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Abstract
In this article, an approach to modelling of component-
based systems and formal description of their behaviour is
proposed. It is based on a novel component model defined
by a metamodel in a logical view and by description in
the π-calculus in a process view. The model addresses
dynamic aspects of software architectures including com-
ponent mobility. Furthermore, a method of behavioural
modelling of service-oriented architectures is proposed to
pass smoothly from service to component level and to de-
scribe behaviour of a whole system as a single π-calculus
process. The support of dynamic architecture and the
integration with service-oriented architecture compromise
the main advantages of the approach.

Categories and Subject Descriptors
D.2.11 [Software Architectures]: Languages; H.3.4
[Systems and Software]: Distributed systems; D.2.4
[Software/Program Verification]: Formal methods

Keywords
Component-based development, Service-oriented archi-
tecture, Component model, Formal specification

1. Introduction
Globalisation of information society and its progression
create needs for extensive and reliable information tech-
nology solutions. Several new requirements on informa-
tion systems have emerged and significantly affected soft-
ware architectures of these systems. The current informa-
tion systems can not be realised as monoliths, but tend

∗Recommended by thesis supervisor:
Assoc. Prof. Jaroslav Zendulka
Defended at Faculty of Information Technology, Brno
University of Technology on February 19, 2010.

c© Copyright 2010. All rights reserved. Permission to make digital
or hard copies of part or all of this work for personal or classroom use
is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies show this notice on
the first page or initial screen of a display along with the full citation.
Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy oth-
erwise, to republish, to post on servers, to redistribute to lists, or to
use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from STU Press,
Vazovova 5, 811 07 Bratislava, Slovakia.
Rychlý, M. Formal-based Component Model with Support of Mobile
Architecture. Information Sciences and Technologies Bulletin of the
ACM Slovakia, Vol. 2, No. 1 (2010) 13-25

to be distributed into networks of quite autonomous, but
cooperative, components communicating asynchronously
via messages of appropriate formats. Loose binding be-
tween those components allows to establish and destroy
their interconnections dynamically at runtime, on de-
mand, and according to various aspects (e.g. quality of
services provided or required by the components); to clone
the components and to move them into different contexts
(known as “component mobility”); to create, destroy and
update the components dynamically at runtime; etc.

The dynamic aspects of software architectures and the
component mobility bring new problems in the domain of
software engineering, as it is described in Sec. 3.1. The
component-based systems (CBSs) are getting involved,
and a formal specification of evolution of their architec-
tures is necessary, particularly in critical applications.
The current problems and the state of the art, which is
summarised in Sec. 2, provide us with adequate motiva-
tion and form objectives of the research in Sec. 3.2.

To provide a method for modelling of CBSs and formal
description of their behaviour, we propose an approach
that is based on a novel component model defined by a
metamodel in a logical view in Sec. 4.2 and by descrip-
tion in the π-calculus in a process view in Sec. 4.3. We
show that the component model addresses the dynamic
aspects of software architectures including the component
mobility. Furthermore, in Sec. 4.4, we propose a method
of behavioural modelling of service-oriented architectures
(SOAs) to pass smoothly from service level to component
level and to describe behaviour of a whole system, services
and components, as a single π-calculus process.

2. State of the Art
This section deals with software architecture and
component-based development. It describes the state of
the art of component models and architecture description
languages for dynamic and mobile architectures.

2.1 Software Architecture and Component-Based
Development

The software architecture as “the fundamental organ-
isation of a system, embodied in its components, their
relationships to each other and the environment, and the
principles governing its design and evolution” [15] can
be described using logical (structural) and process (be-
havioural) view [16]. The first describes logical structure
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of the system, while the second describes concurrency and
synchronisation aspects of the system, e.g. behaviour of
components, evolution of the architecture in time, etc.

We can distinguish three types of software architectures
according to their evolution in dependence on changes
of their environment [27]: static architecture, dynamic
architecture, and mobile (fully dynamic) architecture. In
the static architecture, after initialisation of a system, new
connections between the system’s components can not be
created and existing connections can not be destroyed.
In the dynamic architecture, there exist rules of evolution
of a software system in time (also called a “dynamics”),
i.e. its components and connections are created and de-
stroyed during the system’s runtime according to the rules
from its design-time. Finally, the mobile architecture is
a dynamic architecture of a system where components
can change their context in the system’s logical structure
during its execution (i.e.“component mobility”) according
to rules from its design-time and functional requirements.

The component-based development (CBD, see [34])
is a software development methodology strongly oriented
to composability and re-usability in a software system’s
architecture. In the CBD, from a structural point of view,
a system is composed of components, self-contained enti-
ties accessible through well-defined interfaces. A connec-
tion of compatible interfaces of cooperating components is
realised via their bindings (connectors). Actual organisa-
tion of interconnected components is called configuration.

A static architecture has only one way how to connect
components and connectors into a resulting system, i.e.
there is only one configuration. Dynamic and mobile ar-
chitectures enable software systems to change their archi-
tectures during their runtimes. It means runtime modifi-
cations of the configuration, i.e. reconfiguration. Descrip-
tion of the reconfiguration [27] includes description of spe-
cific actions, which are consumed and produced by a sys-
tem (inputs, outputs, and internal actions); relationships
between the actions, how the input actions are processed
by the system; and changes of an architecture according
to the actions, i.e. processes of creation and destruction
of its components, connectors and reconfiguration.

In CBD, components can be primitive or composite. The
primitive components are realised directly, beyond the
scope of architecture description. The composite compo-
nents are decomposable into systems of subcomponents
at the lower level of architecture description. This com-
position forms a component hierarchy.

2.2 Component Models and Architecture
Description Languages

Component models are specific metamodels of software
architectures supporting the CBD. The component mod-
els should define syntax, semantics, and composition of
components [17]. They are systems of rules for compo-
nents, connectors, configurations, rules for changes ac-
cording to the dynamic architecture (rules for reconfigu-
rations), etc. Several component models has been pro-
posed [18] including the models. Those models differ par-
ticularly in definitions of connectors (explicit or implicit
definitions) and implementation of advanced features of
dynamic or mobile architectures. In this section, we focus
on component models with formal bases.

Component model Wright [1] uses the process calculus of
Communicating Sequential Processes (CSP). The compo-
nent model defines a component as a structure composed
of two parts, an interface and a “component-spec”. The
interface consists of a finite number of required and pro-
vided ports and corresponding CSP processes for specific
input and output events, respectively. The component-
spec defines interactions between the ports as a composi-
tion of their CSP processes. Interactions of components
are defined by connectors and described by specific CSP
processes. Finally, a configuration describes actual bind-
ings of the components and the connectors. Limitations of
Wright are given by the used formalism (the descriptions
in CSP support only systems with static architectures).

Component model Darwin [19, 12] allows distributed sys-
tems to be hierarchically composed of sets of component
instances and their interconnections at each level of the
hierarchy. Each component is defined by its required and
provided services (interfaces), which allow it to interact
with other components. Composite components are de-
fined by declaring instances of internal components and
“required-provided” bindings between those components.
Services of the internal components that cannot be sat-
isfied can be declared as visible at a higher level of the
hierarchy, as the services of the composite components.
Darwin [19] allows to describe behaviour of components
in the calculus of mobile processes (the π-calculus). It
supports a subset of dynamic architectures, which permits
dynamic instantiation of new components at runtime, but
does not allow specification of dynamic bindings or com-
ponent removal. Later, Tracta approach [12] allows to
describe behaviour of components as Labelled Transition
Systems (LTSs) with an algebra of Finite State Processes
(FSP) as a specification language.

