
Evolutionary-Based Conflict-Free Scheduling of Collective

Communications on Spidergon NoCs
Jiri Jaros

Brno University of Technology
Bozetechova 2

612 66 Brno, Czech Republic
+420 54114-1207

jarosjir@fit.vutbr.cz

Vaclav Dvorak
Brno University of Technology

Bozetechova 2
612 66 Brno, Czech Republic

+420 54114-1149

dvorak@fit.vutbr.cz

ABSTRACT

The Spidergon interconnection network has become popular
recently in multiprocessor systems on chips. To the best of our

knowledge, algorithms for collective communications (CC) have

not been discussed in the literature as yet, contrary to pair-wise
routing algorithms. The paper investigates complexity of CCs in

terms of lower bounds on the number of communication steps at

conflict-free scheduling. The considered networks on chip make
use of wormhole switching, full duplex links and all-port non-

combining nodes. A search for conflict-free scheduling of CCs

has been done by means of evolutionary algorithms and the
resulting numbers of communication steps have been summarized

and compared to lower bounds. Time performance of CCs can be

evaluated from the obtained number of steps, the given start-up
time and link bandwidth. Performance prediction of applications

with CCs among computing nodes of the Spidergon network is

thus possible.

Categories and Subject Descriptors

I.2.8 [Artificial intelligence]: Problem Solving, Control Methods

and Search – heuristic methods, scheduling.

General Terms

Algorithms, Performance, Design.

Keywords

Collective communications, communication scheduling, evolutio-
nary design, Spidergon, fat topologies, wormhole switching.

1. INTRODUCTION
Networks on Chip (NoCs) ever more replace traditional on-chip

communication architectures based on shared communication

medium - a bus. A number of CPU cores, memory modules and
other hardware units in Systems on a Chip (SoCs) or cores in

many-core systems with memory physically distributed among

computing nodes communicate by sending data through a NoC[1]

Classical logarithmic diameter networks, e.g. hypercubes,

butterflies and fat trees, provide enough bandwidth for all-to-all
communications, but do not map well into the two dimensions

provided by a silicon chip: the length of some interconnection

wires increases proportionally to the number of processors. This
will decrease the clock frequency dramatically and degrade the

performance. In this work we therefore restrict our attention to the

Spidergon NoC topology with mostly local interconnection
among processors.

The Spidergon depicted in Fig. 1 is the novel interconnection
network architecture suitable for the on-chip communication

demands of SoCs in several application domains [2]. The
Spidergon NoC first reported in [10], and later in [3], [4], has

been recently adopted by STMicroelectronics [5] with the

objective to realize low cost multiprocessor SoC implementation
with topology opened for application-specific optimization.

Spidergon is somewhere between the ring and mesh topologies:

an even number of nodes is connected into a bidirectional ring
and pairs of nodes are connected by a cross connection. Each edge

in Fig. 1 represents two unidirectional physical links, one for each

direction. In order to avoid deadlock, two virtual channels are
multiplexed on each physical link. Fig. 1 depicts the 16-node

Spidergon topology and its layout on a chip resembling a sparse

mesh. Each node represents a router/switch (Fig. 2) and a CPU
core.

 0

)
1

)
2

)
4

)
5

)
6

)
7

)
8

)
9

)
10 11 12

13

14

15

3

)
0

)
1

)
2

)
3

)
8

)
9

)
10 11

4

)
5

)
6

)
7

)
15 14 13 12

(a) basic Spidergon topology (b) the on-chip layout

0 1 2 6 7

8 9 10 14 15

bi-section

 (c) a ladder-like Spidergon topology

Figure 1. Isomorphic graphs of the 16-node Spidergon

topology.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

GECCO’10, July 7–11, 2010, Portland, Oregon, USA.

Copyright 2010 ACM 978-1-4503-0072-8/10/07...$10.00.

This topology is regular (constant node degree d = 3), node-

symmetrical and edge-asymmetrical. Node symmetry implies
identical routers within the entire network and simple routing

algorithms. Moreover, the Spidergon scheme employs packet-

based wormhole switching which can provide low message
latency at a low cost. The network graph in the form of Möbius

strip (Fig. 1c) demonstrates that bisection width BC as defined in

[6] is constant, BC = 8, which becomes a bottleneck with a larger
number of processors. The actual on-chip layout requires only

a single crossing of metal layers, Fig. 1b, c. If the router at each

node of the Spidergon NoC is a typical one-port router, the
communication performance suffers. Enhancing the one-port

router architecture to the all-port router architecture increases the

cost but improves performance a great deal [7].

Communication operations can be either point-to-point, with one

source and one destination, or collective, with more than two
participating processes. Collective operations are invoked by

nodes to distribute, gather, and exchange data; to perform global

computation operations on distributed data; and to synchronize
with one another at specific points in a program flow. Some

embedded parallel applications, like network or media processors,

are characterized by independent data streams or by a small
amount of inter-process communications [2]. However, many

general-purpose parallel applications display a bulk synchronous

processing (BSP) behavior: the processing nodes access the
network according to a global, structured communication pattern.

