
An Efficient Selection Strategy for Digital
Circuit Evolution

Zbyšek Gajda and Lukáš Sekanina

Brno University of Technology, Faculty of Information Technology
Božetěchova 2, 612 66 Brno, Czech Republic

gajda@fit.vutbr.cz, sekanina@fit.vutbr.cz

Abstract. In this paper, we propose a new modification of Cartesian
Genetic Programming (CGP) that enables to optimize digital circuits
more significantly than standard CGP. We argue that considering fully
functional but not necessarily smallest-discovered individual as the par-
ent for new population can decrease the number of harmful mutations
and so improve the search space exploration. This phenomenon was con-
firmed on common benchmarks such as combinational multipliers and
the LGSynth91 circuits.

1 Introduction

Cartesian Genetic Programming (CGP) exhibits many interesting features, es-
pecially for circuit design. When CGP is applied to reduce the number of gates
in digital circuits it starts with the fitness function which evaluates the circuit
behavior only. Once one of candidate circuits conforms to the behavioral specifi-
cation the number of gates becomes important and reflected in the fitness value.
This method which will be called the standard CGP in this paper, is widely
adopted in literature [1, 2, 3, 4].

We have shown in our previous work [5] that area-efficient digital circuits can
be evolved even if the requirement on the gate reduction is not specified explicitly.
The method is based on modifying the selection mechanism and fitness function
of the standard CGP. In this paper, we provide further experimental evidence for
this phenomenon. In addition to testing the method using popular benchmarks
such as multipliers we will perform experimental evaluation using the LGSynth91
benchmark circuits. We hypothesize that the neutral search and redundancy of
encoding of CGP (as demonstrated in [6, 7, 8]) are primarily responsible for
this phenomenon. We argue that considering fully functional but not necessarily
smallest-discovered individuals as parents improve the search space exploration
in comparison with the standard CGP.

The rest of the paper is organized as follows. Section 2 surveys the basic
(standard) version of CGP. Benchmark problems are presented in Section 3.
Proposed modification of CGP is formulated in Section 4. The results of exper-
iments are summarized in Section 5. Section 6 deals with the analysis of results
on the basis of measurement of non-destructive mutations. Finally, conclusions
are given in Section 7.

2 Cartesian Genetic Programming

Cartesian Genetic Programming is a widely-used method for evolution of digital
circuits [9, 1]. In CGP, a candidate entity (circuit) is modeled as an array of nc
(columns) × nr (rows) of programmable nodes (gates). The number of inputs, ni,
and outputs, no, is fixed. Each node input can be connected either to the output
of a node placed in previous l columns or to one of the program inputs. The l-back
parameter, in fact, defines the level of connectivity and thus reduces/extends the
search space. For example, if l=1 only neighboring columns may be connected;
if nr = 1 and l = nc then full connectivity is enabled. Feedback is not allowed.
Each node is programmed to perform one of na-input functions defined in the
set Γ (nf denotes |Γ |). Each node is encoded using na + 1 integers where values
1 . . . na are the indexes of the input connections and the last value is the function
code. Every individual is encoded using nc.nr.(na + 1) + no integers. Figure 1
shows an example of a candidate circuit and its chromosome.

n o r

1 3

x o r

2 4

n o t

5 5

a n d

3 6

x o r

2 7

n o t

5

0

1

2 8

1 ,2 ,1 ; 1 ,2 ,2 ; 4 ,2 ,5 ; 3 ,4 ,3 ; 6 ,1 ,2 ; 0 ,5 ,5 ; 7 ,6

Fig. 1. An example of a candidate circuit in CGP and its chromosome: l = 3, nc = 3,
nr = 2, ni = 3, no = 2, na = 2, Γ = {NOR (1), XOR (2), AND (3), NAND (4), NOT
(5)}.

CGP operates with the population of 1+λ individuals (typically, λ is between
1 and 20). The initial population is constructed either randomly or by a heuristic
procedure. Every new population consists of the best individual of the previous
population and its λ offspring. The offspring individuals are created using a point
mutation operator which modifies h randomly selected genes of the chromosome,
where h is the user-defined value.