In component model SOFA [29], a part of SOFA project
(SOFtware Appliances), a software system is described
as a hierarchical composition of primitive and composite
components. A component is an instance of a template,
which is described by its frame and architecture. The
frame is a“black-box”specification view of the component
defining its provided and required interfaces. A primitive
component has a primitive architecture and it is directly
implemented by a software system. The architecture of
a composite component is a “grey-box” implementation
view, which describes its direct subcomponents and their
interconnections via interfaces: binding of required to
provided interfaces, delegating of a component’s provided
interfaces to provided interfaces of the component’s sub-
component, subsuming of required interfaces of a compo-
nent’s subcomponent to the component’s required inter-
faces, and exempting of subcomponent’s interfaces from
any connection. SOFA uses a Component Definition Lan-
guage (CDL, [22]), which extends features of OMG IDL
to allow specification of software components. Behaviour
of a component (its interface, frame, and architecture) is
formally described by means of behaviour protocols [37].
The protocols support static architecture, but allow to de-
scribe dynamic update of an architecture of a component
during a system’s runtime.

Component model SOFA 2.0 [8], as a new version of com-
ponent model SOFA, aims at removing several limita-
tions of the original version, mainly the lack of support
of dynamic reconfigurations, well-structured and exten-
sible control parts of components, and multiple styles of
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communication between components. It permits dynamic
reconfigurations predefined at design-time by reconfigura-
tion patterns: nested factory, component removal, and
utility interface. The utility interfaces can be freely
passed among components and bound independently of
their components’ levels in architecture hierarchy (then,
SOA becomes a specific case of a component model where
all components (services) are interconnected solely via
their utility interfaces).

Component model Fractal [6, 7] forms a component out
of two parts: a controller and a content. The content of
a composite component is composed of a finite number of
nested components. Those subcomponents are controlled
by the controller of the enclosing component, which acts
as a composition operator. A component can interact
with its environment through operations at external in-
terfaces of the component’s controller, while internal in-
terfaces are accessible only from the component’s sub-
components. A functional interface requires or provides
functionalities of a component, while a control interface
is a server interface, which provides operations for intro-
spection of the component and to control the component’s
configuration, namely attribute, binding, content, and
life-cycle control. Operations on functional interface can
not fire control operations. Behaviour of Fractal compo-
nents can be formally described by means of parametrised
networks of communicating automata language [5]. Be-
haviour of each primitive component is modelled as a fi-
nite state parametrised labelled transition system (pLTS),
while behaviour of a composite component is defined using
a parametrised synchronisation network (pNet): a set of
global parametrised actions and a transducer, which is a
synchronisation product of the subcomponents’ pLTSs.
Changes of the transducer’s state represent possible re-
configurations of the composite component’s architecture.

Architecture description languages (ADLs, see [35])
are languages for describing software systems’ architec-
tures, which focus on high-level structures of overall appli-
cations rather than implementation details of any specific
source modules. The ADLs can be parts of component
models, where they are used for description of a software
system’s logical structure (the logical view, see Sec. 2.1).
Several ADLs have been proposed [21]: for modelling
of software architectures within a particular domain, as
general-purpose architecture modelling languages, with
and without component models and formal bases, etc. In
the rest of this section, we aim at the ADLs that do not
depend directly on component models.

Language ACME [11] has been developed in order estab-
lish a common basis for the ADLs and to enable inte-
gration of their support tools. It defines components and
connectors, systems (as configurations of components and
connectors), ports (as interfaces of a component), roles
(of interfaces of a connector, which they act in commu-
nication), representations (hierarchical decompositions of
components and connectors), and rep-maps (mappings
between a composite component’s or connector’s internal
architecture and its external interface). Other aspects of
architectural description can be represented with prop-
erty lists. The ACME does not provide any certain se-
mantic model. The property lists, structural constraints,
etc. must be described in terms of other ADLs’ semantic
model. Therefore, the ACME itself is not suitable for de-
scription of a system’s software architecture and should be

used only in association with other ADL (where ACME
acts as the ADL’s exchange language).

Unified Modelling Language (UML, see [26]) provides
three possible strategies for modelling of software archi-
tectures [20]: to use UML “as is”, to constrain its meta-
model using UML’s built-in extension mechanisms, and
to extend the metamodel by new architectural concepts.
Each approach has potential advantages and disadvan-
tages (e.g. limited semantics of standard UML or incom-
patiblity of the extensions with UML-compliant tools).
The UML 2 has introduced description of hierarchical
architecture of CBSs [3] by means of structured classes,
i.e. the classes that allow nesting of other classes. Its
specification [26] states that “a component represents a
modular part of a system that encapsulates its contents
and whose manifestation is replaceable within its envi-
ronment”. The components are drawn as specific classes
stereotyped «component» interconnected by means of “as-
sembly connectors” binding their interfaces in a “lollipop”
style notation. Moreover, the components can be used to
represent many different entities, which are distinguished
by several stereotypes.

ArchWare ADL (see [4]) provides a core (runtime) struc-
ture and behaviour constructs to describe dynamic soft-
ware architectures. It is a formal specification language
designed to be executable (by a virtual machine) and to
support automated verification. The ArchWare ADL is
founded on three formal models: π-ADL [27] that con-
tains the core structure and behaviour constructs with
the higher-order typed π-calculus as a formal basis; σπ-
ADL [4] that contains style constructs for defining a base
component-connector style and other derived styles; and
µπ-AAL that is extension of the modal µ-calculus for
description of behavioural and structural properties of
communicating and mobile architectural elements. The
behaviour constructs from the base language copy the π-
calculus constructs.

3. Motivation
This section aims at clarifying the motivation of the re-
search. A problem is stated in terms of the state of the art
from Sec. 2 and objectives of the research are established.
The detailed description of the research objectives can be
found in the author’s dissertation [31].

3.1 Statement of the Problem
The current component models and ADLs have many
shortcomings in support of mobile architectures, incor-
poration of component-based design into SOA and into
software development processes in general. Their formal
bases or models usually do not consider component mo-
bility (e.g. pNets in Fractal [5], behaviour protocols in
SOFA [37], and reconfiguration patterns in SOFA 2.0
[14]), prefer strict isolation of functional parts of com-
ponents from their controllers (functional operations can
not fire control operations; e.g. restrictions of pNets in
a formal description of Fractal components [5]), do not
support description of SOAs where individual services
can be implemented as underlying CBSs (e.g. in Fractal
component model [7] or in the ArchWare project [4]), etc.

Moreover, the component models do not describe re-
lated methods of CBD and their incorporation into well-
established software development processes of standard
software systems [13]. Modelling of the CBSs during
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the development processes brings many issues (e.g. as a
consequence of different conceptions of components in the
component models [17], in component diagrams of UML
[26] or software component architectures [28]).

3.2 Objectives of the Research
The statement of the problems of current component
models and corresponding ADLs provides us with ade-
quate motivation. A general objective of the research is to
design a component model for mobile architectures. The
model has to provide suitable formal basis and should be
applicable to modelling of CBSs as well as SOAs.