The performance of the collective communications (CCs for

short) has a dramatic impact on the overall efficiency of parallel

processing. The most efficient way to switch messages through
the network connecting multiple cores makes use of wormhole

(WH) switching, in which each message is divided into small

pieces (flow control digits, flits) that are pipelined through the
network. Wormhole switching reduces the effect of path length on

communication time, but if multiple messages exist in the network

concurrently (as is happens in CCs), contention for busy links
may be a source of congestion and waiting times. To avoid

congestion delays, it is necessary to organize CC into separate

steps in time and to put into each step only non-conflicting pair-
wise communications whose paths are disjoint. The conflict-free

scheduling of CCs is therefore important, because it leads to

congestion-free CCs.

The deterministic shortest path routing algorithms proposed for

the Spidergon architecture are so called Across First (aFirst) and
Across Last (aLast) [4], [9]. Both algorithms are minimal source

routing. An analytical performance model has been analyzed in

[8] and the average message latency evaluated. Regarding CCs,
only the broadcast and multicast CCs on Spidergon were studied

in the past [7]. Other CCs, especially all-to-all communications

have not been analyzed in the literature as yet.

In this work, we want to improve the performance of Spidergon
NoC by designing such communication schedules that prevent any

possible link contention. Optimized communication schedules can

be uploaded into switch routing tables and boost the performance
of many parallel algorithms. For this reason, four common CC

patterns based on broadcast and scatter services will be analyzed.

The optimization of CC scheduling is based on evolutionary

techniques. These techniques applied already to CC scheduling

problem on hypercubes of medium size (tens of nodes) [11] were

able to find the already known optimum solutions obtained

analytically. However, for some CCs studied in this work
analytic methods to find optimum schedules do not exist, so that

the results can be compared only to theoretical lower bounds.

The paper is structured as follows. In the following Section 2 we

analyze time complexity of CCs in WH networks, namely the

lower bounds on the number of start-ups for general networks
under the assumption of uniform non-combined messages. In

Section 3 we present an evolutionary search for optimum CC

schedules on simple Spidergons as well as on Spidergons with fat
nodes. The time complexity of the evolutionary search is also

discussed. Results and possible extensions are commented on in

Conclusions.

2. TIME COMPLEXITY OF COLLECTIVE

COMMUNICATIONS
A collective operation is usually defined in terms of a group of

processes. The operation is executed when all processes in the

group call the communication routine with matching parameters.
We classify collective operations into three types according to

their purpose:

 - CCs (OA - One-to-All, AO - All-to-One, AA - All-to-All),
 - global computation (reduction AOR or AAR and scan) and

 - synchronization (barrier).

The CCs are most important, as other collective operations are

closely related to them. In a broadcast (OAB), one process sends

the same message to every group member, whereas in a scatter
(OAS), one process sends a different message to each member.

Gather (AOG) is the dual operation to scatter, in that one process

receives a message from each group member. These basic
operations can be combined to form more complex operations. In

all-to-all broadcast (AAB), every process sends a message to
every other group member. In complete exchange, also referred to

as all-to-all scatter-gather (AAS), every group member sends

a different message to every other group member. Permutation
operations, such as shift and transpose, are also CCs. Since

complexities of some communications are similar (AOG ~ OAS,

AOR ~ OAB, AAR ~ AAB), we will focus only on four basic
types (OAB, OAS, AAB, AAS). Also, from now on, when we

refer to „collective communications”, then we will assume only

CCs involving the group of all processes.

The simplest time model of point-to-point communication in

direct WH networks takes the communication time composed of
a fixed start-up time ts at the beginning (SW and HW overhead of

a sender and a receiver), a serialization delay, i.e. the transfer time

of m message units (words or bytes), and of a component that is
a function of distance h (the number of channels on the route or

hops a message has to do):

rsWH htmttt ++= 1
, (1)

where t1 is per unit-message transfer time and tr includes a routing
decision delay, switching and inter-router latency. A relatively

small dependence on h may be taken into account by including

hmaxtr into ts, so that only two parameters ts and mt1 are sufficient.

In the rest of the paper we assume that the CC in WH networks

proceeds in synchronized steps. In one step of CC, a set of
simultaneous packet transfers takes place along complete disjoint

paths between source-destination node pairs. If the source and

destination nodes are not adjacent, the messages go via some
intermediate nodes, but processors in these nodes are not aware of

it; the messages are routed automatically by the routers attached to

processors.

