let SS (Same Step) be a binary relation on the set Genome. 

Let a, b ∈ COMM (scatter) or a, b ∈ MSG (broadcast) message 

transfers be represented by genei,j and genek,l, then 

genei,j SS genek,l  iff  si,j = sk,l       (17) 

Thus, two transfers are in relation SS if and only if they are 

executed within the same time step. 

Now, we show that SS is an equivalence relation: 

a) SS is reflexive, since no transfer can be performed in more 

than one time slot. 

b) SS is clearly symmetric considering si,j = sk,l, then sk,l = si,j. 

c) SS is transitive. Let a, b, c be elements of Genome. 

Whenever a SS b and b SS c, then also a SS c (a is executed 

within the same step as c whenever a is executed within the 

same step as b and b is executed within the same step as c). 

Thus SS is an equivalence relation. 

2) The equivalence relation SS induces the partition on the 

set Genome. Each equivalence class [gs] includes all transfers 

performed in the same slot.  



 

3) Let Ea,b be a set of all channels shared in two transfers a, b 

represented by genes genei,j, genek,l ∈ Genome, which utilizes the 
paths li,j and lk,l: 

lkjiba llE ,,, ∩=          (18) 

The number of conflicts between a and b can be obtained as the 

cardinality of the set Ea,b. 

4) Define a multiset Es including channels shared by all 

transfers within a given time slot, then 

U
bagba

bas

s

EE
≠∈

=
],[,

,
       (19) 

5) The multiset E, covering all shared channels within the 

whole CC, can be obtained by a union over all equivalence 
classes. Thus 

U
SSGenomeg

s

s

EE
/][ ∈

=        (20) 

6) The total number of conflicts can be obtained as the 

cardinality of multiset E. Thus 

Fitness = |E|.        (21) 

The valid communication schedule for a given number of 

communication steps must be conflict-free. Valid schedules are 

either optimal (the number of steps equals the lower bound) or 
suboptimal. Evolution of a valid schedule for the given number of 

steps is completed as soon as fitness (number of conflicts) drops 

to zero. If it does not do so in a reasonable time, the prescribed 
number of steps must be increased. 

3.5 Acceleration and Restoration Heuristics 
New heuristics have been developed to improve OAS/AAS 

optimization speed taking into account a search space restriction 
due to a limited message injection capability of network nodes. 

Because no node can send more than k messages in 

a communication step, an acceleration heuristic checks this 
condition in the whole chromosome and redesigns terminal node 

utilization in all communication steps before evaluating the fitness 

function. The implementation of the heuristic is based on a node 
utilization histogram. 

The second OAS/AAS heuristic replaces the mutation operator in 
the employed EA. This heuristic swaps associated communication 

steps of two transfers originating in the same transmitter. 

Actually, this heuristic performs a local search on a candidate 
solution based on the time domain. The conflicting transfers are 

rescheduled in spite of their timing to reduce total congestion. 

Since illegal solutions of the OAB/AAB problem can appear 

during the process of genetic manipulation with OAB/AAB 

chromosomes, (a gene violates the condition 
jisji Dd

,, ∈  in eq. 

14), the restoration heuristic has to be applied. This heuristic 
proceeds in subsequent communication steps and constructs 

a correct broadcast schedule. A check is made for every node 

whether the node receives the message really from the node 
already informed. If not so, the source node of this point-to-point 

communication is replaced by a node that has already received the 

message. The replacement is made taking into account the node 

utilization histogram. An exchange of the distributor node di,j has 

naturally an impact on utilized links li,j. Hence the original path is 
replaced by the one newly chosen from a list of exploitable paths 

jd ji
R ,,

 between new input-output pair di,j and xj. 

To accelerate the convergence of the EA, an OAB/AAB-specific 

heuristics have been developed. First, good building blocks are 
injected into the initial population. First, the communication step 

si,j is initially set to the same value (si,j = 0). Then the restoration 

heuristic corrects the time slots and produces the correct broadcast 
trees with significantly lower numbers of conflicts. 