Specific objectives of the research that fulfil the general ob-
jective include: the development of the component model
and its formal basis supporting features of mobile archi-
tectures and addressing the current issues of CBD; inte-
gration of functional operations and relevant behaviour
of components with control operations enabling dynamic
reconfiguration; a method of application of the compo-
nent model in SOAs with mapping rules between services
and CBSs described by means of the component model;
description of a supporting environment that allows inte-
gration of the component model and utilisation of its for-
mal basis into software development processes; and finally,
demonstration of an application of the proposed approach
on a case study and evaluation of its effectiveness and
robustness over the existing conventional approaches.

4. Methods of Realisation
In order to reach the stated objectives, we propose a
high-level component model addressing the current issues
of CBD. It allows dynamic reconfiguration, component
mobility, and combination of control and business logic
of components. Behavioural description of individual
components and their mutual communication in CBSs is
based on the π-calculus.

The component model can be presented in two views:
logical (structural) view and process (behavioural) view.
At first, we introduce the component model’s metamodel,
which describes basic entities of the component model and
their relations. The second view, is focused on behaviour
of the component model’s entities, especially on compo-
nent mobility. Finally, we describe behaviour of services
in SOAs and their underlying implementations as CBSs.

4.1 Formal Base
To describe behaviour of components in CBSs and ser-
vices in SOAs in formal way, we use the π-calculus, known
also as a calculus of mobile processes [23]. It allows mod-
elling of systems with dynamic communication structures
(i.e. mobile processes) by means of two concepts: pro-
cesses and names. The processes are active communicat-
ing entities, primitive or expressed in π-calculus, while the
names are anything else, e.g. communication links (known
as “ports”), variables, constants, etc. Processes use names
(as communication links) to interact, and they pass names
(as variables, constants, and communication links) to an-
other processes by mentioning them in the interactions.
Names received by a process can be used and mentioned
by it in further interactions (e.g. as communication links).
We suppose basic knowledge of the fundamentals of the
π-calculus, a theory of mobile processes, according to [33]:

• x〈y〉.P is an output prefix that can send name y
via name x (i.e. via the communication link x) and
continue as process P ;

• x(z).P is an input prefix that can receive any name
via name x and continue as process P with the
received name substituted for every free occurrence
of name z in the process;

• P + P ′ is a sum of capabilities of P together with
capabilities of P ′ processes, it proceeds as either
process P or process P ′, i.e. when a sum exercises
one of its capabilities, the others are rendered void;

• P | P ′ is a composition of processes P and P ′,
which can proceed independently and can interact
via shared names;

•
∏m

i=1 Pi = P1 | P2 | . . . | Pm is a multi-composition
of processes P1, . . . , Pm, for m ≥ 3, which can pro-
ceed independently interacting via shared names;

• (z)P is a restriction of the scope of name z in process
P (the scope may change as a result of interaction
between processes);

• (x̃)P = (x1, x2, . . . , xn)P = (x1)(x2) . . . (xn)P is a
multi-restriction of the scope of names x1, . . . , xn to
process P , for n ≥ 2;

• !P is a replication that means an infinite composi-
tion of processes P or, equivalently, a process satis-
fying the equation !P = P | !P .

The π-calculus processes can be parametrised as an ab-
straction, an expression of form (x).P . When abstraction
(x).P is applied to argument y it yields process P {y/x},
i.e. process P with y substituted for every free occurrence
of x. The abstractions can be used in two types of appli-
cation: pseudo-application and constant application.

Pseudo-application F 〈y〉 of abstraction F
def
= (x).P is an

abbreviation of substitution P {y/x}. On the contrary,
the constant application is a real syntactic construct,
which allows to reduce a form of process Kbyc, sometimes
referred as an instance of process constant K, according

to a recursive definition of process constant K
∆
= (x).P .

The result of the reduction yields process P {y/x}.

4.2 Component Model: Logical View
The component model for mobile architectures is de-
scribed as a metamodel in the context of a four-layer
modelling architecture. The metamodel is implemented
in OMG’s Meta Object Facility (MOF, [24]), which is
used as a meta-metamodel. The modelling architecture
comprises the following four layers:

M0 An information layer, which is comprised of the ac-
tual data objects. It contains particular instances
of CBSs, their runtime configurations, specific de-
ployments of their components and connectors, etc.

M1 A model layer, which contains models of the M0
data. The models include structure and behaviour
models that describe different perspectives of CBSs
such as, for example, UML component models.

M2 A metamodel layer provides a language that can be
used to build M1 models. Component models fall in
this layer, as well as models of the UML language.
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M3 A meta-metamodel layer, which is used to define
modelling languages. It holds a model of the in-
formation from M2, e.g. MOF.

In the four-layer modelling architecture, the models in
lower layers use classes from metamodels in upper layers
to create their objects. In the context of CBD, a specific
CBS (layer M0) contains instances of elements from its
model (layer M1). The model contains instances from
a specific component model (a metamodel in layer M2),
which is described by a given meta-metamodel (layer M3).

4.2.1 Metamodel
This section deals with description of the component
model for mobile architectures as a metamodel. The
metamodel is defined in Meta Object Facility version 2.0
(MOF, [24]). MOF is in layer M3 in the four-layer mod-
elling architecture (see Sec. 4.2). It is defined in two
parts: Essential MOF and Complete MOF (EMOF and
CMOF). The EMOF contains packages Basic, Reflec-
tion, Identifiers, and Extension, which form a mini-
mal set of modelling elements to define simple metamod-
els. The CMOF extends EMOF by Constructs package
from UML 2 Core (see [25]). For purposes of this article,
the EMOF is sufficient to describe the component model.

The component model, as a model of layer M2 in the four-
layer modelling architecture, can be described by means
of UML 2 diagrams in two contexts: as an object diagram
of instances of EMOF classes from layer M3 (entities in
layer M2 are instances of classes in layer M3, i.e. it is
described as “a model”) and as a class diagram from layer
M1 (entities in layer M1 are instances of classes in layer
M2, i.e. it is described as “a metamodel”).

For better clearness, the component model will be
described as an UML 2 class diagram from layer
M1. To reuse well-established concepts of MOF,
the component model’s metamodel extends EMOF
classes EMOF::NamedElement, EMOF::TypedElement, and
EMOF::Operation, which are outlined in Fig. 1. A com-
plete definition of the EMOF classes can be found in [24].

Components and Interfaces. Fig. 2 describes the first
part of the component model as an extension of EMOF.
The metamodel defines an abstract component, its re-
alisations as a primitive component and a composite
component, and their interfaces. All classes of the
metamodel inherits (directly or indirectly) from class
EMOF::NamedElement in package Basic of EMOF.

In our approach, a component as an active communicat-
ing entity of a CBS can be described according to two
views: as an abstract component without considering its
internal structure (in a “black-box” view) and as a com-
ponent realisation in the form of a primitive component
or a composite component (in a “grey-box” view). The
abstract component (class Component in the metamodel)
can communicate with neighbouring components via its
interfaces (class Interface). The interfaces can be pro-
vided (class ExternalProvInterface) or required (class
ExternalReqInterface) by the component.