Complexity of collective communication will be determined in

terms of the number of communication steps or equivalently by
the number of “start-ups” τCC (upper bound). Provided that the

term hmaxtr is included in ts and excluding contention for channels,

CC times can be obtained approximately as the sum of start-up
delays plus associated serialization delays mit1 in individual

communication steps

][)(11

1

mtttmtt S

CC

i

iSCC

CC

+=+=∑
=

τ
τ

. (2)

The above expression assumes that the nodes can only re-

transmit/consume original messages, so that the length of

messages mi = m remains constant in all communication steps.
This is true in the so called non-combining model of

communication; on the contrary, in the combining model the

nodes can combine/extract partial messages with negligible
overhead. The combining/non-combining model influences CC

performance and either one can outperform the other in some

cases. Further on we will consider the non-combining model only.

Possible synchronization overhead involved in communication

steps, be it hardware or software-based, should be included in the
start-up time ts. Let us note that with uniform messages and

a single clock signal domain, one barrier synchronization before

CC might be sufficient to synchronize the whole CC.
Communication steps would then follow in the lockstep.

According to frequency of CCs and an amount of interleaved

computation (BSP model) in a certain application, efficiency of
parallel processing can be estimated.

The port model of the system defines the number k of CPU ports

that can be engaged in communication simultaneously. This

means that beside 2d network channels, there are 2k internal
unidirectional (DMA) channels, k input and k output channels,

connecting each local processor to its router that can transfer data

simultaneously. Always k ≤ d, where d is a node degree; a one-
port model (k=1) and an all-port router model (k=d) are most

frequently used. Fig. 2 shows a one-port and an all-port router for

the Spidergon network. In the one-port system, a node must
transmit (and/or receive) messages sequentially. The messages

may block on occupied injection channel, even when their

required network channels are free. Architectures with multiple
ports alleviate this bottleneck. In the all-port router architecture,

there are as many local CPU channels as there are network

channels that reduce the message blocking latency during CC
operations. The port model determines the number of required

communication steps and thus the CC performance.

Finally, the lower bound on the number of steps τCC depends on

a channel type; we have to distinguish between unidirectional

(simplex) channels and bi-directional (half-duplex HD, full-
duplex FD) channels. Typically τCC will be twice as large for HD

channels than for the FD ones. Further on we will consider FD

channels and the all-port router model only.

Figure 2. Port models for 3-regular Spidergon network.

The number of communication steps is in the first place

influenced by the topology of an interconnection network.
Generally the lower bounds τCC(G) for the network graph G

depend on node degree d, number of nodes P, and bisection width
BC, Table 1.

Table 1. Lower bounds on the number of communication steps

τCC (WH, k-port, non-combining networks)

CC τCC [steps]

OAB log k+1 P 
AAB (P – 1) / k
OAS (P – 1) / k
AAS max (P2 / (2BC) , Σ /(Pk) , (P – 1) / k)

As far as the broadcast communication (OAB) is concerned, the

lower bound on the number of steps τOAB(G) = s = logk+1 P is

given by the number of nodes informed in each step, that is

initially 1, 1 + 1 × k after the first step, (k + 1) + (k + 1) × k =

= (k + 1)2 after the second step, etc.,…, and (k + 1)s ≥ P nodes

after step s. Since the broadcast message is the same for all the
nodes, each node once informed can help with distributing of the

message in following steps.

In case of AAB communication, since each node has to accept

P − 1 distinct messages, the lower bound is (P − 1) / k steps.
A similar bound applies to OAS communication, because each

node cannot inject into the network more than k messages in one

step.

The lower bound for AAS can be obtained considering that half

the messages from each processor cross the bisection, whereas the

other half do not. There will be altogether 2(P / 2)(P / 2)/BC of

such messages in both ways, where BC is the channel bisection
width [4]. Sometimes a stronger lower bound may be obtained

considering the count of channels from all sources to all

destinations (Σ) and the limited count Σ1 of channels available for
one step. In regular networks with constant node degree Σ1 = Pk.

As each node has to accept P − 1 distinct messages, (P − 1) / k
bound has to be also obeyed.

Specialized AAS lower bounds for the Spidergon network with

P = 4n nodes are easily derived from the following parameters:

BC = 8, Σ1 = 3P and Σ = (P2 / 2)(P / 4 + 1);

τCC = max (P2 / (2BC), Σ / (Pk), (P − 1) / k =

 max (P2 / 16, (P / 2k) (P/4 + 1) , (P − 1) / k). (3)

Which lower bound takes effect depends on a particular network

topology and the port model. For the network topologies

local CPU ports local CPU ports

(a) one-port model (b) all-port model

potentially useful in NoCs are the lower bounds of selected CCs,

computed from the formulas in Table 1 and from (3), given in
Table 2. Wormhole switching and full duplex links have been

assumed everywhere; port model k = 1 and k = 3 (all-port).