3.6 Parameters of EA 
The simple UMDA [12] evolutionary algorithm has been used for 

the search for near optimal communication schedules. The value 
of the population size was set to 80 individuals because higher 

values did not improve the quality of found schedules and did not 

justify an increased computation time. The binary tournament 
selects the better half of the current population to form the parent 

subpopulation. The univariate marginal probabilistic model is 

created according to the parent subpopulation in each generation. 
New chromosomes are generated by the sampling of the estimated 

probabilistic model. Each chromosome is then mutated by 

a mutation operator that includes acceleration heuristics as a local 
search technique. The chromosome mutation probability is 0.9. 

This operator is responsible for testing and changing possible 

source-destination paths for particular point-to-point 
communications. The mutation rate is very high due to a large 

number of source-destination pairs that grows exponentially with 

the source-destination distance. Finally, the newly generated 
solutions replace the worse half of the current population.  

4. EXPERIMENTAL RESULTS 
The evolutionary optimization described previously has been 

applied to several slim all-port Spidergon networks as well as to 
several fat one-port Spidergon networks (Fig.3) with 2, 3 and 4 

CPUs connected to a single router. Our goal is to find (near) 

optimal schedules for four basic CC patterns not studied on 
Spidergon networks as yet.  

4.1 Scheduling CCs on the All-port Spidergon 
We will use the all-port Spidergon NoC with P = 6, 8, 12, 16, …, 

4n retaining the original topology [7], even though other 
extensions have been proposed [10]. We will comment the CC 

algorithms shortly on the 8-processor Spidergon network 

(Octagon), Fig. 3. One-to-all communications are done the same 
way for every source node due to node symmetry. OAB clearly 

can be done in 2 steps and OAS needs 7/3 = 3 steps. In order to 

implement AAB, we have to use such a broadcasting tree that is 
time-arc-disjoint (TADT) and can be used by all nodes 

simultaneously without creating conflict. For example node 0 

could use this TADT: 

Step 1: 0 → 7, 0 → 4, 0 → 1  

Step 2: 7 → 6, 1 → 2    

Step 3: 4 → 5, 4 → 3. 

We cannot join steps 2 and 3 though, because it would create 

conflict - one node cannot use more than 3 channels in a single 
step, because there is not more than 24 channels altogether. 



 

The most complex AAS communication is not performed the 

same way by all nodes - there is no analogy to the TADT. In the 
design of AAS schedule, it is necessary to exploit some kind of 

combinatorial optimization (EA). Four steps were needed for 

AAS on Octagon with all-port (3-port) nodes, which is equal to 
the lower bound in Table 1.  

For a Spidergon with the number of nodes P = 4n, we can find 
optimum CC schedules similarly as for Octagon using the 

evolutionary algorithm. The best obtained results from 25 runs are 

given in Table 3. The cases where the upper bound differs from 
the known lower bound are denoted by digits in bold. 

Table 4 gives the time complexity of an evolutionary process for 
all the obtained schedules listed in Table 3. It summarizes the 

number of evolved generations with the constant population size 

of 80 individuals. From the table, it can be concluded that that the 
evolutionary design of one-to-all CC is pretty fast. By contrast, 

finding of a high quality all-to-all schedule is a much more 

complex problem that can take up to a few millions of 
generations, especially for AAS. A fluctuation of the numbers of 

generations is given by different distances between lower and 

upper bounds.  

     

   (a) slim all-port Octagon           (b) fat one-port Octagon 

Figure 3. Two different Octagon networks. 

4.2 Scheduling CCs on the Fat Spidergon  
Fat nodes with several CPUs connected by single port to the 

router could provide cheaper solution for Spidergon networks of 
a larger size, similarly as fat hypercubes do. However, it is 

a trade-off between such measures as cost and performance. As it 

is seen in Table 3, we can e.g. divide 12 cores in Spidergon 
network among 12, 6 or 4 nodes with 1, 2, or 3 cores per node, 

respectively. If we measure the cost by the total number of ports, 

it will be 48, 30, and 24 in these three cases. However, looking at 
the limits of the best possible CC performance, the impact is 

rather high. The difference between 2 or 3 cores per node is then 

negligible.  

It should be noted that neither lower bounds for one-port, nor for 
all-port model apply here. The reason is that we cannot assign 3 

network ports of a node explicitly to internal cores. Let us also 

note that the optimal schedules are not known for the fat 
Spidergon networks so far. Accordingly, Table 3 presents the best 

know upper bounds of CCs for the fat Spidergon networks found 

by evolution. Consequently, Table 4 summarizes the mean time 
complexity of evolving such schedules from all successful runs in 

terms of the number of evaluated generations. The number of 

successful runs varies from 25 in case of one-to-all CCs to only 

a single successful run in the case of all-to-all CCs.  