The component realisation can be primitive or composite.
The primitive component realisation (class Primitive-

Component) is implemented directly, beyond the scope

of architecture description. It is a “black-box” with de-
scribed observable behaviour (attribute behaviouralDe-

scription). The composite component realisation (class
CompositeComponent), as a “grey-box”, is decomposable
on a system of subcomponents at the lower level of ar-
chitecture description. Those subcomponents are repre-
sented by abstract components (class Component and rela-
tion “consists of”). Moreover, every composite component
realisation can communicate with its subcomponents via
its provided (class InternalProvInterface) and required
(class InternalReqInterface) internal interfaces (rela-
tions“provides inside”and“requires inside”, respectively).

The specific interfaces have to implement methods
getOwner(), which return their owners, i.e. objects that
act as the abstract components in a case of the abstract
component interfaces or as instances of the composite
component realisations in a case of their internal inter-
faces (see owner roles in the relations in Fig. 2).

Composite Components and Binding. Binding is a con-
nection of required and provided interfaces of the identical
types into a reliable communication link. It is described
in Fig. 3. Interfaces of a component (classes Exter-

nalProvInterface and ExternalReqInterface) can be
provided to and required from its neighbouring compo-
nents, while interfaces of a composite component reali-
sation (classes InternalProvInterface and InternalRe-

qInterface) can be provided to and required from its sub-
components only. Therefore, we distinguish three types
of the binding (the realisations of class Binding):

1. Binding of provided interfaces to required interfaces
in the same composite component realisation is rep-
resented by class BindSiblings. The interfaces have
to be internal interfaces of the composite compo-
nent realisation or external interfaces of subcompo-
nents in the same composite component realisation.
The binding interconnects required interfaces (class
RequiredInterface) via relations “bound from” to
provided interfaces (class ProvidedInterfaces) via
relations “bound to”.

2. Binding of external provided interfaces of a compos-
ite component realisation to its internal required in-
terfaces is represented by class BindInward. The ex-
ternal interfaces are provided to neighbouring com-
ponents of the composite component acting as an
abstract component (relation “imports from” an in-
stance of class ExternalProvInterface), while the
internal interfaces are required from the composite
component’s subcomponents (relation “exports to”
an instance of class ExternalReqInterfaces).

3. Binding of internal provided interfaces of a com-
posite component realisation to its external required
interfaces is represented by class BindOutward. The
internal interfaces are provided to the compos-
ite component’s subcomponents (relation “exports
from”an instance of class InternalProvInterface),
while the external interfaces are required from
neighbouring components of the composite compo-
nent acting as an abstract component (relation “ex-
ports to” an instance of ExternalReqInterfaces).

The bindings (i.e. instances of the realisations of class
Binding) are owned by the composite component realisa-
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+ name : string

NamedElement
(CM::metamodel::EMOF)

Operation
(CM::metamodel::EMOF)

TypedElement
(CM::metamodel::EMOF)

+ isOrdered : boolean =  false
+ isUnique : boolean =  false
+ lower : int
+ upper : int

MultiplicityElement
(CM::metamodel::EMOF)

Parameter
(CM::metamodel::EMOF)

0..*+ ownedParameter

+ operat ion
owns

Figure 1: A simplified part of the EMOF [24] with classes that will be extended in the metamodel.

Component

+ behaviouralDescript ion

PrimitiveComponent

CompositeComponent

+ name : string

NamedElement
(CM::metamodel::EMOF)

+ getOwner() : Component

Interface

ProvidedInterface

RequiredInterface

ExternalProvInterface

ExternalReqInterface

InternalProvInterface

InternalReqInterface

0..*

1

+ required

+ owner

0..*

1

+ provided

+ owner

0..*
0..1

+ subcomponent

+ parent

0..*

1
+ providedIn

+ owner

0..*

1

+ requiredIn

+ owner

requires inside

provides inside

requires

provides

consists of

Figure 2: Abstract component, realisations, and interfaces in the metamodel.

Binding BindOutwardBindInward

+ name : string

NamedElement
(CM::metamodel::EMOF)

TypeOfBinding

ProvidedInterface

RequiredInterface

ExternalProvInterface

ExternalReqInterface

InternalProvInterface

InternalReqInterface

BindSiblings

CompositeComponent

1

0..1

+ provided

10..*

+ provided

1

0..1

+ required

1

0..1

+ required

1

0..1

+ required

*

1

+ binding
+ owner

1

0..1

+ provided

0..1

0..*

+ type
has

imports from

exports to

imports to

exports from

bound from

bound to

contains

Figure 3: Binding and its different realisations between interfaces of a composite component realisation
in the metamodel. Classes CompositeComponent and ...Interface are identical to the classes in Fig. 2.
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tions. Each binding can have a type (class TypeOfBind-

ing), which can describe a communication style (buffered
and unbuffered connection), a type of synchronisation
(blocking and output non-blocking), etc.

Types of the Interfaces. To ensure type compatibility
of interfaces in a binding, each interfaces has a type
(class TypeOfInterface, which is a specialisation of class
EMOF::NamedElement in package Basic of EMOF). Hier-
archy of the types of interfaces is described in Fig. 4.

According to a scope of visibility of the interfaces in a
composite component realisation, we can distinguish pub-
lic, private, and protected interfaces. The public inter-
faces (classes realising PublicIntType) of a component
can be accessed by its neighbouring components (via bind-
ing BindSiblings). If the component is a composite com-
ponent realisation, its external public interfaces can be
also accessed by its subcomponents and its internal public
interfaces can be accessed by its neighbouring components
(i.e. the interfaces can pass the component’s border via
its bindings BindInward and BindOutward). They can be
interconnected by means of all kinds of bindings.

Contrary to the public interfaces, the private interfaces
(classes realising PrivateIntType) are specific types of
interfaces, which can be provided only by a composite
component realisation and only to its subcomponents as
the component’s internal interfaces1. They can be inter-
connected only by means of binding BindSiblings.

Finally, the protected interfaces (classes realising Pro-

tectedIntType) of a component can be accessed by its
neighbouring components as the component’s external
interfaces (if the component is a composite component
realisation, they are not reachable by its subcomponents).
They can be interconnected only via BindSiblings.

According to functionality, we can distinguish the follow-
ing types of interfaces2 (see Fig. 4):

• Public interface Operation, which extends class
EMOF::Operation from package Basic of EMOF
and represents a business oriented service with
typed input and output parameters.

• Protected interface CtrlRefProvInterface pro-
vides references to given provided interface Pro-

videdInterface of type Operation, while protected
interface CtrlBindReqInterface allows to establish
a new binding of specific required interface Re-

quiredInterface of type Operation to a provided
interface of another component formerly referred by
means of CtrlRefProvInterface.

• Protected interfaces CtrlStart and CtrlStop allow
to control behaviour of a component (i.e. to start
and to stop the component, respectively).

• Private interfaces CtrlAttach and CtrlDetach pro-
vided by a composite component realisation allow to

1The private interfaces can be required by the subcompo-
nents as their external interfaces, but they can not pass
borders of the subcomponents (nor any other component).
Here, the subcomponents must be primitive components.
2Type Operation denotes functional interfaces, while the
others denote control interfaces.

attach a new component as a subcomponent of the
composite component realisation (“nesting” of the
component) and detach an old subcomponent from
the composite component realisation, respectively.

• Protected interface CtrlClone provides references of
a fresh copy of a component.

• Protected interface RefToInterface is able to pass
references of provided interfaces ProvidedInter-

face of type Operation, while public interface
RefToComponent allows to pass references of a whole
Component (required for component mobility).