Table 2. Lower bounds τCC obtained from Table 1 for the

Spidergon network (1-port/all-port)

Topology OAB AAB OAS AAS

6-gon 3/2 5/2 5/2 7/3

8-gon 3/2 7/3 7/3 12/4

12-gon 4/2 11/4 11/4 24/9

16-gon 4/2 15/5 15/5 40/16

20-gon 5/3 19/7 19/7 60/25

24-gon 5/3 23/8 23/8 84/36

28-gon 5/3 27/9 27/9 112/49

32-gon 5/3 31/11 31/11 144/64

36-gon 6/3 35/12 35/12 180/81

The Spidergon, as well as the bidirectional ring topology, though

very simple, is not free from routing deadlock, because the
channel dependency graph is not acyclic [4], [6]. This can be seen

on a common permutation called the cyclic shift. The problem can

be solved by the introduction of virtual channels [4] and by
implementing rules on channel usage. However, in conflict-free

CCs all source to destination paths are disjoint and therefore there

is no competition for shared resources, no danger of deadlock and
no need for escape virtual channels. When implementing CCs, we

therefore use either one of two virtual channels.

3. EVOLUTIONARY SEARCH FOR THE

OPTIMAL CONFLICT-FREE SCHEDULES
The selection of Evolutionary Algorithms (EA) for the scheduling
problem has been justified already in [11]. Although the proposed

methodology of designing near-optimal CC schedules is

independent of the particular evolutionary algorithm, we restricted
ourselves in this work only to a simple EDA evolutionary

algorithm without gene dependencies (UMDA).

Univariate Marginal Distribution Algorithm (UMDA) [12] is

a very simple EDA [13] (Estimation of Distribution Algorithm)
which does not reflect any interaction between genes

(variables/solution parameters). The main advantages of this

algorithm are better mixing of genetic material than it is possible
in standard GA [14], very simple implementation and much faster

execution than more complex EDAs like BOA (Bayesian

Optimization Algorithm [13]) algorithm. Of course, any other EA
can be employed. Basic comparison of a success rate and

execution time of other types of EA applied to CC scheduling

problem can be found in [15] and [16].

The following subsections detail the evolutionary approach.

Section 3.1 shows the global data structure and a preprocessing
phase. Sections 3.2 and 3.3 describe how the dataset is encoded,

Section 3.4 presents the evaluation function used in EA, and

Section 3.5 briefly describes acceleration and restoration
heuristics used to increase a success rate and to reduce the

execution time required to reach a satisfactory result. Parameters

of used EA (UMDA) are outlined in Section 3.6.

3.1 Preprocessing Phase
An input data structure maintains a description of a Spidergon

topology, a definition of CC and sets of senders, receivers and
intermediate routers. The topology description is saved in the

form of node/router neighbor lists, where the nodes/routers are

considered to be neighbors only if they are connected by a simple
direct link.

After the input file is loaded, the data have to be preprocessed. In
the first phase, the preprocessor divides the set of all nodes V*

into a set of transmitters T and a set of receivers R. Then, a set of

terminal nodes *VV ⊆ is determined as the union T∪R. The

terminal nodes can inject/consume messages to/from the network,
while the non-terminal nodes (routers) can only retransmit the

messages. Finally, all the sets are ordered based on the node

index.

The preprocessor generates all the shortest paths (the set Rxy)

between all transmitter-receiver pairs x-y and saves them into
a specific data structure in the operating memory for the second

phase. This task is performed by a modified version of the well

known Dijkstra’s algorithm [17].

3.2 Scatter Encoding
As broadcast and scatter are completely different communication

services, candidate solutions are also encoded differently. The

definition of scatter encoding will be introduced first.

Let’s consider a scatter based CC communication between M

transmitters from set T and N receivers from set R.

1) The CC can be defined as a set COMM of pair-wise

transfers commsrc,dst originating in src ∈ T and terminating in

dst ∈ R, where src ≠ dst:

{ }dstsrcRdstTsrccommCOMM dstsrc ≠∈∈= ,,:,
. (4)

2) A direct encoding can be designed for the scatter-based
communication schedules (i.e. an exact description of the

schedule is stored in a chromosome). A chromosome can be

formalized as n-tuple of genes:

















=

−−−

−

1,10,1

1,00,0

...

...

NMM

N

genegene

genegene

chromosome MOM
, (5)

where M is the number of transmitters and N is the number of

receivers while n is the total number of genes. Notice that

M, N ≤ P and n = M·N. (6)

3) A gene genei,j represents a single message transfer from the

transmitter (source) xi ∈ T to the receiver (destination) xj ∈ R,

where xi ≠ xj. The source and the destination are identified by the

genes’ indexes i and j. A gene is the ordered couple:

()

Stepss

Rl

jiNjMislgene

ji

jiji

jijiji

<≤

∈

≠<≤<≤=

,

,,

,,,

0

,0 ,0 ,,
 (7)

The first component li,j represents a chosen path from transmitter
xi to receiver xj stored in set Ri,j. The second component si,j

determines a selected communication step of the transfer between

xi and xj. The total number of communication steps is given by the
predefined parameter Steps.

4) The (shortest) path is defined as an ordered set of
unidirectional channels. The length of the path is equal to h (hop

count):

li,j = {c1, c2, c3,…,ch}, |li,j| = h, (8)

where src(c1) = xi and dst(ch) = xj.