Table 3. Numbers of steps in CCs for Spidergon networks 

reached by evolution 

Topology OAB AAB OAS AAS 

6-gon 2 2 2 3 

8-gon 2 3 3 4 

12-gon 2 4 4 9 

16-gon 2 5 5 17 

20-gon 3 7 7 26 

24-gon 3 8 8 37 

28-gon 3 9 9 51 

32-gon 3 11 11 68 

36-gon 3 12 12 91 

2-fat_6-gon 4 12 11 12 

2-fat_8-gon 4 16 15 17 

2-fat_10-gon 5 20 19 25 

2-fat_12-gon 5 24 23 37 

2-fat_14-gon 5 29 27 50 

2-fat_16-gon 6 37 31 66 

2-fat_18-gon 6 42 35 86 

3-fat_4-gon 4 11 11 11 

3-fat_8-gon 5 24 23 38 

3-fat_12-gon 6 41 35 82 

4-fat_4-gon 4 16 15 16 

4-fat_6-gon 5 24 23 38 

4-fat_8-gon 6 33 31 64 

 

Table 4. The number of evolved generations producing 

schedules summarized in Table 3 (in thousands). 

Topology OAB AAB OAS AAS 

6-gon <1 <1 <1 <1 

8-gon <1 <1 <1 <1 

12-gon <1 2.3 <1 176 

16-gon <1 6.5 <1 101 

20-gon <1 4.1 <1 1266 

24-gon <1 12.4 <1 1942 

28-gon <1 24.9 <1 3221 

32-gon <1 74.1 <1 632 

36-gon 833 148 <1 1031 

2-fat_6-gon <1 31.4 <1 31.5 

2-fat_8-gon 2.1 786 <1 470 

2-fat_10-gon 5.4 214 <1 1739 

2-fat_12-gon 36.7 4330 <1 242 

2-fat_14-gon 45.5 2740 <1 3048 

2-fat_16-gon 58.9 1160 <1 6387 

2-fat_18-gon 64 2540 <1 4281 

3-fat_4-gon <1 227 <1 604 

3-fat_8-gon 15.4 2262 <1 3139 

3-fat_12-gon 96.3 2060 <1 509 

4-fat_4-gon 1.9 28.9 <1 1454 

4-fat_6-gon 7.5 2270 <1 495 

4-fat_8-gon 9.4 2056 <1 1412 
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5. CONCLUSIONS 
This work has focused on the evolutionary design of near optimal 

schedules for slim all-port as well as fat one-port Spidergon 
networks. The paper has introduced a formal definition of the 

schedule encodings and the fitness function. The basic principle 

of acceleration and restoration heuristics has been also discussed.  

The optimization of CC schedules has revealed that all-port 

Spidergon is very efficient in performing OAB, OAS and AAB. 
The evolution discovered the optimal schedules reaching the 

lower bounds for all Spidergon instances which cannot be 

improved any more. The weak point of all-port Spidergon 
network is AAS communication. Since parameter BC does not 

scale with the number of nodes (always BC = 8), the number of 

steps needed for AAS grows quadratically with P. For P ≥ 16 the 
lower bounds on AAS steps have not been reached and it is not 

known whether they are reachable. However, the difference is 
only a few steps, good enough for engineering practice. The best 

found upper bounds are summarized in Table 3. 

As far as the fat Spidergon is concerned, connecting 2, 3 or 4 one-

port processors to a single router did not help much in CCs. 

Lower cost of this arrangement is gained at the expense of poorer 
performance of all CCs; whereas performance of OAB, OAS and 

AAB communications is close to one-port Spidergons with slim 

nodes and the same number of cores, the performance of AAS is 
rather close to all-port Spidergons. Since the lower bounds are not 

known for the fat one-port Spidergons, the presented results 

represent the most accurate estimation that we have obtained so 
far.  

Future research will be oriented toward optimizing CCs on 
Spidergons modified for specific applications. Another research 

target is tolerance of faulty links in Spidergon network and their 

impact on CC performance. 
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