4.3 Component Model: Process View
In this section, the component model is presented in the
process view. Behaviour of individual components and
their mutual communication is described by means of the
π-calculus (see Sec. 4.1).

According to the metamodel from Sec. 4.2.1, each compo-
nent of a CBS can be realised either as a primitive com-
ponent or as a composite component. Since the primitive
component is described as a “black-box”, its behaviour
has to be defined directly by its developer and can be
described as a π-calculus process (a value of attribute
behaviouralDescription in an instance of class Prim-

itiveComponent, see Fig. 2 in Sec. 4.2.1). The π-calculus
process describes processing of names that represent the
component’s provided and required functional interfaces
and names for specific control actions provided by the
component via its control interfaces (e.g. requests to start
or stop the component).

On the contrary to the primitive component, the compos-
ite component is decomposable at a lower level of com-
ponent hierarchy into a system of subcomponents com-
municating via their interfaces and their bindings (i.e. a
CBS; the component is a “grey-box”). Formal description
of the composite component’s behaviour is a π-calculus
process, which is composition of processes representing
behaviour of the component’s subcomponents, processes
implementing bindings between interfaces of the subcom-
ponents (class BindSiblings in the metamodel), bindings
of internal interfaces of the component to its external in-
terfaces (classes BindInward and BindOutward), and pro-
cesses describing specific control actions of the compo-
nent’s control interfaces (e.g. requests to start or stop the
composite component including their distribution to the
component’s subcomponents, etc.).

4.3.1 Notation
Before π-calculus processes describing behaviour of a com-
ponent will be presented, we need to define the compo-
nent’s interfaces within the terms of the π-calculus, i.e.
as names used by the π-calculus processes. In an external
view of a component, i.e. for description of an abstract
component (as a specific instance of class Component), we
will use names s0, s1, c, ps1, . . . , p

s
n, pg1, . . . , p

g
m. In an inter-

nal view of a component, i.e. for description of a composite
component (an instance of class CompositeComponent),
we will use names a, p′s1 , . . . , p

′s
m, p′g1 , . . . , p

′g
n . In both

cases, n and m are numbers of the component’s required
and provided functional interfaces, respectively (i.e. the
component’s external interfaces of type Operation), and
the individual names have the following semantics:
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Figure 4: Types of interfaces with class Operation extending EMOF::Operation in the metamodel. Classes
Interface, ProvidedInterface, RequiredInterface, and Component are identical to the classes in Fig. 2.

via s0 – a running component accepts a request for its
stopping3 (an interface of type CtrlStop),

via s1 – a stopped component accepts a request for its
starting3 (an interface of type CtrlStart),

via c – a component accepts a request for its cloning and
returns a new stopped instance of the component as
a reply (an interface of type CtrlClone),

via psi – a component accepts a request for binding a
specific provided functional interface (included in
the request) to required functional interface ri (an
interface of type CtrlBindReqInterface),

via pgj – a component accepts a request for referencing
provided functional interface pj , which reference is
returned as a reply (an interface of type CtrlRef-

ProvInterface in the metamodel),

via a – a composite component accepts a request for at-
taching its new subcomponent, i.e. for attaching the
subcomponent’s s0 and s1 names (stop and start
interfaces), which can be called when the composite
component will be stopped or started, respectively,
and as a reply, it returns a name accepting requests
to detach the subcomponent (the names represent
interfaces of types CtrlAttach and CtrlDetach).

We should remark that there exists a relationship between
names representing functional interfaces in the external
view and names representing corresponding functional in-
terfaces in the internal view of a composite component.
The composite component interconnects its external func-
tional interfaces r1, . . . , rn (required) and p1, . . . , pm (pro-
vided) accessible via names ps1, . . . , p

s
n and pg1, . . . , p

g
m,

respectively, to internal functional interfaces p′1, . . . , p
′
n

(provided) and r′1, . . . , r
′
m (required) accessible via names

p′g1 , . . . , p
′g
n and p′s1 , . . . , p

′s
m, respectively.

As a result, requests received via external functional pro-
vided interface pj are forwarded to an interface that is
bound to internal functional required interface r′j (and

3In a composite component, the requests are distributed
to all subcomponents of the component.

analogously for interfaces p′i and ri). This ensures binding
of external interfaces of the composite component to its
internal interfaces and vice versa, as it has been described
in the medamodel (see classes BindInward and BindOut-

ward in Fig. 3 in Sec. 4.2.1).

4.3.2 Interface’s References and Binding
At first, we define an auxiliary process Wire4, which can
receive a message via name x (i.e. input) and send it to
name y (i.e. output) repeatedly till the process receives a
message via name d (i.e. disable processing).

Wire
∆
= (x, y, d).(x(m).y〈m〉.Wirebx, y, dc + d)

Binding of components’ functional interfaces is done via
their control interfaces. These control interfaces allow to
get a reference to a component’s functional provided in-
terface (via an interface of type CtrlRefProvInterface in
the metamodel) and use the reference to bind a functional
required interface of another component (via an inter-
face of type CtrlBindReqInterface in the metamodel).
Process CtrlIfs describes processing of requests via the
control interfaces as follows:

SetIf
∆
= (r, s, d).s(p).(d.Wirebr, p, dc | SetIfbr, s, dc)

GetIf
def
= (p, g).g(r).r〈p〉

Plug
def
= (d).d

CtrlIfs
def
= (r1, . . . , rn, ps1, . . . , p

s
n, p1, . . . , pm, p

g
1, . . . , p

g
m).

(
∏n

i=1(r
d
i )(Plug〈rdi 〉 | SetIfbri, psi , rdi c)

|
∏m

j=1!GetIf〈pj , p
g
j 〉)

where names r1, . . . , rn, ps1, . . . , p
s
n, p1, . . . , pm, pg1, . . . , p

g
m

have been defined in Sec. 4.3.1. Let us assume CtrlIfs
shares its names r1, . . . , rn and p1, . . . , pm with a pro-
cess describing a component’s core functionality via its
required and provided interfaces, respectively. Pseudo-
application GetIf〈pj , pgj 〉 enables process CtrlIfs to re-
ceive a name x via pgj and to send pj via name x as a
reply (it provides a reference to an interface represented
by pj). Constant application SetIfbri, psi , rdi c enables

4The process will be used also in the following parts of
Sec. 4.3.
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process CtrlIfs to receive a name x via psi , which will
be connected to ri by means of a new instance of process
Wire (it binds a required interface represented by ri to a
provided interface represented by x). To remove a former
binding of ri, a request is sent via rdi (in case it is the first
binding of ri, i.e. there is no former binding, the request
is accepted by pseudo-application Plug〈rdi 〉).

In a composite component, the names representing ex-
ternal functional interfaces r1, . . . , rn, p1, . . . , pm are con-
nected to the names representing internal functional in-
terfaces p′1, . . . , p

′
n, r′1, . . . , r

′
m. Requests received via ex-

ternal functional provided interface pj are forwarded to
an interface that is bound to internal functional required
interface r′j (and analogously for interfaces p′i and ri).
This behaviour is described in process CtrlEI :

CtrlEI
def
= (r1, . . . , rn, p1, . . . , pm, r

′
1, . . . , r

′
m, p

′
1, . . . , p

′
n).

(

n∏
i=1

(d)Wirebri, p′i, dc |
m∏

j=1

(d)Wirebr′j , pj , dc)

4.3.3 Control of a Component’s Life-cycle
Control of a composite component’s life-cycle5 can be
described as process CtrlSS .