5) Next consider a set Genome containing all the genes

included in a chromosome:

{ }jiNjMigeneGenome ji ≠<≤<≤= ,0 and 0:,
. (9)

6) Finally, we can define a bijective mapping f from set

Genome into set COMM meaning that each gene corresponds to

a unique pair-wise transfer and also vice versa:

COMMcommGenomegenef dstsrcji ∈∈ ,,: a (10)

iff xi = src, xj=dst.

3.3 Broadcast encoding
Consider a broadcast based CC communication between M

transmitters from set T and N receivers from set R. Unfortunately,

the set COMM cannot be constructed for broadcast based CCs,

since each node already informed could also become a distributor

of the broadcast message.

1) Therefore, the definition of CC is based on a set of

messages MSG that have to be delivered during a given CC to

each destination.

Let

{ }dstsrcRdstTsrcmsgMSG dstsrc ≠∈∈= ,,:,
 (11)

be a set of messages originating in transmitters src, transported

through the network via an intermediate distributor, and

consumed by receivers dst. Notice that the message distributors

are not known in advance.

2) A direct encoding has been designed to store broadcast-

based communication schedules. A broadcast CC schedule is

represented by the chromosome in the form of n-tuple of genes

















=

−−−

−

1,10,1

1,00,0

...

...

NMM

N

genegene

genegene

chromosome MOM
 (12)

where M is the number of transmitters and N is the number of

receivers while n is the total number of genes. Again, notice that

M, N ≤ P and n = M·N. (13)

3) A gene genei,j determines the way in which a receiver

x j∈ R obtains the broadcast message msgi,j from the transmitter

xi ∈ T via a distributor di,j ∈ V. The producer and consumer of the

message are identified by the genes’ indexes i and j. Individual

genes are represented by the ordered triplet:

()

jdij

jsji

ji

jijijiji

ji

ji

Rl

VDd

Stepss

jiNjMisldgene

,,

,,

,

,,,,

,

,

0

,0 ,0 ,,,

∈

⊂∈

<≤

≠<≤<≤=

 (14)

The first component of the gene selects a distributor di,j of the

message msgi,j. Besides the transmitter, the distributor can be any

node from set
jisD

,

 that includes all nodes informed during all

si,j − 1 steps; see the extended domination set theory [18]. The

second component li,j represents a chosen path between the

distributor di,j and the receiver xj from the set
jd ji

R ,,

.

Analogously, the last component si,j determines a selected

communication step of the transfer between di,j and xj. The total

number of steps is given by the predefined parameter Steps.

4) The (shortest) path was defined in the same way as in (8) as

an ordered set of unidirectional channels.

5) Next, consider a set Genome containing all genes included

in a chromosome

{ }jiNjMigeneGenome ji ≠<≤<≤= ,0 and 0:,
. (15)

6) Finally, we can define a bijective mapping f from set

Genome into set MSG; each gene thus corresponds to a unique

src-dst transfer of the message and also vice versa.

MSGmsgGenomegenef dstsrcji ∈∈ ,,: a

iff xi = src, x j = dst (16)

3.4 The Conflict Counting Fitness Function
This section proposes a formal description of the fitness function.

The definition is the same for scatter and broadcast CC.

1) Let SS (Same Step) be a binary relation on the set Genome.

Let a, b ∈ COMM (scatter) or a, b ∈ MSG (broadcast) message

transfers be represented by genei,j and genek,l, then

genei,j SS genek,l iff si,j = sk,l (17)

Thus, two transfers are in relation SS if and only if they are

executed within the same time step.

Now, we show that SS is an equivalence relation:

a) SS is reflexive, since no transfer can be performed in more

than one time slot.

b) SS is clearly symmetric considering si,j = sk,l, then sk,l = si,j.

c) SS is transitive. Let a, b, c be elements of Genome.

Whenever a SS b and b SS c, then also a SS c (a is executed

within the same step as c whenever a is executed within the

same step as b and b is executed within the same step as c).

Thus SS is an equivalence relation.

2) The equivalence relation SS induces the partition on the

set Genome. Each equivalence class [gs] includes all transfers

performed in the same slot.

3) Let Ea,b be a set of all channels shared in two transfers a, b

represented by genes genei,j, genek,l ∈ Genome, which utilizes the
paths li,j and lk,l:

lkjiba llE ,,, ∩= (18)

The number of conflicts between a and b can be obtained as the

cardinality of the set Ea,b.

4) Define a multiset Es including channels shared by all

transfers within a given time slot, then

U
bagba

bas

s

EE
≠∈

=
],[,

,
 (19)

5) The multiset E, covering all shared channels within the

whole CC, can be obtained by a union over all equivalence
classes. Thus

U
SSGenomeg

s

s

EE
/][∈

= (20)

6) The total number of conflicts can be obtained as the

cardinality of multiset E. Thus

Fitness = |E|. (21)

The valid communication schedule for a given number of

communication steps must be conflict-free. Valid schedules are

either optimal (the number of steps equals the lower bound) or
suboptimal. Evolution of a valid schedule for the given number of

steps is completed as soon as fitness (number of conflicts) drops

to zero. If it does not do so in a reasonable time, the prescribed
number of steps must be increased.