There is one important rule for selection of the parent. In case when two or
more individuals can serve as the parent, the individual which has not served as
the parent in the previous generation will be selected as the new parent. This
strategy is important because it ensures the diversity of population [7]. The
algorithm is terminated when the maximum number of generations is exhausted
or a sufficiently working solution is obtained.

Because we will deal with digital circuit evolution, let us consider the fitness
function for that case only. The goal is to obtain a perfectly working circuit

(all assignments to the inputs have to be tested) with the number of gates as
low as possible. Additional criteria can be included; however, we will not deal
with them in this paper. The most effective strategy to the fitness calculation
proposed so far is as follows: The fitness value of a candidate circuit is defined
as [3]:

fit1 =
{
b when b < no2ni ,
b+ (ncnr − z) otherwise,

(1)

where b is the number of correct output bits obtained as response for all
possible assignments to the inputs, z denotes the number of gates utilized in a
particular candidate circuit and nc.nr is the total number of available gates. It
can be seen that the last term ncnr−z is considered only if the circuit behavior is
perfect, i.e. b = bmax = no2ni . We can observe that the evolution has to discover
a perfectly working solution firstly while the size of circuit is not important.
Then, the number of gates is optimized.

The encoding used in CGP is redundant since there may be genes that are
entirely inactive. These genes do not influence the phenotype, and hence the
fitness. This phenomenon is often referred to as neutrality. The role of neutrality
has been investigated in detail [10, 6, 7]. For example, it was found that the
most evolvable representations occur when the genotype is extremely large and
in which over 95% of the genes are inactive [7]. But for example, Collins has
shown that for some specific problems the neutrality-based search is not the best
solution [11]. Miller has also identified that the problem of bloat is insignificant
for CGP [12].

3 Benchmark Problems

Design of small multipliers is the most popular benchmark problem for the gate
level circuit evolution. Because the direct CGP approach is not scalable it works
only for 4-bit multipliers (i.e. 8-input/8-output circuits) and smaller. Table 1
summarizes the best known results for various multipliers according to [1, 2].
CGP was used with two-input gates, l = nc, λ = 4, h = 3, remaining parameters
are given in Table 1. CGP was seeded using conventional designs. The fitness
function was constructed according to equation 1.

CGP is capable of creating innovative designs for this class of circuits. How-
ever, it is important to carefully initialize CGP parameters. For example, in
order to reduce the search space the function set should contain just the logic
functions that are important for multipliers (the solutions denoted as Best CGP
in Table 1 were obtained using Γ = {x AND y, x XOR y, (not x) AND y}).
However, the gate (not x) AND y is not usually considered as a single gate
in digital design. Its implementation is constructed using two gates: AND and
NOT. Hence we also included ‘Recalc. CGP’ to Table 1 which is the result re-
calculated when one considers (not x) AND y as two gates in the multipliers
shown in [2].

For further comparison of the standard CGP and proposed method we have
selected 16 circuits from the LGSynth91 benchmark suite [13] (see Table 4). In

Table 1. The number of two-input gates in multipliers according to [1, 2].

Multiplier Best conv. Best CGP Recalc. CGP nr × nc Max. gener.

2b×2b 8 7 9 1 × 7 10k
3b×2b 17 13 14 1 × 17 200k
3b×3b 30 23 25 1 × 35 20M
4b×3b 47 37 44 1 × 56 200M
4b×4b 64 57 67 1 × 67 700M

this case we have utilized CGP in the postsynthesis phase, i.e. CGP is employed
to reduce the number of gates in already synthesized circuits. In this paper, we
have used the ABC tool to perform (conventional) synthesis [14]. Each circuit is
represented as a netlist of gates in the BLIF format (Berkeley Logic Interchange
Format).

4 The Proposed Modification of CGP

From the perspective of this paper, the fitness function and selection strategy
are the most interesting features of the standard CGP. Because (1 + λ) strategy
is used, the highest-scored individual p (whose fitness value will be denoted
fp) is always preserved. The result of evolution is then just the highest-scored
individual of the last generation in the standard CGP.