Dist
∆
= (p,m, r).(p〈m〉.Distbp,m, rc + r)

Life
∆
= (sx, sy , px, py).sx(m).(r)(Distbpx,m, rc

| r.Lifebsy , sx, py , pxc)

Attach
def
= (a, p0, p1).a(c0, c1, cd)(d)(cd(m).d〈m〉.d〈m〉

| Wirebp0, c0, dc | Wirebp1, c1, dc)

CtrlSS
def
= (s0, s1, a).(p0, p1)(Lifebs1, s0, p1, p0c

| !Attach〈a, p0, p1〉)

where names s0 and s1 represent the component’s inter-
faces that accept stop and start requests, respectively (i.e.
interfaces of types CtrlStop and StrlStart in the meta-
model), and name a that can be used to attach stop and
start interfaces of the component’s new subcomponent (at
one step, i.e. via an interface of type CtrlAttach).

The requests for stopping and starting the component are
distributed to its subcomponents via names p0 and p1.
Constant application Lifebs1, s0, p1, p0c enables process
CtrlSS to receive message m via s0 or s1. This message
is distributed to the subcomponents by means of constant
application Distbpx,m, rc via shared name px, which can
be p0 in a case the component is running or p1 in a case
the component is stopped. When all subcomponents have
accepted message m, the process of starting or stopping
the component is finished, which is announced via name
r, and the component is ready to receive new requests to
stop or start, respectively.

Pseudo-application Attach〈a, p0, p1〉 enables CtrlSS to re-
ceive a message via a, i.e. a request to attach a new
subcomponent’s stop and start interfaces represented by
names c0 and c1, respectively. The names are connected
to p0 and p1 via constant applications of process Wire.
Third name received via a, cd, can be used later to detach
the previously attached stop and start interfaces.

5A primitive component handles stop and start interfaces
directly.

4.3.4 Cloning of Components and Updating
of Subcomponents

Cloning of a component allows to create the component’s
fresh copy and to transport it into different location, i.e.
for attaching as a subcomponent of anther component.
Process Ctrlclone describes processing of requests for clon-
ning of a component as follows:

Ctrlclone
∆
= (x).x(k).(s0, s1, c, ps1, . . . , p

s
n, p

g
1, . . . , p

g
m, r, p)

(k〈s0, s1, c, r, p〉 | r〈ps1, . . . , psn〉 | p〈pg1, . . . , p
g
m〉

| Component〈s0, s1, c, ps1, . . . , psn, p
g
1, . . . , p

g
m〉

| Ctrlclonebxc)

where the pseudo-application of Component describes
behaviour of the cloned component. When process
Ctrlclone receives a request k via name x, it sends names
s0, s1, c, r, p via k as a reply. The first three names repre-
sent “stop”, “start”, and “clone” interfaces of a fresh copy
of the component. The process is also ready to send names
representing control interfaces for binding functional re-
quested interfaces and referencing functional provided in-
terfaces of the new component, i.e. names ps1, . . . , p

s
n via

r and names pg1, . . . , p
g
m via p, respectively.

The fresh copy of a component can be used to replace a
subcomponent of a composite component. The process
of update6, which describes replacing of the old subcom-
ponent with a new one, is not a mandatory part of the
composite component’s behaviour and its implementation
depends on particular configuration of the component
(e.g. ability of the component to update its subcompo-
nents, a context of the replaced subcomponent, presence
of parts of the component that have to be stopped during
the update, etc.). For example, we can describe replacing
a subcomponent as process Update:

Update
∆
= (u, a, s0, sd, p

s
1, . . . , p

s
m, p

g
1, . . . , p

g
n).(k, s

′
d)

(u〈k〉.k(s′0, s′1, c, r′, p′).s0.a〈s′0, s′1, s′d〉.sd
.r′(p′s1 , . . . , p

′s
n )

.(x)(pg1〈x〉.x(p).p′s1 〈p〉 . . . pgn〈x〉.x(p).p′sn 〈p〉)
.p′(p′g1 , . . . , p

′g
m)

.(x)(p′g1 〈x〉.x(p).ps1〈p〉 . . . p
′g
n 〈x〉.x(p).psm〈p〉)

.s′1.Updatebu, a, s′0, s′d, p
s
1, . . . , p

s
m, p

g
1, . . . , p

g
nc)

Process Update sends via name u a request for a clone of
a component. A new component that is the clone of the
requested component will be used in update as a replace-
ment of the old subcomponent in a parent component
implementing the update process (i.e. as its subcompo-
nent). As a return value, process Update receives a vector
of names representing control interfaces for binding and
referencing the new component’s functional interfaces (see
the process of cloning above). Name a represents the
parent component’s internal control interface to attach
the new component’s stop and start interfaces (s′0 and s′1
names). Before the attaching, name s0 is used to stop
the old subcomponent and name sd to detach its stop
and start interfaces. Finally, names ps1, . . . , p

s
m, pg1, . . . , p

g
n

represent a context of the old subcomponent, i.e. inter-
faces of neighbouring subcomponents, which have to be
rebound to interfaces of the new component.

4.3.5 Primitive and Composite Components
Finally, we can describe complete behaviour of primitive
and composite components. Let us assume that process
abstraction Compimpl with parameters s0, s1, r1, . . . , rn,

6The process is also known as “updating” or “nesting” of
a component.
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p1, . . . , pm describes behaviour of the core of a primi-
tive component (i.e. excluding behaviour of processing of
its control actions), as it is defined by the component’s
developer. Further, process abstraction Compsubcomps

with parameters a, p′s1 , . . . , p
′s
m, p′g1 , . . . , p

′g
n describes be-

haviour of a system of subcomponents interconnected by
means of their interfaces into a composite component
(see Sec. 4.3.2). Names s0, s1, r1, . . . , rn, p1, . . . , pm and
names a, ps1, . . . , p

s
m, pg1, . . . , p

g
n are defined in Sec. 4.3.1.

Processes Compprim and Compcomp that describe be-
haviour of the mentioned primitive and composite com-
ponents can be defined as follows:

Compprim
def
=

(s0, s1, c, ps1, . . . , p
s
n, p

g
1, . . . , p

g
m).(r1, . . . , rn, p1, . . . , pm)

(CtrlIfs〈r1, . . . , rn, ps1, . . . , psn, p1, . . . , pm, p
g
1, . . . , p

g
m〉

| Ctrlclonebcc | Compimpl〈s0, s1, r1, . . . , rn, p1, . . . , pm〉)

Compcomp
def
=

(s0, s1, c, ps1, . . . , p
s
n, p

g
1, . . . , p

g
m).