3.5 Acceleration and Restoration Heuristics
New heuristics have been developed to improve OAS/AAS

optimization speed taking into account a search space restriction
due to a limited message injection capability of network nodes.

Because no node can send more than k messages in

a communication step, an acceleration heuristic checks this
condition in the whole chromosome and redesigns terminal node

utilization in all communication steps before evaluating the fitness

function. The implementation of the heuristic is based on a node
utilization histogram.

The second OAS/AAS heuristic replaces the mutation operator in
the employed EA. This heuristic swaps associated communication

steps of two transfers originating in the same transmitter.

Actually, this heuristic performs a local search on a candidate
solution based on the time domain. The conflicting transfers are

rescheduled in spite of their timing to reduce total congestion.

Since illegal solutions of the OAB/AAB problem can appear

during the process of genetic manipulation with OAB/AAB

chromosomes, (a gene violates the condition
jisji Dd

,, ∈ in eq.

14), the restoration heuristic has to be applied. This heuristic
proceeds in subsequent communication steps and constructs

a correct broadcast schedule. A check is made for every node

whether the node receives the message really from the node
already informed. If not so, the source node of this point-to-point

communication is replaced by a node that has already received the

message. The replacement is made taking into account the node

utilization histogram. An exchange of the distributor node di,j has

naturally an impact on utilized links li,j. Hence the original path is
replaced by the one newly chosen from a list of exploitable paths

jd ji
R ,,

 between new input-output pair di,j and xj.

To accelerate the convergence of the EA, an OAB/AAB-specific

heuristics have been developed. First, good building blocks are
injected into the initial population. First, the communication step

si,j is initially set to the same value (si,j = 0). Then the restoration

heuristic corrects the time slots and produces the correct broadcast
trees with significantly lower numbers of conflicts.

3.6 Parameters of EA
The simple UMDA [12] evolutionary algorithm has been used for

the search for near optimal communication schedules. The value
of the population size was set to 80 individuals because higher

values did not improve the quality of found schedules and did not

justify an increased computation time. The binary tournament
selects the better half of the current population to form the parent

subpopulation. The univariate marginal probabilistic model is

created according to the parent subpopulation in each generation.
New chromosomes are generated by the sampling of the estimated

probabilistic model. Each chromosome is then mutated by

a mutation operator that includes acceleration heuristics as a local
search technique. The chromosome mutation probability is 0.9.

This operator is responsible for testing and changing possible

source-destination paths for particular point-to-point
communications. The mutation rate is very high due to a large

number of source-destination pairs that grows exponentially with

the source-destination distance. Finally, the newly generated
solutions replace the worse half of the current population.

4. EXPERIMENTAL RESULTS
The evolutionary optimization described previously has been

applied to several slim all-port Spidergon networks as well as to
several fat one-port Spidergon networks (Fig.3) with 2, 3 and 4

CPUs connected to a single router. Our goal is to find (near)

optimal schedules for four basic CC patterns not studied on
Spidergon networks as yet.

4.1 Scheduling CCs on the All-port Spidergon
We will use the all-port Spidergon NoC with P = 6, 8, 12, 16, …,

4n retaining the original topology [7], even though other
extensions have been proposed [10]. We will comment the CC

algorithms shortly on the 8-processor Spidergon network

(Octagon), Fig. 3. One-to-all communications are done the same
way for every source node due to node symmetry. OAB clearly

can be done in 2 steps and OAS needs 7/3 = 3 steps. In order to

implement AAB, we have to use such a broadcasting tree that is
time-arc-disjoint (TADT) and can be used by all nodes

simultaneously without creating conflict. For example node 0

could use this TADT:

Step 1: 0 → 7, 0 → 4, 0 → 1

Step 2: 7 → 6, 1 → 2

Step 3: 4 → 5, 4 → 3.

We cannot join steps 2 and 3 though, because it would create

conflict - one node cannot use more than 3 channels in a single
step, because there is not more than 24 channels altogether.

The most complex AAS communication is not performed the

same way by all nodes - there is no analogy to the TADT. In the
design of AAS schedule, it is necessary to exploit some kind of

combinatorial optimization (EA). Four steps were needed for

AAS on Octagon with all-port (3-port) nodes, which is equal to
the lower bound in Table 1.

For a Spidergon with the number of nodes P = 4n, we can find
optimum CC schedules similarly as for Octagon using the

evolutionary algorithm. The best obtained results from 25 runs are

given in Table 3. The cases where the upper bound differs from
the known lower bound are denoted by digits in bold.