Consider a situation in which a fully working circuit has already been ob-
tained (b = bmax) and the number of gates is optimized now. If the mutation
operator creates an individual x with the fitness value fx and fx ≥ fp then x
will become a new parental solution p (assuming that there is no better result
of mutation in the population). However, if the mutation operator creates in-
dividual y with the fitness value fy and (fy < fp) ∧ (fy ≥ bmax) then p will
be selected as parent for the new population and y will be discarded (assuming
that the fitness values of other solutions are lower than fy). In this way, many
new fully functional solutions, however slightly worse than the parent, are lost.
We will demonstrate in Section 5 that considering individual y for which the
property (fy < fp) ∧ (fy ≥ bmax) holds as a new parent is beneficial for the
efficient search process.

The new selection strategy and fitness function is proposed only for the sit-
uation when the number of gates is optimized, i.e. the fitness value of the best
individual is higher than or equal to bmax. Otherwise, the algorithm works as
the standard CGP. As the best individual found so far will not be copied to the
new population automatically, it is necessary to store it in an auxiliary variable.
Let β denote the best discovered solution and let fβ be its fitness value. In the
first population, β is initialized using p.

Assume that x1 . . . xλ are individuals (with fitness values fx1 . . . fxλ) created
from the parental solution p using the mutation operator and fβ ≥ bmax (i.e. we
are in the gate reduction phase now). Because the best individual β and parental
individual p are not always identical we have to determine their new instances

β′ and p′ separately. The best-discovered solution is defined as:

β′ =
{
β when fβ ≥ fxi , i = 1 . . . λ,
xj otherwise,

(2)

where xj is the highest-scored individual for which fxj > fβ holds. If multiple
individuals exist that have higher fitness than fβ in {x1 . . . xλ}, randomly choose
the best one of them. The new parental individual is defined as:

p′ =
{
p when ∀i, i = 1 . . . λ : fxi < bmax
xj otherwise,

(3)

where xj is a randomly selected individual from those in {x1 . . . xλ} which ob-
tained the fitness score higher than or equal to bmax. In other words, the new
parent must be a fully functional solution; however, the number of gates is not
important for its selection. Note that the result of evolution is no longer p but
β. The proposed strategy will be denoted fit2.

5 Results

5.1 Experimental Setup

CGP is used according to its definition in Section 2. In this paper, we always
use nr = 1 and l = nc. The initial population is generated either randomly or
using a solution obtained from a conventional synthesis method.

If CGP is applied as a postsynthesis optimizer then the number of gates of
the result of conventional synthesis is denoted as m (it is assumed that each
of the gates has up to γ inputs). Then CGP will operate with the parameters
nc = m,nr = 1, l = nc, na = γ.

In all experiments λ = 14, γ = 2 and h is between 1 and 14 (the mean value
is 7). We have used Γ ′ = {and, or, not, nand, nor, xor, identity, const1, const0}
where not and identity are unary functions (taking the first input of the gate)
and constk is constant generator with the value k.

Each experiment is repeated ten times with the 100 million generation limit.
In all experiments the standard fitness function of CGP (denoted fit1) is com-
pared with the method presented in Section 4 (denoted fit2).

5.2 Evolution From a Random Population

In the first experiment, we have evolved multipliers with up to four-bit operands
from randomly generated initial population. According to recommendations of
[7], we intentionally allowed relatively long chromosomes to be used by CGP.
The nc values were set on the basis of ABC synthesis (see Table 3, the seed).

Table 2 summarizes the number of gates (the best and mean values), mean
number of generations to reach bmax and the success rate for fit1 and fit2. As
design of 2b×2b and 3b×2b multipliers is easy for CGP, we will mainly analyse

the results for larger problem instances (here and in next sections). It can be seen
that fit2 gives better results than fit1. However, the mean number of generations
is higher for fit2. We have obtained almost identical minimum number of gates
when compared with [2] (also in Table 1, Best CGP) even when CGP is randomly
initialized and a non-problem specific set of gates is utilized.

Table 2. The best-obtained and mean number of gates for the multiplier benchmarks
when CGP starts from randomly generated initial population.