(a, r1, . . . , rn, p1, . . . , pm, r′1, . . . , r
′
m, p

′
1, . . . , p

′
n)

(CtrlIfs〈r1, . . . , rn, ps1, . . . , psn, p1, . . . , pm, p
g
1, . . . , p

g
m〉

| CtrlIfs〈r′1, . . . , r′m, p′s1 , . . . , p′sm, p′1, . . . , p′n, p
′g
1 , . . . , p

′g
n 〉

| CtrlEI〈r1, . . . , rn, p1, . . . , pm, r′1, . . . , r
′
m, p

′
1, . . . , p

′
n〉

| Ctrlclonebcc | CtrlSS〈s0, s1, a〉
| Compsubcomps〈a, p′s1 , . . . , p′sm, p

′g
1 , . . . , p

′g
n 〉)

where the pseudo-applications of CtrlIfs represent be-
haviour of control parts of the components related to their
functional interfaces (see Sec. 4.3.2), the constant appli-
cations of Ctrlclone describe behaviour of control parts of
the components related to their cloning (see Sec. 4.3.4),
the pseudo-application of CtrlSS represents behaviour of
the composite component’s control part processing its
stop and start requests (see Sec. 4.3.3), and the pseudo-
application of CtrlEI describes communication between
internal and external functional interfaces of the compos-
ite component (see Sec. 4.3.2).

4.4 Behavioural Modelling of Services
This section deals with linking individual services of SOA
to their underlying implementations as CBSs. It provides
an approach to formal description of these services as the
CBSs by means of the component model from Sec. 4.

A system that applies SOA can be described at the fol-
lowing three levels of abstraction: as business processes
that represent sequences of steps in accordance with some
business rules leading to business aims; as services that
implement the business processes with well-defined inter-
faces and interoperability for the benefit of business; and
as components that implement the services as CBSs with
well-defined structure and description of their behaviour.
According to these three levels behaviour of a service can
be described in two views:

1. The service is an entity of SOA architecture and
is described by provided functionality and relations
to its neighbouring services (the “services” level of
abstraction). The neighbouring services can act as
requesters of the service or providers of functionality
required by the service. The service itself can also
act as a parent service to the neighbouring services
to ensure their assembly and coordination (i.e. as
a “task-centric” service controlling service composi-
tion members, see [10]).

2. The service can be implemented as a CBS (the
“components” level of abstraction). It is a compo-

nent with external interfaces accessible by neigh-
bouring components (neighbouring services at the
“services” level of abstraction, i.e. independent re-
questers, providers, as well as potential service com-
position members). The component can be realised
either as a primitive or as a composite component
where the component’s structure and its behaviour
describe the service’s internal implementation.

The first view requires description of the service’s be-
haviour in the context of communication with its neigh-
bouring services. The second shows the service as a com-
ponent of CBS, which internal structure and behaviour
can be specified in the common way, as in Sec. 4.

4.4.1 Service as a Part of SOA
The result of business-to-service transformation [32],
which forms SOA services from business processes, is an
UML class diagram. Individual services are modelled as
UML classes with stereotype «service» and connected
by means of UML relationships of “realisation” and “use”
to UML classes with stereotype «interface». While the
classes with stereotype «service» represent specific ser-
vices, the classes with stereotype «interface» describe,
by means of their methods, individual interfaces provided
or required by the services (i.e. “services” provided or re-
quired by their “providers” or “consumers”, respectively).

Let us assume a service Service that is described as an
entity of SOA by its interfaces I1 to In and relations
to its neighbouring services (i.e. at the “services” level
of abstraction and in the first view according to the in-
troduction of Sec. 4.4). Behaviour of the service can be
described as π-calculus process abstraction Service:

Service
def
= (i1, . . . , in).(b1, . . . , bm)

(Svcinit〈i1, . . . , in, b1, . . . , bm〉
.
∏n

j=1 Svcj〈ij , b1, . . . , bm〉)

where names i1, . . . , in represent the service’s inter-
faces I1, . . . , In, respectively, the pseudo-application of
Svcinit initiates the service’s behaviour, and the pseudo-
application of Svcj , for each j ∈ {1, . . . , n}, describes be-
haviour of processing of requests via the service’s interface
represented by name ij including possible communication
via shared names b1, . . . , bm.

Communication of Services and Service Broker. Com-
munication of services in SOA is realised by means of
various styles of data passing. In a case of existing service
choreography or orchestration in SOA, roles of participat-
ing services are predefined and the architecture is static.
Then, the choreography or orchestration is described by
means of a composition of π-calculus processes represent-
ing individual services, which communicate directly via
names that represent the services’ interfaces and that are
shared among the processes.

However, a serious SOA will likely discover its services
throughout an enterprise and beyond [10]. To support the
dynamic service discovery and invocation, SOA provides
service brokers (e.g. UDDI registries), which allow to
publish, find, and bind services at runtime.

A service broker stores information about available ser-
vice providers for potential service requesters, e.g. ref-
erences to the providers’ published interfaces. Its be-
haviour can be described as π-calculus process abstraction
Broker:
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Broker
def
= (pub, find).(q)

(Publishbq, pubc | Findbq, find, pubc)

Publish
∆
= (t, pub).pub(i, d).(t′)

(t〈t′, i, d〉 | Publishbt′, pubc)

Find
∆
= (h, find, pub).h(h′, i, d)

.(Findbh′, find, pubc | (find〈i〉.pub〈i, d〉 + d))

where names representing the providers’ interfaces (de-
noted by i internally) can be stored via name pub and
retrieved back via name find, which are subsequently
handled by constant applications of Publish and Find,
respectively. By the composition of the constant applica-
tions of Publish and Find with shared name q, process
constant Broker implements basic operations on a simple
queue (i.e. a First-In-First-Out (FIFO) data structure).

The constant application of Publish receives a pair of
names (i, d) via name pub and creates name t′. Then,
it proceeds as a composition of a constant application
of Publishbt′, pubc, which handles future requests, and
process t〈t′, i, d〉, which enqueues the received pair (i, d)
by sending them via name t, that represents the current
tail of the queue, together with name t′, that represents a
new tail of the queue used in the future requests.

The constant application of Find dequeues a front item
of the queue as a triple of names (h′, i, d) via name h,
that represents the current head of the queue. Then, it
proceeds as a composition of a constant application of
Findbh′, find, pubc, which handles future requests, and
a sum of capabilities of process find〈i〉.pub〈i, d〉, which
provides name i as an interface for potential service re-
questers and enqueues it back to the queue via name pub,
and process d, which, after receiving a name via name d,
allows to remove the interface and does not provide it to
potential service requesters anymore.

4.4.2 Service as a Component-Based System
A service’s underlying implementation, its behaviour, and
internal structure, can be described as a CBS. The ser-
vice can be implemented as a component with external
provided and required interfaces, which correspond to the
services’ interfaces provided to its possible consumers and
required from other services to consume their functional-
ity, respectively. This approach is related to the “compo-
nents” level of abstraction and the second view from the
introduction of Sec. 4.4.

To describe a service Service with interfaces I1 to In as a
CBS and by means of the component model from this ar-
ticle (see Sec. 4), we need to transform π-calculus process
abstraction Service from Sec. 4.4.1 describing behaviour
of the service into a formal description of behaviour of a
component representing the CBS (see Sec. 4.3). We fo-
cus on pseudo-application Svcj〈ij , b1, . . . , bm〉, which de-
scribes specific processing of the service’s interface ij (for
j ∈ {1, . . . , n}) and communication with other parts of the
service via shared names b1, . . . , bm. Process abstraction
Svcj can be defined as follows:

Svcj
def
= (ij , b1, . . . , bm).

Svc′j〈ij , bx1 , . . . , bxk , by1 , . . . , by(m−k)
〉

where k ∈ {1, . . . ,m} and x1, . . . , xk, y1, . . . , y(m−k) ∈
{1, . . . ,m}, and sets {bx1 , . . . , bxk} ∩ {by1 , . . . , by(m−k)

} =

∅ and {bx1 , . . . , bxk} ∪ {by1 , . . . , by(m−k)
} = {b1, . . . , bm}

(see the pseudo-application of Svcj in Sec. 4.4.1).