Table 4 gives the time complexity of an evolutionary process for
all the obtained schedules listed in Table 3. It summarizes the

number of evolved generations with the constant population size

of 80 individuals. From the table, it can be concluded that that the
evolutionary design of one-to-all CC is pretty fast. By contrast,

finding of a high quality all-to-all schedule is a much more

complex problem that can take up to a few millions of
generations, especially for AAS. A fluctuation of the numbers of

generations is given by different distances between lower and

upper bounds.

 (a) slim all-port Octagon (b) fat one-port Octagon

Figure 3. Two different Octagon networks.

4.2 Scheduling CCs on the Fat Spidergon
Fat nodes with several CPUs connected by single port to the

router could provide cheaper solution for Spidergon networks of
a larger size, similarly as fat hypercubes do. However, it is

a trade-off between such measures as cost and performance. As it

is seen in Table 3, we can e.g. divide 12 cores in Spidergon
network among 12, 6 or 4 nodes with 1, 2, or 3 cores per node,

respectively. If we measure the cost by the total number of ports,

it will be 48, 30, and 24 in these three cases. However, looking at
the limits of the best possible CC performance, the impact is

rather high. The difference between 2 or 3 cores per node is then

negligible.

It should be noted that neither lower bounds for one-port, nor for
all-port model apply here. The reason is that we cannot assign 3

network ports of a node explicitly to internal cores. Let us also

note that the optimal schedules are not known for the fat
Spidergon networks so far. Accordingly, Table 3 presents the best

know upper bounds of CCs for the fat Spidergon networks found

by evolution. Consequently, Table 4 summarizes the mean time
complexity of evolving such schedules from all successful runs in

terms of the number of evaluated generations. The number of

successful runs varies from 25 in case of one-to-all CCs to only

a single successful run in the case of all-to-all CCs.

Table 3. Numbers of steps in CCs for Spidergon networks

reached by evolution

Topology OAB AAB OAS AAS

6-gon 2 2 2 3

8-gon 2 3 3 4

12-gon 2 4 4 9

16-gon 2 5 5 17

20-gon 3 7 7 26

24-gon 3 8 8 37

28-gon 3 9 9 51

32-gon 3 11 11 68

36-gon 3 12 12 91

2-fat_6-gon 4 12 11 12

2-fat_8-gon 4 16 15 17

2-fat_10-gon 5 20 19 25

2-fat_12-gon 5 24 23 37

2-fat_14-gon 5 29 27 50

2-fat_16-gon 6 37 31 66

2-fat_18-gon 6 42 35 86

3-fat_4-gon 4 11 11 11

3-fat_8-gon 5 24 23 38

3-fat_12-gon 6 41 35 82

4-fat_4-gon 4 16 15 16

4-fat_6-gon 5 24 23 38

4-fat_8-gon 6 33 31 64

Table 4. The number of evolved generations producing

schedules summarized in Table 3 (in thousands).

Topology OAB AAB OAS AAS

6-gon <1 <1 <1 <1

8-gon <1 <1 <1 <1

12-gon <1 2.3 <1 176

16-gon <1 6.5 <1 101

20-gon <1 4.1 <1 1266

24-gon <1 12.4 <1 1942

28-gon <1 24.9 <1 3221

32-gon <1 74.1 <1 632

36-gon 833 148 <1 1031

2-fat_6-gon <1 31.4 <1 31.5

2-fat_8-gon 2.1 786 <1 470

2-fat_10-gon 5.4 214 <1 1739

2-fat_12-gon 36.7 4330 <1 242

2-fat_14-gon 45.5 2740 <1 3048

2-fat_16-gon 58.9 1160 <1 6387

2-fat_18-gon 64 2540 <1 4281

3-fat_4-gon <1 227 <1 604

3-fat_8-gon 15.4 2262 <1 3139

3-fat_12-gon 96.3 2060 <1 509

4-fat_4-gon 1.9 28.9 <1 1454

4-fat_6-gon 7.5 2270 <1 495

4-fat_8-gon 9.4 2056 <1 1412

0

9

2

4

6 11

13

15

1

3

5

7

8

10

12

14

0

1

2

3

4

5

6

7

5. CONCLUSIONS
This work has focused on the evolutionary design of near optimal

schedules for slim all-port as well as fat one-port Spidergon
networks. The paper has introduced a formal definition of the

schedule encodings and the fitness function. The basic principle

of acceleration and restoration heuristics has been also discussed.

The optimization of CC schedules has revealed that all-port

Spidergon is very efficient in performing OAB, OAS and AAB.
The evolution discovered the optimal schedules reaching the

lower bounds for all Spidergon instances which cannot be

improved any more. The weak point of all-port Spidergon
network is AAS communication. Since parameter BC does not

scale with the number of nodes (always BC = 8), the number of

steps needed for AAS grows quadratically with P. For P ≥ 16 the
lower bounds on AAS steps have not been reached and it is not

known whether they are reachable. However, the difference is
only a few steps, good enough for engineering practice. The best

found upper bounds are summarized in Table 3.

As far as the fat Spidergon is concerned, connecting 2, 3 or 4 one-

port processors to a single router did not help much in CCs.