Circuit Alg. nc gates (best) gates (mean) mean # gener. succ. runs

2b × 2b fit1 7 7 7 2 738 100%
fit2 7 7 2 777 100%

3b × 2b fit1 16 13 13 651 297 100%
fit2 13 13 741 758 100%

3b × 3b fit1 57 25 27.7 476 812 100%
fit2 23 23.4 625 682 100%

4b × 3b fit1 125 46 52.7 2 714 891 100%
fit2 37 43.1 4 271 179 100%

4b × 4b fit1 269 110 128.3 29 673 418 90%
fit2 60 109.4 37 573 311 70%

5.3 Post-synthesis Optimization

The second set of experiments compares fit1 and fit2 when CGP is applied to
reduce the number of gates in already functional circuits. We compared three
approaches to seeding the initial population in case of multipliers. The resulting
multipliers of the ABC tool are taken as seeds in the first group of experiments
(denoted ’seed:ABC’ in Table 3). The second group of experiments is seeded us-
ing the best multipliers reported in paper [2] (denoted ’seed:Tab. 1’ in Table 3).
The seeds of the third group of experiments are created manually as combina-
tional carry save multipliers according to [15] (denoted ’seed: CM’ in Table 3).
Table 3 shows that fit2 can produce more compact designs (see the ’best’ col-
umn) than fit1. The mean number of gates is given in generation 1M, 2M, 5M,
10M, 20M, 50M and 100M (M=106). It can be seen that the best solution is
improving over time.

The best-evolved multiplier (4b × 4b) is composed of 56 gates (taken from
Γ ′ which does not consider the AND gate with one input inverted as a single
gate). The best circuit presented in [2] consists of 57 gates taken from Γ (i.e., 67
gates when Γ ′ is used). We can also express the implementation cost in terms
of transistors used. While the 56-gate multiplier is composed of 400 transistors
the multiplier reported in [2] consists of 438 transistors. It is assumed that the
number of transistors required to create a particular gate is as follows: nand (4
tr.), nor (4 tr.), or (6 tr.), and (6 tr.), not (2 tr.) and xor (10 tr.) [15].

Table 3. The best-obtained and mean number of gates in generations 1M...100M for
the multiplier benchmarks when CGP is seeded by functional solutions of different
type.

seed: ABC Alg. seed best 1M 2M 5M 10M 20M 50M 100M

2b × 2b fit1 17 7 7 7 7 7 7 7 7
fit2 7 7 7 7 7 7 7 7

3b × 2b fit1 16 13 13 13 13 13 13 13 13
fit2 13 13 13 13 13 13 13 13

3b × 3b fit1 57 26 38.2 36.1 34.3 32.6 31 29.8 28.7
fit2 23 31.5 28.8 27.2 25 24.5 24.2 23.5

4b × 3b fit1 125 54 93.2 88.3 79.3 75.6 71.6 66.6 64.4
fit2 37 80 68 55.9 49.9 46.9 44.1 41.1

4b × 4b fit1 269 140 212.4 190.6 178.9 170.9 165.2 158.5 152.4
fit2 68 218.2 182.2 151.3 136.5 121.2 107 93.3

seed: Tab. 1 seed best 1M 2M 5M 10M 20M 50M 100M

2b × 2b fit1 9 7 7 7 7 7 7 7 7
fit2 7 7 7 7 7 7 7 7

3b × 2b fit1 14 13 13 13 13 13 13 13 13
fit2 13 13 13 13 13 13 13 13

3b × 3b fit1 25 23 25 25 24.7 23.9 23.5 23.2 23.1
fit2 23 25 25 24.7 24.4 24.2 23.5 23.1

4b × 3b fit1 44 36 38.5 37.8 37.1 36.8 36.8 36.4 36.3
fit2 35 37.9 37.1 36.5 36.4 36.2 36.2 36.1