Name ij represents the interface Ij provided by the ser-
vice, names bx1 , . . . , bxk are all of the shared names that
are used as channels of input prefixes in Svc′j and names
by1 , . . . , by(m−k)

are all of the shared names that are used

as channels of output prefixes in Svc′j (for input and out-
put prefixes, see Sec. 4.1). Thereafter, process abstraction
Svc′j can be understand as a description of core behaviour
of a component with functional provided interfaces repre-
sented by names ij , bx1 , . . . , bxk and functional required
interfaces represented by names by1 , . . . , by(m−k)

in the

external view (see Sec. 4.3).

The mentioned component implements a part of the ser-
vice that is related to its interface Ij as a CBS. To extract
the desired core behaviour from the component’s complete
behaviour, process abstraction Svc′j can be defined as:

Svc′j
def
= (ij , bx1 , . . . , bxk , by1 , . . . , by(m−k)

).

(s0, s1, c, ps1, . . . , p
s
(m−k)

, pg1, . . . , p
g
(k+1)

)

(
∏k

u=1(d, t)(p
g
(u+1)

〈t〉.t(p).Wirebbxu , p, dc)
|
∏m−k

v=1 psv〈byv 〉 | (d, t)(pg1〈t〉.t(p).Wirebij , p, dc)
| Compj〈s0, s1, c, ps1, . . . , ps(m−k)

, pg1, . . . , p
g
(k+1)

〉)

where process constant Wire has been defined in
Sec. 4.3.2 and process abstraction Compj describes the
component’s complete behaviour and is fully compatible
with behavioural description of primitive and composite
components from Sec. 4.3.5.

5. Main Contributions
The proposed component model and the behavioural
modelling have been successfully validated in a case study
of a SOA of an environment for functional testing of com-
plex safety-critical systems, which has been published in
[30] and in the author’s dissertation [31].

Current approaches related to our work can be divided
into two groups as follows:

1. formal approaches to modelling of SOAs, mostly
based on the formalisation of business process mod-
els (e.g. transformations of BPEL to Petri nets or
to π-calculus processes);

2. formal approaches to modelling of CBSs, such as
component models and ADLs mentioned in Sec.2.2,
which are usually focused only on CBSs without
consideration of SOA at the higher level of abstrac-
tion (e.g. Wright [1], Tracta [12], behaviour proto-
cols of SOFA [37], formal descriptions of Fractive
[5], and, partially, SOFA 2.0 [8]).

Our approach intends to bridge the gap and to provide
a formal description of SOAs from the choreography of
their services to the behaviour of individual components
of underlying CBSs, as it has been demonstrated in the
case study. Similar efforts can be found in SOFA 2.0 and
the Reo coordination language [9].

In the SOFA 2.0, SOA becomes a specific case of a CBS
where all components (services) are interconnected solely
via their utility interfaces. The interfaces can be referred
and freely passed among the components and used to
establish new connections, independently of levels of com-
ponent hierarchy. The Reo coordination language [2, 9] is
based on the π-calculus and able to describe coordination
of both services in SOA and components in CBSs.
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In comparison with SOFA 2.0 or the Reo coordination
language, our approach describes services and compo-
nents separately and with respect to their differences (i.e.
services are not components and vice versa), but it allows
to go smoothly from a service level to a component level
and to describe behaviour of a whole system, services
and components, as a single π-calculus process. More-
over, we use the polyadic π-calculus without any special
extensions, which allows us to utilise existing tools for
model checking of π-calculus processes and verification
of their properties (e.g. The Mobility Workbench [36], a
model checker and an open bisimulation checker of mobile
concurrent systems described in the π-calculus).

Generally, in comparison to the current approaches, our
approach has the following important merits:

• The proposed component model has been designed
for mobile architectures. It supports fully dynamic
architectures with component mobility.

• The model permits combination of control and func-
tional interfaces in behaviour of primitive compo-
nents. Dynamic reconfiguration and component mo-
bility can be initiated by functional requirements
and performed via the control interfaces.

• Behaviour of services and components is described
in the π-calculus, which has a native support for
reconfiguration and mobility. It is a suitable formal
basis for behavioural description of systems with
mobile architectures.

• We use the polyadic π-calculus without any special
extensions, which allows us to utilise existing tools
for model checking of π-calculus processes and for-
mal verification of their properties.

• The proposed behavioural modelling of SOAs allows
a developer to go from a high level service design to
a detailed design of underlying CBSs, with respect
to differences between services and components. Be-
haviour of a whole system (individual services, their
choreography and implementation as the CBSs) can
be described as a single π-calculus process.

However, the proposed approach can suffer from the fol-
lowing possible drawbacks:

• The behavioural description of services and compo-
nents in π-calculus uses infinite recursions. These
are implemented by unguarded or weakly guarded
applications and which can cause decidability issues.

• The representation of system models uses the spe-
cific and informal UML-like notation.

• The formal description of behaviour requires an ad-
vanced knowledge of the π-calculus and may be a
difficult task for unskilled developers.

• The proposed approach describes how to model a
specific configuration and behaviour of a CBS or a
SOA as a π-calculus process. However, after sev-
eral dynamic reconfigurations and a corresponding
sequence of reductions of the π-calculus process,
it may be difficult to determine a final configura-
tion from the resulting π-calculus process, especially
without knowledge of the exact sequence of reduc-
tions (e.g. it may be difficult to determine a deadlock

configuration, which has been detected by means of
a verification tool in a specific π-calculus process).

6. Conclusions
In this article, the approach for modelling of CBSs has
been proposed. It meets the objectives set out in Sec. 3.2.
We have presented the component model, which allows
to describe CBSs with mobile architectures (i.e. dynamic
architectures allowing component mobility). The compo-
nent model’s metamodel has been introduced to describe
basic entities of the component model and their relations
and features. We have also proposed the formal descrip-
tion of behaviour of the component model’s entities and
services of SOAs as π-calculus processes. It allows us
to pass smoothly from service level to component level
and to describe behaviour of a whole system, services and
components, as a single π-calculus process.

An application of our approach has been illustrated in
the case study of the environment for functional testing of
complex safety-critical systems, which has been published
in [30]. In the case study, the environment has been
described as a SOA and an underlying CBS modelled
by means of the component model’s metamodel. We have
formally described behaviour of the whole environment by
means of the π-calculus on the levels of the SOA and the
CBS. Finally, the formally described services and compo-
nents have been simulated, checked for deadlocks, strong
and weak open bisimulation equivalence, and verification
of their properties has been outlined.

In comparison with the related approaches, the proposed
approach has advantages in support of mobile architec-
tures, in full integration of dynamic reconfiguration into
behaviour of components where functional requirements
can initiate control actions, in support of behavioural de-
scription of SOAs and transition to CBSs, and in utili-
sation of the standard polyadic π-calculus supported by
existing tools for model checking and formal verification.

The future work will be focused on improving system
models’ notation, modelling tools, and behavioural de-
scription, to simplify integration of the component model
and utilisation of its formal basis into initial phases of soft-
ware development processes. We also intend to support
final phases of the development processes by integration
of the component model into existing component-based
technologies and by an implementation framework.
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