Lower cost of this arrangement is gained at the expense of poorer
performance of all CCs; whereas performance of OAB, OAS and

AAB communications is close to one-port Spidergons with slim

nodes and the same number of cores, the performance of AAS is
rather close to all-port Spidergons. Since the lower bounds are not

known for the fat one-port Spidergons, the presented results

represent the most accurate estimation that we have obtained so
far.

Future research will be oriented toward optimizing CCs on
Spidergons modified for specific applications. Another research

target is tolerance of faulty links in Spidergon network and their

impact on CC performance.

6. ACKNOWLEDGMENTS
This research has been partially supported by the research grants

"Safety and security of networked embedded systems

applications", GA 102/08/1429 of Czech Science Foundation
(2008-10), "Natural Computing on Unconventional Platforms",

GP103/10/1517, Czech Science Foundation (2010-13), "Secured,

reliable and adaptive computer systems", BUT FIT grant FIT-10-
S-1 (2010) and the research plan "Security-oriented research in

information technology", MSM 0021630528 (2007-13).

7. REFERENCES
[1] Ivanov, A., De Micheli, G. “Guest Editors’ Introduction: The

Network-on-Chip Paradigm in Practice and Research”, IEEE

Design&Test of Computers, vol. 22., no. 5, 2005, pp. 399-

403.

[2] Jantsch, A., Tenhunen, H. Networks on Chip, Kluwer

Academic Publ., Boston, 2003.

[3] Coppola, M., Locatelli, R., Maruccia, G., Pieralisi, L.,

Scandurra, A. Spidergon: a novel on-chip communication
network. Int’l Symposium on System-on-Chip, 2004.

[4] Coppola, M., Grammatikakis, M. D., Locatelli, R., Maruccia,
G., Pieralisi, L. Design of Cost-Efficient Interconnect

Processing Units: Spidergon STNoC. Boca Raton, FL, USA:

CRC CRC Press, Inc., 2008.

[5] STMicroelectronics. www.st.com.

[6] Duato, J., Yalamanchili, S. Interconnection Networks – An

Engineering Approach, Morgan Kaufman Publishers,

Elsevier Science, 2003.

[7] Moadeli, M., Vanderbauwhede, W., Shahrabi, A. A

Performance Model of Communication in the Quarc NoC.
In 14th IEEE International Conference on Parallel and

Distributed Systems, IEEE CS Press, 2008, pp. 908-913.

[8] Moadeli, M., Shahrabi, A., Vanderbauwhede, W., Ould-

Khaoua, M. An Analytical Performance Model for the

Spidergon NoC. In 21st International Conference on

Advanced Networking and Applications (AINA'07), IEEE CS

Press, pp. 1014 - 1021.

[9] Concer, N., Iamundo, S., Bononi, L. aEqualized: a Novel

Routing Algorithm For The Spidergon Network On Chip. In:

Design, Automation and Test in Europe, DATE 2009, Nice,
2009, IEEE CS Press, pp. 749-754.

[10] Karim, F., Nguyen, A. An Interconnect Architecture for

Networking Systems on Chips. IEEE Micro, 2002, pp. 36-45.

[11] Jaros, J., Ohlidal, M., Dvořák, V. An Evolutionary Approach
to Collective Communication Scheduling, In 2007 Genetic

and Evolutionary Computation Conference, New York, US,

ACM, 2007, pp. 2037-2044.

[12] Mühlenbein, H., Paaß, G. From recombination of genes to
the estimation of distributions I. Binary parameters. In

Lecture Notes in Computer Science 1411: Parallel Problem

Solving from Nature – PPSN IV, pp. 178-187, 1996.

[13] Larrañaga, P., Lozano, J. A. Estimation of Distribution

Algorithms. Kluwer Academic Publishers, London 2002,
ISBN 0-7923-7466-5.

[14] Goldberg D. Genetics Algorithms in Search, Optimization,

and Machine Learning, Addision-Wesley Publishing

Company, 1989.

[15] Jaros, J., Dvorak, V. Speeding-up OAS and AAS

Communication in Networking System on Chips, In: Proc. of

8th IEEE Workshop on Design and Diagnostic of Electronic

Circuits and Systems, Sopron, HU, UWH, 2005, pages 4.

[16] Ohlidal, M., Jaros, J., Dvorak, V., Schwarz, J. Evolutionary
Design of OAB and AAB Communication Schedules for

Interconnection Networks, In Lecture Notes in Computer

Science, 2006, no. 3907, DE, EvoWorkshops 2006, pp. 267-
278, ISSN 0302-9743.

[17] Dijkstra, E. W. A note on two problems in connection with
graphs. Numerische Mathematik, 1:269–271, 1954.

[18] Tsai, Y., McKinley, P. K. An Extended Dominating Node
Approach to Broadcast and Global Combine in Multiport

Wormhole-Routed Mesh Networks. In IEEE Transactions on

Parallel and Distributed Systems, vol. 8, no. 1, 1997.