4b × 4b fit1 67 57 59.6 58.8 58 57.8 57.5 57.3 57.1
fit2 56 59.5 59.2 58.7 58.3 57.2 56.8 56.8

seed: CM seed best 1M 2M 5M 10M 20M 50M 100M

2b × 2b fit1 8 7 7 7 7 7 7 7 7
fit2 7 7 7 7 7 7 7 7

3b × 2b fit1 17 13 13 13 13 13 13 13 13
fit2 13 13 13 13 13 13 13 13

3b × 3b fit1 30 23 28 28 28 27.8 27.6 26.5 25.8
fit2 23 28 28 27.6 26.8 25 24.4 23.4

4b × 3b fit1 45 37 43 43 43 42.4 41.9 40.6 39.2
fit2 37 43 43 42.6 42.2 41.5 39.9 38.4

4b × 4b fit1 64 59 62.9 62.6 62.6 62.3 61.5 60.6 60.2
fit2 59 62.9 62.9 62.8 62.4 62 61.3 60.8

Table 4 gives the best-obtained and mean number of gates for the LGSynth91
benchmark circuits when CGP is seeded by already working circuits. The work-
ing circuits (of the size given by nc) were obtained using ABC initialized with
the original LGSynth91 circuits (in the BLIF format) and mapped on two-input
gates of Γ ′. The ’exp. gates’ is the estimated number of two-input gates (after
the conventional synthesis) given in [13]. It can be seen that fit2 is more suc-
cessful than fit1. In general, CGP gives better results than ’exp. gates’ because
it does not employ any deterministic synthesis algorithm; all the optimizations
are being done implicitly, without any structural biases.

Table 4. The best-obtained and mean number of gates for the LGSynth91 benchmarks
when CGP starts from the initial solution (of size nc) synthesized using ABC.

Circuit ni no exp. nc gates gates gates gates
gates seed fit1 (best) fit2 (best) fit1 (mean) fit2 (mean)

9symml 9 1 43 216 53 23 68.5 25.5
C17 5 2 6 6 6 6 6 6
alu2 10 6 335 422 134 73 149 89.4
alu4 14 8 681 764 329 274 358 279
b1 3 4 13 11 4 4 4 4
cm138a 6 8 17 19 16 16 16 16
cm151a 12 2 33 34 24 23 24 23
cm152a 11 1 24 22 21 22.1 21.8
cm42a 4 10 17 20 17 17 17 17
cm82a 5 3 27 12 10 10 10 10
cm85a 11 3 38 41 23 22 24.1 22
decod 5 16 22 34 30 26 30 26.1
f51m 8 8 43 146 29 26 32.9 27.3
majority 5 1 9 10 8 8 8 8
x2 10 7 42 60 27 27 29.6 27.4
z4ml 7 4 20 40 15 15 15 15

Figure 2a shows the number of gates of the parent individual p in every 1000th
generation during the progress of evolution of the 4b×4b multiplier using fit1 and
fit2 (taken from the best runs; seeded by ABC). It can be seen that the parent
is different from the best-obtained solution for fit2 (the curve is not monotonic).
We can also observe that fit1 provides better result than fit2 in the early stages of
the evolution. However, fit2 outperforms fit1 when more generations are allowed
for evolution. Figure 2b shows the mean number of gates of the best-obtained
individuals (averaged from 10 independent runs).

6 Analysis

We have seen so far that selecting of the parent individual on the basis of its
functionality solely (and so neglecting the number of gates) provides slightly

 0

 50

 100

 150

 200

 250

 300

 0 1e+
07

 2e+
07

 3e+
07

 4e+
07

 5e+
07

 6e+
07

 7e+
07

 8e+
07

 9e+
07

 1e+
08

N
um

be
r

of
 g

at
es

Generations

4x4 Multiplier seeded by ABC

fit2
fit1

 0

 50

 100

 150

 200

 250

 300

 0 1e+
07

 2e+
07

 3e+
07

 4e+
07

 5e+
07

 6e+
07

 7e+
07

 8e+
07

 9e+
07

 1e+
08

N
um

be
r

of
 g

at
es

Generations

4x4 Multiplier seeded by ABC

fit2
fit1

a) b)

Fig. 2. a) The number of gates of the parent individual (from the best run for 4b×4b
multiplier). b) The mean number of gates of the best-obtained individuals β (from 10
runs for 4b×4b multiplier)

better results at the end of evolution (when the goal is to reduce the phenotype
size) than the standard CGP. How is it possible that the approach really works?
Recall that the fitness landscape is rugged and neutral in case of digital circuit
evolution using CGP [6, 8]. Hence relatively simple mutation-based search al-
gorithms are more successful than sophisticated search algorithms and genetic
operators such as those developed in the field of genetic algorithms and estima-
tion of distribution algorithms. In the standard CGP, generating the offspring
individuals is biased to the best individual that has been discovered so far. The
best individual is changed only if a better or equally-scored solution is found.
In the proposed method, the changes of the parent individual are more frequent
because the only requirement for a candidate individual to qualify as the par-
ent is to be fully functional. Hence we consider the proposed algorithm as more
explorative than the standard CGP.

Our hypothesis is that if a high degree of redundancy is present in the geno-
type the proposed method will generate more functionally correct individuals
than the standard CGP. And because the fitness landscape is rugged and neutral
the proposed method is more efficient in finding compact circuit implementations
than the standard CGP. In order to verify this hypothesis we have measured the
number of mutations that lead to functionally correct circuits. When CGP is
seeded with a working circuit, we have in fact measured the number of neutral
and useful mutations. Figure 3 compares the results for fit1 and fit2 in the ex-
periments that are reported in Table 2 and Table 3. The y-axis is labeled as
MNM which stands for ’Millions of Non-destructive Mutations’. For small mul-
tipliers (2b×2b, 3b×2b) fit1 always yields higher MNM which contradicts with
our hypothesis. However, we have already declared that these really small mul-
tipliers are not interesting because the problem is easy and an optimal solution
can be discovered very quickly. In case of more difficult circuits, fit2 provides
higher MNM in most cases, especially when sufficient redundancy is available

(see Fig. 3 a, d). When the best resulting multipliers of paper [2] are used to seed
the initial population, fit1 is always higher than fit2 (see Fig. 3 b). It corresponds
with a theory that CGP (with almost the zero redundancy in the genotype) has
got stuck at a local extreme and fit2 does not have a space to work.

 0

 50

 100

 150

 200

 250

 300

 350

 400

2x2 3x2 3x3 4x3 4x4

M
N

M

Multiplier

Seed:ABC

fit1
fit2

 0

 10

 20

 30

 40

 50

2x2 3x2 3x3 4x3 4x4

M
N

M
Multiplier

Seed:Table 1

fit1
fit2

a) b)

 0

 5

 10

 15

 20

 25

 30

 35

 40

2x2 3x2 3x3 4x3 4x4

M
N

M

Multiplier

Seed:Comb. Mult.

fit1
fit2

 0

 50

 100

 150

 200

 250

 300

 350

 400

2x2 3x2 3x3 4x3 4x4

M
N

M

Multiplier

Random Intial Population

fit1
fit2

c) d)

Fig. 3. Millions of Non-destructive Mutations (MNM) for different experiments (mean
values given)

The number of non-destructive mutations was counted in every 1000 gener-
ations and the resulting value was plotted as a single point to Fig. 4a (3b×3b
multiplier) and Fig. 4b (4b×4b multiplier). The best run seeded using ABC is
shown in both cases. It is evident that significantly more correct individuals have
been generated for fit2 on average. It can also be seen that while fit1 tends to
create a relatively stable number of correct individuals in time (the dispersion
is approx. 200 individuals for the 4b×4b multiplier), great differences are ob-
servable in the number of correct individuals for fit2 (the dispersion is approx.
1000 individuals for the 4b×4b multiplier). That also supports the idea of biased
search of fit1.

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000

 0 1e+
07

 2e+
07

 3e+
07

 4e+
07

 5e+
07

 6e+
07

 7e+
07

 8e+
07

 9e+
07

 1e+
08

N
on

-d
es

t.
m

ut
s.

 p
er

 1
00

0
ge

ns
.

Generations

3bx3b multiplier seeded by ABC

fit2
fit1

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000

 0 1e+
07

 2e+
07

 3e+
07

 4e+
07

 5e+
07

 6e+
07

 7e+
07

 8e+
07

 9e+
07

 1e+
08

N
on

-d
es

t.
m

ut
s.

 p
er

 1
00

0
ge

ns
.

Generations

4bx4b multiplier seeded by ABC

fit2
fit1

a) b)

Fig. 4. The number of non-destructive mutations per 1000 generations for: a) 3b×3b
multiplier; b) 4b×4b multiplier

7 Conclusions

In this paper, we have shown that the selection of the parent individual on the
basis of its functionality instead of compactness leads to smaller phenotypes at
the end of evolution. The method is especially useful for the optimization of
nontrivial circuits when a sufficient redundancy is available in terms of available
gates and a sufficient time is allowed for evolution. In the future work we plan to
test the proposed method to reduce the size of phenotype in symbolic regression
problems.

Acknowledgments

This work was partially supported by the grant Natural Computing on Un-
conventional Platforms GP103/10/1517, the BUT FIT grant FIT-10-S-1 and
the research plan Security Oriented Research in Information Technology MSM
0021630528.

References

[1] Miller, J.F., Job, D., Vassilev, V.K.: Principles in the Evolutionary Design of
Digital Circuits – Part I. Genetic Programming and Evolvable Machines 1(1)
(2000) 8–35

[2] Vassilev, V., Job, D., Miller, J.: Towards the Automatic Design of More Effi-
cient Digital Circuits. In: Proc. of the 2nd NASA/DoD Workshop on Evolvable
Hardware, IEEE Computer Society (2000) 151–160

[3] Kalganova, T., Miller, J.F.: Evolving more efficient digital circuits by allowing
circuit layout evolution and multi-objective fitness. In: The First NASA/DoD
Workshop on Evolvable Hardware, IEEE Computer Society (1999) 54–63

[4] Gajda, Z., Sekanina, L.: Reducing the number of transistors in digital circuits
using gate-level evolutionary design. In: 2007 Genetic and Evolutionary Compu-
tation Conference, ACM (2007) 245–252

[5] Gajda, Z., Sekanina, L.: When does cartesian genetic programming minimize the
phenotype size implicitly? In: Genetic and Evolutionary Computation Conference,
ACM – Accepted (2010)

[6] Vassilev, V.K., Miller, J.F.: The advantages of landscape neutrality in digital
circuit evolution. In: ICES ’00: Proceedings of the Third International Conference
on Evolvable Systems. Volume 1801 of LNCS., Springer-Verlag (2000) 252–263

[7] Miller, J.F., Smith, S.L.: Redundancy and Computational Efficiency in Cartesian
Genetic Programming. IEEE Transactions on Evolutionary Computation 10(2)
(2006) 167–174

[8] Miller, J.F., Job, D., Vassilev, V.K.: Principles in the Evolutionary Design of
Digital Circuits – Part II. Genetic Programming and Evolvable Machines 1(3)
(2000) 259–288

[9] Miller, J., Thomson, P.: Cartesian Genetic Programming. In: Proc. of the 3rd
European Conference on Genetic Programming EuroGP2000. Volume 1802 of
LNCS., Springer (2000) 121–132

[10] Yu, T., Miller, J.F.: Neutrality and the evolvability of boolean function land-
scape. In: EuroGP ’01: Proceedings of the 4th European Conference on Genetic
Programming. Volume 2038 of LNCS., Springer-Verlag (2001) 204–217

[11] Collins, M.: Finding needles in haystacks is harder with neutrality. In: GECCO
’05: Proceedings of the 2005 conference on Genetic and evolutionary computation,
ACM (2005) 1613–1618

[12] Miller, J.: What bloat? cartesian genetic programming on boolean problems. In:
2001 Genetic and Evolutionary Computation Conference Late Breaking Papers.
(2001) 295–302

[13] Yang, S.: Logic Synthesis and Optimization Bechmarks User Guide, Version 3.0.
(1991)

[14] Berkley Logic Synthesis and Verification Group: (ABC: A System for Sequential
Synthesis and verification)

[15] Weste, N., Harris, D.: CMOS VLSI Design: A Circuits and Systems Perspective
(3rd edition). Addison Wesley (2004)

